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Stereoscopic depth perception may be obtained from small retinal disparities that can be fused for single
vision (fine stereopsis), but reliable depth information is also obtained from larger disparities that
produce double vision (coarse stereopsis). While there is some evidence that stereoacuity improves with
age, little is known about the development and maturation of coarse stereopsis. Here we address this gap
by assessing the maturation of stereoscopic depth perception in children (4–14 years) and adults over a
large range of disparities from fused (fine) to diplopic (coarse). The observer’s task was to indicate
whether a stereoscopic cartoon character was nearer or farther away than a zero-disparity reference
frame. The test disparities were grouped into fine (0.02, 0.08, 0.17, 0.33, 0.68, 1.0 deg) and coarse (2.0,
2.5, 3.0, 3.5 deg) ranges based on an initial determination of the diplopia threshold for each observer.
Next, percent correct depth direction was determined as a function of disparity. In the coarse range, accu-
racy decreased slightly with disparity and there were no differences as a function of age. In the fine range,
accuracy was constant across all disparities in adults and increased with disparity in children of all ages.
Performance was immature in all children at the finest disparity tested. We conclude that stereopsis in
the coarse range is mature at 4 years of age, but stereopsis in the fine range, at least for small disparities,
continues to mature into the school-age years.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The conventional view of stereoscopic processing is that the
visual input from the two eyes is fused to produce the percept of
a single scene. In doing so, the stereoscopic system also provides
extremely high-resolution information about the relative depth
of objects in space. This ‘fine’ stereopsis has been well documented,
and is assessed by clinical tests of stereoacuity (e.g. Randot stereo-
test). However, stereoscopic depth is also obtained when viewing
images with very large disparities (horizontal offsets) that cannot
be fused into a single image and hence appear diplopic. The exis-
tence of a ‘coarse’ disparity processing mechanism was studied
in early investigations of stereopsis (Mitchell, 1969; Ogle, 1953;
Tschermak & Hoefer, 1903), but remains poorly understood. More
recently, Wilcox and Hess (1995, 1996, 1997, 1998) showed that
different neural mechanisms seem to support fine (1st order) and
coarse (2nd order) stereopsis. This distinction is upheld by other
psychophysical (Kovacs & Feher, 1997; Langley, Fleet, & Hibbard,
1999; McKee, Verghese, & Farell, 2004, 2005) and physiological
(Tanaka & Ohzawa, 2006) research. To date, investigation of stereo-
scopic dichotomies based on disparity range has been restricted to
adult populations. However it is possible that the coarse and fine
mechanisms have different developmental timelines, which leads
us to evaluate the development of stereopsis in children.

Stereopsis is not present at birth, but appears by approximately
4 months of age in most infants (Birch & Petrig, 1996; Birch, Shim-
ojo, & Held, 1985; Brown & Miracle, 2003; Fawcett, Wang, & Birch,
2005; Shea et al., 1980; Takai et al., 2005). Binocular fusion follows
a similar time course (Birch & Petrig, 1996; Birch, Shimojo, & Held,
1985). Sensitivity to monocular pictorial depth cues appears later
in development by 7 months of age (e.g. Arteberry, Yonas, & Ben-
sen, 1989). Electrophysiological experiments with infant monkeys
suggest that the development of stereopsis is limited not by a lack
of disparity selective mechanisms in early visual cortex (V1/V2),
but by their relatively coarse spatial frequency tuning, lower
response rate and low contrast sensitivity (Chino et al., 1997;
Maruko et al., 2008). This is consistent with human psychophysical
experiments suggesting that the critical immaturity limiting infant
stereopsis is contrast sensitivity (Brown et al., 2007). The develop-
ment of stereopsis appears to be very dependent on visual experi-
ence because it appears at the same time after birth in both
preterm and full-term infants (Jandó et al., 2012).

Most previous studies on the maturation of fine stereopsis have
used commercially available tests such as the Titmus, Randot, Fris-
by or TNO. Estimates of the age at which stereoacuity reaches adult
levels vary considerably and depend on the test used, however,
most studies agree that fine stereopsis is still immature at 5 years
of age and reaches adult levels between 6 and 9 years of age (Ciner
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et al., 1989; Cooper, Feldman, & Medlin, 1979; Fox, Patterson, &
Francis, 1986; Heron et al., 1985; Leat et al., 2001; Romano, Roma-
no, & Puklin, 1975; Simons, 1981; Tomac & Altay, 2000). In con-
trast, Birch and Petrig (1996) reported that VEP responses to
stereoscopic stimuli approached adult levels by 6–7 months when
assessed using dynamic random dot patterns. Note that in their
work, Birch and Petrig (1996) refer to disparities greater than
20 arcmin as ‘coarse’ because they are large relative to their chosen
disparity conditions; they did not use the diplopia-based classifica-
tion applied here.1 In fact, while they are very useful for avoiding the
presence of monocular features, diplopia is not perceived in random-
dot stereograms due to the presence of multiple false matches.

Very little is known about the development and maturation of
coarse stereopsis. Our recent finding that disruption of binocular
vision by amblyopia during childhood can spare stereopsis for dip-
lopic stimuli (Giaschi et al., in press), could reflect the earlier mat-
uration of coarse stereopsis relative to fine.

A number of potential roles for coarse stereopsis in human
vision have been proposed (reviewed in Wilcox & Allison, 2009).
For instance, most objects in a visual scene lie outside Panum’s
fusion zone and so are diplopic or double. Since fine stereopsis
cannot signal depth for such stimuli, the coarse mechanism could
be essential in providing depth information for a large region of vi-
sual space. Another possible role for coarse stereopsis is in the
early development of coordinated binocular eye movements. As
summarized by Simons (1993), a coarse stereoscopic mechanism
could be used by the visual system to help align the two eyes, per-
mitting the development of the high-resolution, fine stereoscopic
system. The developing visual system initially faces enormous cal-
ibration challenges and considerable internal noise, these com-
bined with relatively poor visual acuity and contrast sensitivity,
will jeopardize its ability to make fine stereoscopic matches. Early
development of a coarse stereoscopic signal may provide local
depth information until the high-resolution information is avail-
able. This hypothesis has not yet been tested empirically. It follows,
however, that if the coarse mechanism is used in this way, it must
develop prior to the fine mechanism, and possibly mature earlier.

Here we assess the maturation of stereoscopic depth perception
in children and adults using a computerized test. The aim is to
determine the age at which performance reaches adult levels over
a large range of disparities from fused (fine) to diplopic (coarse) in
children aged 4–14 years with normal vision. We chose this age
range based on the fine stereopsis studies summarized above, as
well as previous studies showing that several other aspects of
visual perception mature during the school age years (e.g. Gunn
et al., 2002; Hadad, Maurer, & Lewis, 2011; Hayward et al., 2011;
Levi & Carkeet, 1993; Parrish et al., 2005). As outlined above, the
literature on the development of stereopsis has focused almost
exclusively on the measurement of stereoacuity. While it is impor-
tant to establish the minimum discriminable disparity, this
approach leads to a focus on relatively small disparities. Here we
assess accuracy of depth discrimination for a large range of supra-
threshold disparities that are not typically included in threshold
experiments. This will give us insight into the full range of stereo-
scopic depth perception, not just the lower limits.

2. Methods

2.1. Participants

Thirty-two adults, aged 18–40 years (mean 26 years) and 134
children, aged 4–14 years, were recruited. Prior to testing,
1 The terms ‘coarse’ and ‘fine’ stereopsis have been associated with a variety of
disparity ranges in the literature. Here we adopt a strict operational definition based
on each observer’s diplopia point.
informed consent was obtained from each adult or parent, and ver-
bal or written assent was obtained from each child. Visual acuity
was assessed by the Regan high-contrast letter chart (Regan,
1988), and stereoacuity was assessed by the Randot Circles test
and the Randot Preschool test (Stereo Optical Co.). The Lighthouse
picture chart (Lighthouse Low Vision Products) was used to assess
visual acuity if a child had not yet mastered the alphabet. All par-
ticipants had best corrected decimal visual acuity of at least 0.82 on
the Regan chart or at least 0.67 on the picture chart (Chen et al.,
2006; Dobson et al., 2009), stereoacuity of 60 arcsec or better on
both stereo tests (Birch et al., 2008), and no known eye or vision
problems. Six children and 2 adults were excluded from the data
analysis because their best corrected visual acuity was poorer than
the cutoffs specified above. Three children (age 7, 9 and 11) and 4
adults were excluded from the data analysis because their stereoacu-
ity was poorer than the cutoff of 60 arcsec. The remaining children
were divided into five groups according to age: 4–5 (N = 25), 6–7
(N = 25), 8–9 (N = 27), 10–11 (N = 26) and 12–14 (N = 22).

2.2. Apparatus

The stimuli were generated using a Macintosh G4 computer and
presented on a ViewSonic Graphic series G225f CRT monitor with a
resolution of 1024 � 768 and a refresh rate of 120 Hz. Stereoscopic
images were displayed through liquid crystal shutter glasses (Crys-
talEyes 4) synchronized to the computer. Participant responses
were collected using a Gravis game pad pro controller and the
room was diffusely illuminated to avoid glare.

2.3. Stimulus

The display subtended 21.5 � 16.5 deg at a viewing distance of
1 m. The stimulus was a grey-scale Pokémon character (see Fig. 1)
selected at random from a bank of nine characters presented at the
centre of the display and surrounded by a rectangular, zero-dispar-
ity reference frame. The stimulus was presented on a grey back-
ground, at a moderate intensity to avoid crosstalk between the
two eye’s images. Two small black, zero-disparity squares were
positioned above and below the reference frame to aid fusion.
The width of the Pokémon stimuli was fixed at 2.2 deg while the
height varied from 1.6 to 3.1 deg according to the character. To
maintain a fixed distance of 0.6 deg between the outside edge of
the stimulus and the reference frame, the width of the frame was
scaled with the test disparity while the height varied with the
character. Test disparities of 0.02, 0.08, 0.17, 0.33, 0.67, 1.0, 2.0,
2.5, 3.0, and 3.5 deg were used.3

2.4. Procedure

2.4.1. Measurement of the diplopia point
We began with an experiment to separate the disparity range

into fine and coarse regions based on a quantitative measure, that
is the proportion of trials on which the stimuli appeared fused
(versus diplopic; Wilcox & Hess, 1995). Participants were
instructed to indicate whether they saw one or two characters
using an animated PowerPoint presentation. At the beginning of
each trial a happy face image appeared for 500 ms to ensure fixa-
tion was at the zero-disparity plane. The Pokémon character was
visible for 320 ms (the shortest duration that children would toler-
ate in pilot studies) and trials were self-paced. A mid-range subset
of the test disparities was used and presented randomly on each
2 A decimal visual acuity of 0.8 is equivalent to a Snellen ratio of 20/25 or 0.1
LogMAR. A decimal visual acuity of 0.67 is equivalent to 20/30 or 0.2 LogMAR.

3 For comparison with other tests, these disparities are 72, 288, 612, 1188, 2412,
3600, 7200, 9000, 10,800, and 12,600 s.



Fig. 1. Sample Pokémon stimuli are depicted as a stereopair. Crossed fusion of the left and middle pairs will cause the figure to lie in front of the fixation frame. Crossed fusion
of the right and middle pair will cause the figure to lie beyond the frame (the depth order will reverse if uncrossed fusion is used). The stimuli in the upper and lower rows
illustrate fine (fused) and coarse (diplopic) disparities, respectively. The rectangular and filled squares were fixed at zero disparity and served as a reference.
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trial as crossed or uncrossed (0.08, 0.17, 0.33, 0.67, 1.0, 2.0,
3.0 deg). Each participant completed a total of 70 trials, 10 per
disparity.

2.4.2. Depth discrimination
In the main experiment the task involved a conventional depth

discrimination judgement, that is, observers were asked to indicate
whether the Pokémon character appeared to be in front of or
behind the reference frame. A new animated PowerPoint presenta-
tion was used to explain this task, and the full set of 10 disparities
was used. Each participant began with a practice block of 20 trials
with auditory feedback to ensure they could perform the task. Six
participants were excluded for failing to understand the task (three
4–5; one 8–9; one 12–14; one adult). This was followed by the full
experiment without feedback with 20 trials per disparity, sepa-
rated into shorter blocks to permit rest breaks. A full data set
was collected from six groups of participants: 4–5 (N = 22), 6–7
(N = 25), 8–9 (N = 26), 10–11 (N = 26), 12–14 (N = 21) and adults
(N = 25).
3. Results

3.1. Diplopia assessment

The ‘proportion diplopic’ obtained for each participant as a
function of disparity was fit with a Weibull function to obtain
the slope and diplopia threshold. The diplopia threshold was taken
as the point of maximum inflection on the psychometric function,
which occurs at 63% for this type of ‘‘yes–no’’ procedure (Stras-
burger, 2001). The averaged data for each age category are plotted
in Fig. 2. Analysis of variance showed a main effect of Age on the
diplopia thresholds (F(5,132) = 3.335, p = .007; medium effect size,
f = 0.36; Cohen, 1992). Tukey’s HSD pairwise comparisons were
used to examine differences between groups. The threshold for
the 4–5 year olds was significantly higher than for the 10–11 year
olds or for the adults (p < .05); no other group differences reached
significance. A second ANOVA showed a main effect of Age on the
diplopia slopes (F(5,55.339) = 4.659, p = .001; small effect size,
f = 0.25). As Levene’s test indicated that homogeneity of variance
was violated, the degrees of freedom were adjusted with the Welch
correction. Games–Howell pairwise comparisons were used to
examine differences between groups. The slope for the 4–5 year
olds was significantly shallower than for the 8–9 year olds
(p < .05); no other group differences reached significance.

In spite of these small Age effects, each age group showed a
clear transition from mainly fused at 1.0 deg to mainly diplopic
at 2.0 deg. Based on this result, the disparities for the remaining
analyses were divided into two sets, fine (0.02, 0.08, 0.17, 0.33,
0.67, 1.0 deg) and coarse (2.0, 2.5, 3.0, 3.5 deg).
3.2. Depth discrimination

The mean proportion correct as a function of disparity in the
fine range is shown in Fig. 3. A repeated measures ANOVA with
Age as a between subjects factor showed no main effect of Age
(F(5,139) = 0.737, p = .60), but a significant main effect of Disparity
(F(5,695) = 49.33, p < .001; large effect size, f = 0.60). This was
qualified by a significant Age � Disparity interaction (F(25,695) =
3.95, p < .001; medium effect size, f = 0.38). This analysis was fol-
lowed by tests of the simple effect of Age at each Disparity which
showed a main effect of Age at the finest disparity only
(F(5,834) = 4.84, p = .001, corrected); all other simple effects were
not significant (p > .25). Tukey’s HSD pairwise comparisons were
used to examine differences between groups at the finest disparity.
Here, adults performed significantly better than all other age
groups (p < .01), while the 4–5 year olds performed significantly
worse than all other age groups (p < .01). There were no significant
differences among the 6–7, 8–9, 10–11 or 12–14 year old groups
(p > .05). The power of the Age effect at the finest disparity, based
on the large population effect size (f = 0.43), was 0.98. The sample
size required to obtain an Age effect at the .05 level at the other
disparities in the fine range, with the recommended power of
0.80 (Cohen, 1992), was determined to be at least 63 participants
per group.

The mean proportion correct as a function of disparity in the
coarse range is shown in Fig. 4. A repeated measures ANOVA with
Age as a between subjects factor showed no main effect of Age
(F(5,139) = 1.38, p = .23), but a significant main effect of Disparity



Fig. 2. The mean proportion of stimuli perceived as diplopic in each age group as a function of disparity. Error bars represent the standard error of the mean.

Fig. 3. Accuracy as a function of fine disparities for the different age groups. Error bars represent the standard error of the mean. The six different age groups are represented
using different colours. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(F(3,417) = 6.13, p < .001; small effect size, f = 0.21). This was again
qualified by a significant Age � Disparity interaction
(F(15,417) = 1.69, p = .05; small effect size, f = 0.25). The simple ef-
fect of Age was not significant at any disparity (p > .85, corrected).
The simple effect of Disparity was significant in the 4–5 year old
(F(3,417) = 2.83, p = .038), 6–7 year old (F(3,417) = 3.67, p = .012),
10–11 year old (F(3,417) = 3.52, p = .015), and adult (F(3,417) =
3.44, p = .017) groups. Follow-up with Tukey’s HSD pairwise com-
parisons showed that performance was better at 2.0 deg than at
3.5 deg in each age group (all p < .05). The initial Age � Disparity
interaction was likely driven by a non-significant simple effect of
Disparity in the 8–9 year old (F(3,417) = .51, p = .68) and the 12–
14 year old (F(3,417) = 0.75, p = .52) groups.

Because the mean performance of the 4–5 year old group ap-
peared to be consistently lower than that of the adults, a post
hoc power analysis was conducted to determine if our design
had enough power to detect an Age effect. The power of the Age ef-
fect with our sample size of 145 was 0.47. On the basis of the small
Age effect size (f = 0.22) and the recommended power of 0.80, an N
of approximately 46 per age group (276 total) would be required to
obtain a significant Age effect at the .05 level.

We next expressed the mean depth discrimination accuracy for
each child group as an immaturity ratio relative to the mean depth
discrimination accuracy for the adult group (Table 1). These qual-
itative results are consistent with the statistical analysis and sug-
gest that immaturity was greatest at the smallest disparity,
particularly in the youngest group of children. At disparities be-
tween 0.17 and 1.0 deg, children were identical or slightly better
than adults.
4. Discussion

We have determined that performance on our computerized
test of stereopsis is at adult levels at the age of 4 years for dispar-
ities between 0.08 deg and 3.5 deg. This is the first report on the
development of stereopsis across this large range of disparities.
We found that performance at the finest disparity tested,
0.02 deg, was still immature at the age of 14 years. In support of
this relative immaturity, the power analyses showed that while
our sample size was large enough to detect the large effect of
age at the finest disparity, the sample size would need to be dou-
bled or tripled to detect the small effect of age at larger disparities.

In the coarse range, it is clear that all of our observers are per-
forming less accurately than in the fine range. However, it is
important to note that on average, performance for both adults



Fig. 4. Accuracy as a function of coarse disparities for the different age groups. Error bars represent the standard error of the mean. Each colour corresponds to a different age
group. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Immaturity ratios.

Group Disparity

0.02 0.08 0.17 0.33 0.67 1.0 2.0 2.5 3.0 3.5

4–5 0.75 0.92 0.97 1.0 1.10 1.03 0.91 0.85 0.89 0.87
6–7 0.86 1.00 1.06 1.08 1.13 1.07 0.98 0.94 0.98 0.93
8–9 0.86 0.97 1.03 1.0 1.0 0.99 0.88 0.87 0.96 0.95
10–11 0.84 0.95 1.02 1.03 1.06 1.0 0.98 0.89 0.94 0.94
12–14 0.91 0.97 1.04 0.98 1.08 1.07 0.99 0.92 1.05 1.03
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and children is well above chance levels. Therefore the similarity in
performance across age groups cannot be explained by task diffi-
culty (i.e. a floor effect). The decreased accuracy in the coarse range
is probably due to the known degradation of depth information
from disparities that appear diplopic (Ogle, 1952; Westheimer &
Tanzman, 1956). This is consistent with our finding of a decrease
in accuracy with increasing disparity for most age groups (Fig. 4).
4.1. Comparison with previous studies

Our finding that children were more accurate than adults at the
larger disparities in the fused range (0.17–1.0 deg), although not
statistically significant, is consistent with a previous study that re-
ported faster reaction times in children compared to adults for
identifying random-dot stereograms (Dowd et al., 1980). Dowd
and colleagues attributed this age effect to differences in the size
of Panum’s fusional area. This interpretation is consistent with
the results of our diplopia assessment (Fig. 2), but requires further
investigation.

Most other studies of the development of stereopsis have mea-
sured stereoacuity, the smallest disparity that can reliably be dis-
criminated, whereas here we used a suprathreshold accuracy
task. Theoretically, given that even our smallest disparity is above
traditional threshold estimates, one might expect that observers
would perform near perfect within our fine range.4 The reduced
accuracy is probably due to the short viewing time (320 ms) and ra-
pid pacing imposed by our computerized test versus the self-paced,
4 It is important to bear in mind that the scale of any given disparity should be
considered in relation to the size (horizontal width) of the test stimulus. A relatively
‘small’ disparity applied to a narrow target may in fact be outside Panum’s fusional
area.
unlimited viewing time of clinical tests such as the Randot tests. In-
stead, our results are consistent with a large number of studies that
show that stereopsis for relatively small disparities is still immature
at age 5 (Ciner et al., 1989; Cooper, Feldman, & Medlin, 1979; Fox,
Patterson, & Francis, 1986; Heron et al., 1985; Leat et al., 2001;
Romano, Romano, & Puklin, 1975; Simons, 1981; Tomac & Altay,
2000). The reported age at which performance on psychophysical
tasks reaches adult levels for small disparities ranges from 6 to
9 years, and depends on the task and the stimulus used. A protracted
developmental trajectory into adolescence has also been reported for
other aspects of vision such as contour integration (Gervan, Berencsi,
& Kovacs, 2011; Kaldy & Kovacs, 2003; Kovacs et al., 1999) and
texture perception (Parrish et al., 2005).

An important difference between our experiment and the
research cited above is that most studies have used random dot
stereograms making it impossible to assess performance in the
diplopic range. In such stimuli, the multiple false matches (avail-
able at disparities that would otherwise be outside the fusion
range) provide solutions to the stereoscopic system at a fine scale.
Therefore the coarse disparity detectors are not used. The percept
of depth in such stimuli is not veridical, instead the random dot
stereogram looks like a volume of elements at random depths.

While measures of stereoacuity cannot be directly compared
with our suprathreshold task, they are not unrelated. That is, the
majority of studies that assess the maturation of stereopsis report
performance on their task or stimulus of choice over a range of
ages and abilities. There is typically a criterion that is designated
as the adult level for that task, for example 40 arcmin for the Ran-
dot stereotest (Romano, Romano, & Puklin, 1975). While the aim is
to determine the age at which performance reliably reaches this
criterion, most investigators also report the levels achieved prior
to attaining adult performance. This information is potentially
valuable because investigators rarely report that their young
observers cannot do the task at all, just that they require very large
disparities to perform the task. While stereoacuity thresholds im-
prove with age, it appears that suprathreshold depth discrimina-
tion for large disparities is mature at an early age (at least by age
4 from our results). It will be necessary to test younger children
with a modified methodology5 to determine the developmental
5 The computerized task and methodology used here was designed specifically for
children as young as 4 years, but is not suitable for testing younger ages.
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time course and to test the hypothesis that the early development of
a coarse stereoscopic signal may provide depth information until
high-resolution information is available (Simons, 1993).

4.2. Fine versus coarse stereopsis

There has been debate in the literature as to whether fine and
coarse stereoscopic processing fall along a continuum, or reflect
the operation of two distinct mechanisms. Some authors have sup-
ported the presence of a continuum of essentially identical dispar-
ity detectors that process the full range of fine to coarse disparities
(Ogle, 1953; Richards & Kaye, 1974). However, this work can be
interpreted differently, and is also consistent with a large body of
work suggesting that there are two distinct populations involved
(Hess & Wilcox, 1994; Mitchell, 1969; Ogle, 1953; Schor & Wood,
1983). For example, Jones (1977) provided strong support for a dis-
tinct coarse disparity mechanism when he showed that observers
with substantial deficits in processing large disparities typically
performed at normal levels when presented with small depth
offsets.

More recent psychophysical studies also provide compelling
evidence for a disparity mechanism that is selective for coarse dis-
parities (Hess & Wilcox, 1994, 2008; Kovacs & Feher, 1997; Lang-
ley, Fleet, & Hibbard, 1999; Lin & Wilson, 1995; McKee,
Verghese, & Farell, 2004; Sato & Nishida, 1994; Schor, Edwards, &
Sato, 2001; Wilcox, 1999; Wilcox & Hess, 1995, 1996, 1997,
1998). These studies typically present very different stimuli to each
eye, forcing the visual system to extract a disparity signal from
either the contrast envelope or the overall area of the stimulus,
and to ignore the interior detail. The work of Wilcox and Hess
(1996, 1997, 1998) and of McKee, Verghese, and Farell (2004,
2005) supports the proposal that these two systems operate in a
synergistic manner in adults. The fine system is used when the bin-
ocular correspondance is unambiguous, while the coarse system
serves as a type of back-up mechanism which is relied upon when
the images in the two eyes have different luminance, are ambigu-
ous (e.g. repetitive bars), or are presented at disparities that are be-
yond the fusion limit.

While not a test of this dissociation, our experiments are gener-
ally consistent with it, in that within the diplopic range perfor-
mance is the same across all ages suggesting that coarse
stereopsis matures before 4 years of age. However fine stereopsis
continues to develop into the school-age years, at least at the finest
disparity we tested.

4.3. Neural correlates

Studies of macaque neurophysiology (Uka & DeAngelis, 2006)
and functional magnetic resonance imaging in humans (Neri,
Bridge, & Heeger, 2004) have implicated the dorsal visual stream,
specifically MT/hMT+ as part of the neural substrate underlying
coarse disparity processing. The ventral visual stream may be more
important for fine disparity processing (reviewed in Roe et al.,
2007; Schiller, Logothetis, & Charles, 1990) though additional study
is required to rule out variables such as task complexity and noise
sensitivity. Kovacs (2000) attributed the protracted development
of contour integration to the slower development of the ventral vi-
sual stream relative to the dorsal stream. The later maturation of
fine stereopsis relative to coarse in the current study is consistent
with this dichotomy.

Whether or not our data reflect a mechanistic dichotomy or the
gradual development of a single neural substrate, it is important to
recognize the presence and potential utility of these large disparity
detectors in young children. This is particularly relevant to visual
disorders such as amblyopia where the degree of binocularity is
an indicator of treatment success (McKee, Levi, & Movshon,
2003), but conventional clinical tests of stereopsis focus on rela-
tively small disparities and stereoacuity. The inclusion of large
(even diplopic) disparities may provide a more complete picture
of a patient’s binocular status, and improve the clinician’s ability
to assess their suitability for treatment.
5. Conclusion

Performance on our computerized test of stereopsis was similar
to that of adults at the youngest age tested (4 years) for large dis-
parities that produce double vision. Performance for smaller dis-
parities within the fusable range was poorer than that of adults
even at 14 years of age.
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