
Learning to Pack: A Data-Driven Tree Search Algorithm
for Large-Scale 3D Bin Packing Problem

Qianwen Zhu∗
Nanjing University
Nanjing, China

zhuqw@smail.nju.edu.cn

Xihan Li
University College London

London, The United Kingdom
xihan.li@cs.ucl.ac.uk

Zihan Zhang
Huawei Noah’s Ark Lab

Shenzhen, China
zihan.zhang@huawei.com

Zhixing Luo
Nanjing University
Nanjing, China

luozx@nju.edu.cn

Xialiang Tong
Huawei Noah’s Ark Lab

Shenzhen, China
tongxialiang@huawei.com

Mingxuan Yuan, Jia Zeng
Huawei Noah’s Ark Lab

Shenzhen, China
{yuan.mingxuan,zeng.jia}@huawei.com

ABSTRACT
The 3-dimensional bin packing problem (3D-BPP) is not only fun-
damental in combinatorial optimization but also widely applied
in real world logistics. In the modern logistics industry, the com-
plexity of constraints, heterogeneity of cargoes and scale of orders
are dramatically increased, leading to great challenges to devise
packing plans up to standard. While the tree search algorithm is
proved to be a successful paradigm to solve the 3D-BPP, it is too
time-consuming to be applied in the aforementioned large-scale
scenarios. To overcome the limitation, we propose a data-driven
tree search algorithm (DDTS) to tackle the 3D-BPP. The solution
space with complicated constraints is explored by a tree search
algorithm, and a convolutional neural network trained with his-
torical data guides pruning the tree so as to accelerate the search
process. Computational experiments on real-world datasets show
that our algorithm outperforms the state-of-the-art approach with
a loading rate improvement of 2.47%. Moreover, the deep learning
technique increases searching efficiency by 37.14% with only 0.04%
performance loss. The algorithm has been deployed in Huawei Lo-
gistics System, which increases the loading rate by 3% and could
reduce the logistics cost by millions of dollars per year. To the best
of our knowledge, we are the first to embed pruning networks into
tree search for the large-scale 3D-BPP.

CCS CONCEPTS
•Applied computing→Operations research;Transportation;
•Mathematics of computing→Combinatorial optimization;
• Computing methodologies → Machine learning.

∗This work is done when Qianwen Zhu worked as an intern at Huawei Noah’s Ark
Lab.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00
https://doi.org/10.1145/3459637.3481933

KEYWORDS
combinatorial optimization, deep learning, bin packing problem,
container loading problem, tree search, convolutional neural net-
work
ACM Reference Format:
QianwenZhu, Xihan Li, Zihan Zhang, Zhixing Luo, Xialiang Tong, andMingx-
uan Yuan, Jia Zeng. 2021. Learning to Pack: A Data-Driven Tree Search
Algorithm for Large-Scale 3D Bin Packing Problem. In Proceedings of the
30th ACM International Conference on Information and Knowledge Manage-
ment (CIKM ’21), November 1–5, 2021, Virtual Event, QLD, Australia. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3459637.3481933

1 INTRODUCTION

Figure 1: 3-dimensional bin packing problem

How to load cargoes into containers as full as possible is a core
problem in logistics and manufacturing industries, which is con-
sidered in many scenarios, e.g., box packing, vehicle loading and
warehouse stacking. As shown in Figure 1, a large number of car-
goes of different types and shapes in different depots need to be
loaded into a vehicle, considering many practical constraints. Only
a slight improvement in loading rates could significantly reduce the
logistics cost, resulting to a huge market value. Taking the logistics
scenario of Huawei, a leading global provider of ICT infrastructures
and smart devices, as an example, 1% loading rate increase could re-
duce the logistics cost by more than one million US dollars per year.
Packing a set of 3D rectangular items into a 3D rectangular con-
tainer under the specified constraints is known as the 3-dimensional
bin packing problem (3D-BPP) or the 3-dimensional container load-
ing problem (3D-CLP). The objective of the 3D-BPP is to maximize
the loading rate of the container. It is a typical NP-hard problem[22].
There are two major challenges in the real world. (1) Abundant

Applied Research Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4393

https://doi.org/10.1145/3459637.3481933
https://doi.org/10.1145/3459637.3481933
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3459637.3481933&domain=pdf&date_stamp=2021-10-30

constraints. The constraints in real scenarios are abundant and
complex. For example, there are 30+ constraints in Huawei vehicle
loading scenario. Whenever an item is packed into the container,
all constraints need to be checked to ensure the feasibility of the
loading solution. Manually doing this job is time-consuming and
almost impossible. The fragmented solution space makes it difficult
to find an acceptable solution in a reasonable time. (2) Strong het-
erogeneity. Strong heterogeneity refers to the variety of materials
and shapes of cargoes. The size of the search space increases expo-
nentially with the increase of heterogeneity, which makes it take
much more time to obtain a feasible and satisfactory solution.

This paper proposes a data-driven tree search algorithm (DDTS)
to tackle the real-world 3D-BPP. The whole packing process con-
sists of a sequence of packing actions. In each packing action, we
have to determine 1) which item to pack and 2) where it should be
placed. To determine the best packing action, a lookahead mecha-
nism is designed to search all possibility of items and their locations.
For a item-location pair, we check all constraints to guarantee that
the item could be placed at the location legally. Then the item-
location pair is evaluated by a simulation loading. Specifically, in
the simulation loading, after the item is placed at the corresponding
location of the pair, the remaining items are packed afterwards by a
heuristic method. Thus the pair is scored by the simulation loading
rate of the container. Among all pairs, the pair with the highest
score is selected. Finally, we place the item at the location of the
selected pair. Since the process of constraint checking and simula-
tion loading is time-consuming and the number of item-location
pairs is large in each action, evaluating all pairs is inefficient and
almost impossible. Therefore, to avoid using constraint checking
and simulation loading to prune unpromising pairs, we train a
pruning convolutional neural network instead. The historical infor-
mation enables the network to help select the best item-location
pair from all possibilities more efficiently in each packing action.
Computational experiments present that our algorithm generates
better solutions than the state-of-the-art approach, in which the
pruning network acts well. The algorithm has been successfully
online, which brings immediate commercial value.

The contribution of this paper is threefold.
(1) A pruning network is trained using historical data to em-

power the tree search algorithm, in which a CNN model extracts
features of a container and items. To the best of our knowledge, we
are the first to apply machine learning techniques to prune branches
in optimization methods for the large-scale 3D-BPP. Speeding up
with the pruning network saves 37.14% time with only 0.04% per-
formance loss.

(2) We address a practical 3D-BPP with abundant constraints and
a large number of strongly heterogeneous cargoes, which emerges
as the rapidly rising demand and is rarely studied in previous re-
searches. Then a data-driven tree search algorithm is proposed to
solve the problem effectively.

(3) The numerical experiments on real-world datasets show that
our algorithm outperforms the state-of-the-art approach with a
loading rate improvement of 2.47%. The algorithm has been de-
ployed in Huawei Logistics System, and the average loading rate
has increased by 3% over the old system. It is conservatively esti-
mated to save millions of dollars in logistics costs every year.

2 RELATEDWORK
2.1 3D bin packing problem
The bin packing problem (BPP) is one of the most important prob-
lems in combinatorial optimization and theoretical computer sci-
ence. The BPP is useful in practice and finds numerous applications
in scheduling, routing and resource allocation problems. According
to the number of dimensions, the BPP can be classified into 1D, 2D
and 3D. Effective implementations of the 3D-BPP are extremely
in demand for the logistics industry and manufacturing industry,
considering the practicality and difficulty of the problem. The tra-
ditional methods to deal with the 3D-BPP are exact algorithms,
heuristics and meta-heuristics. Exact algorithms, i.e., mixed integer
linear programming models and branch & bound methods, have
been proposed [12, 13, 18]. However, these algorithms have high
time complexity especially when a large number of heterogeneous
cargoes are involved. Heuristics and meta-heuristics are viable to
obtain acceptable solutions in a reasonable time. Heuristics aims
to pack items according to some fixed rules, such as First Fit [6],
Best Fit [21]. These methods are fast, but the quality of obtained
solutions is relatively poor. Existing meta-heuristics methods apply
search algorithm to this problem, including Biased Random-Key
Genetic Algorithm [8], Particle Swarm Optimization [5], Variable
Neighborhood Search[20], Greedy Randomized Adaptive Search
Procedure [19], etc. Nowadays, the most successful approaches for
3D-BPPs are the block-building-based tree search methods. Blocks
are the combinations of items, which simplifies the search process.
[28] identified the 6 key elements to all block building approaches
and proposed the greedy 2-step lookahead algorithm. Then [1] pre-
sented a state-of-the-art beam search approach embedded with a
new evaluation function for ranking items, which will serve as one
of our comparison methods in subsequent experiments. Moreover,
there are some related surveys. [27] reviewed the design and im-
plementation of solution methodologies for solving the 3D-BPP.
[2] studied practically-relevant constraints of the BPP. Traditional
methods have not accumulated and utilized historical experience
to raise the efficiency and quality of solutions, which is a potential
direction for research.

In terms of problem scale, existing researches generally consider
4 or 5 common constraints, and the quantity of items is close to
130, and the maximum number of categories is 100, which is put
forward in [4]. The scale of 3D-BPPs in the actual scenarios we
investigated includes: 1) 30 items and 5 item types per order with
5 constraints [3]; 2) 307.13 items and 94.68 item types per order
with 10 constraints [17]; 3) 64 items and 2 basic constraints [26].
The number of cargoes and constraints in the existing research can
hardly reach the scale in our article (61 types of 658 items with 30+
constraints).

2.2 Learning for combinatorial optimization
Recently, machine learning has shown potential in operation re-
search. Some studies have applied learning technologies to the 3D-
BPP. [17] extracted featuresmanually and trained regressionmodels
to predict loading rates for 3D-BPPs to make time for routing. [3]
solved a multi-level bin packing problem in real-life scenarios using
manual historical packing records by fuzzy-matching algorithms
and dynamic programming approaches. Besides, many researches

Applied Research Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4394

attempt to employ deep reinforcement learning methods to solve
variants of the 3D-BPP, such as the 3D flexible BPP [7, 11, 16] and
the online 3D-BPP [23, 26]. Among them, [26] and [16] applied a
Monte Carlo Tree Search (MCTS). [26] combined tree search with
deep learning for the online 3D-BPP from the perspective of value
estimation to speed up the node scoring process. [16] developed a
deep neural network to estimate a policy and a value function, as
well as MCTS for policy improvement to solve the 3D flexible BPP.
However, as far as we know, for the large-scale offline 3D-BPP, no
research has tried the combination of tree search and deep learning.

Besides 3D-BPPs, many NP-hard problems have been resolved
inspired by learning-guided fashions. [9, 14, 15] proposed learning
technologies in a branch and bound search for mixed-integer linear
programming. Specifically, [9] learned a node selection policy and
a node pruning policy using imitation learning. [14] learned the
Strong Branching strategy for variable selection. [15] learned to
decide which heuristic should be run at every node of the search
tree to help select nodes and variables. For other problems, [24]
presented a learning-based A* algorithm for recovering the graph
edit distance (GED). They developed a graph edit neural network
to predict similarity scores in replacement of manually designed
heuristics in traditional A*. [25] proposed machine learning-driven
upper bounds for the container relocation problem (CRP). They
manually designed problem-specific features and used traditional
classification methods to obtain a classifier to help calculate tighter
upper bounds with only a little extra time. Furthermore, the new
upper bounds were injected into an exact branch-and-bound al-
gorithm and a beam search method to enhance their respective
performance. [10] proposed a deep learning heuristic tree search
to tackle the container pre-marshalling problem (CPMP). They in-
tegrated deep neural networks to decide which branch to choose
next and to estimate a bound for pruning the search tree.

In conclusion, recently various studies have attempted to embed
learning mechanisms into tree search by replacing time-consuming
modules or guiding the search process, thus making the solving
more efficient. For specific problems, there are two vital concerns:
1) methods to capture problem features such as encoders and neural
networks; 2) appropriate modules in optimization algorithms to be
modified. Furthermore, to the best of our knowledge, we are the first
to embed deep learning technologies into optimization algorithms
for the large-scale 3D-BPP from the perspective of pruning to cut
down the nodes that need to be scored.

3 PROBLEM DESCRIPTION
Formally, given a container Γ and a index set of items I = {1, . . . , 𝑖,
. . . , |I |}, the objective of the 3D-BPP is to pack items from I into
Γ, maximizing the loading rate of Γ. The dimensions of Γ and item
𝑖 are denoted by (𝐿,𝑊 ,𝐻) and (𝐿𝑖 ,𝑊𝑖 , 𝐻𝑖). Each item is located at
a certain depot. The objective of our problem is:

max
∑𝑁
𝑖=1 𝑞𝑖 · 𝐿𝑖 ·𝑊𝑖 · 𝐻𝑖

𝐿 ·𝑊 · 𝐻 (1)

of which 𝑞𝑖 is a boolean variable indicating whether item 𝑖 has
been packed in Γ. An objective corresponds to a packing plan
Ω = {(𝑖, 𝑥,𝑦, 𝑧, 𝑜) | 𝑖 ∈ I}. Ω gives the position (𝑥,𝑦, 𝑧) and the
orientation 𝑜 for each item 𝑖 s.t. 𝑞𝑖 = 1. There are 30+ constraints

in our practical industrial scenario. The problem is subject to the
following constraints according to the classification scheme in [2].

Container-related constraints. (1) Shape constraint. A con-
tainer must be a cuboid. (2) Weight and volume limits. A container
can only be loaded with items as long as the weight and volume
limits are not exceeded.

Item-related constraints. (1) Shape constraint. An item must
be a cuboid. (2) Parallel constraint. The item faces must be par-
allel to the container faces. (3) Last-In-First-Out constraint. All
items must be directly loaded and unloaded through a sequence of
straight movements parallel to the length of the container without
any repositioning of other items. (4) Non-overlapping constraint.
Items cannot overlap with any other item. (5) Orientation constraint.
Allowed orientations for each item are restricted. (6) Fragility con-
straint. Non-fragile items can not be placed on fragile ones. (7)
Support area constraint. i) The underside of each item must be
supported by the items below or the bottom of the container at
least by a certain percentage. ii) Items above a certain height can
only be supported by a single item. iii) Some items can only be sup-
ported by the bottom of the container. (8) Load bearing constraint.
i) When items with different bottom sizes are stacked, the weight
of the items above can not exceed the maximum bearing weight
of the items below. ii) When items with the same bottom sizes are
stacked, the stacked layers of items cannot exceed the maximum
allowed layers of items. (9) Height constraint. Items within a certain
distance from the door can not exceed the door height. (10) Packing
material constraint. Woven bags can not be placed on cartons.

Route-related constraints. (1) Adjacent constraint. The over-
lap of items in adjacent depots in the length direction of vehicles
can not exceed a certain value. (2) Chronological constraint. The
items at the later visited depots can not be loaded before the items
at the former visited depots.

4 DATA-DRIVEN TREE SEARCH
ALGORITHM

4.1 Preliminaries on tree search algorithm

blocksitems

(a) Block building

maximal spaces

block

container
candidate

space 1
candidate
space 2

candidate
space 3

X

Y

Z

(b) Space generating

Figure 2: Spaces and blocks

Applied Research Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4395

At each packing step, we have to determine 1) which item to
pack and 2) where it should be placed. To overcome these problems
we first build blocks and spaces.

Block building. To simplify the process of packing items, we
build blocks [28] that are cuboids made up of items in I, and then
pack blocks instead of items into the container. As shown in Figure
2(a), a block 𝑏 = {(𝑖, 𝑥,𝑦, 𝑧, 𝑜) | 𝑖 ∈ I ′, I ′ ⊆ I} consists of items.
At each packing step, considering the number of the unpacked items,
a set of all possible blocks B will be generated as candidates for the
next packing action. The block building algorithm is provided in
Appendix A.

Space generating. A space is a cuboid within the container
where blocks could be placed. The initial space of an empty con-
tainer is the container itself. At each step, a block and a space will be
selected. After the selected block being packed in the selected space,
the new empty spaces within the original one will be generated.
The empty cuboid spaces that cannot be extended in any dimen-
sion in the original space are called maximal spaces [1], which
will be the candidates for the next packing action. At most three
new overlapping maximal spaces will be generated after a block
being packed at a corner of the original space. The space generating
algorithm is provided in Appendix B.

Tree search algorithm. Algorithm 1 describes the tree search
algorithm used in our problem, which is called Greedy LookAHead
algorithm (GLAH). We will explain the details of pseudocode in
the following. In line 4, The pair (𝑠, 𝑏) is feasible means block 𝑏

can be packed into space 𝑠 satisfying all constraints. Spaces in S
are sorted by the distance from the origin, blocks in B are sorted
by the size. Then select feasible pairs up to𝑚𝑎𝑥_𝑝 greedily. In line
5, the lookahead strategy aims to select the best block-space pair
from all candidates, which is shown in Figure 3(a). The state in our
tree search algorithm consists of two parts, one is a container that
has already loaded some items, the other is a set of items outside
the container to be loaded. The colorful circles represent the states.
After some items are packed, the current state transforms to a new
state. The set of dark blue circles is a list of states T transformed
from the light blue circle by P with parameter𝑚𝑎𝑥_𝑝 = 3, which
is called the greedy width. We lookahead every state in T to score
them respectively. Detailed lookahead procedure with parameter
𝑚 = 4 is shown by orange circles. To score a dark blue circle 𝑡 ∈ T ,
we virtually execute𝑚 different feasible packing actions, and then
get dark orange circles T ′ = {𝑡 ′1, . . . , 𝑡

′
𝑚}. Afterwards, we obtain𝑚

loading rates {𝑙 (𝑡 ′1), . . . , 𝑙 (𝑡
′
𝑚)} by simulation loading all elements

in T ′. Finally we take max{𝑙 (𝑡 ′1), . . . , 𝑙 (𝑡
′
𝑚)} as the score of 𝑡 .𝑚 is

called the lookahead width. In line 7, the origin designated in the
container with coordinates, and examples of the corner selection
for each candidate space are shown in Figure 2(b). In line 8, all 𝑖
and 𝑜 can be obtained according to 𝑏. Besides, Figure 3(b) shows
the pruning in lookahead which will be explained immediately.

4.2 Deep learning guidance
The lookahead procedure is frequently called when running the
algorithm and the simulation loading is time-consuming, consid-
ering numerous cargoes and constraints. Hence, accelerating the
lookahead process will save considerable time. In our DDTS, we
apply deep learning technologies to decrease |T ′ | from 𝑚 to 𝑛

Algorithm 1 Greedy LookAHead

Input: A container Γ; A item index set I.
Output: A packing plan Ω.
1: Generate a block list B with I, |B| ≤ 𝑚𝑎𝑥_𝑏𝑘 ;
2: Initialize a space list S with Γ;
3: while S × B ≠ ∅ do
4: Select a list of feasible pairs P = {𝑝 = (𝑠, 𝑏) | 𝑠 ∈ S, 𝑏 ∈ B},

|P | ≤ 𝑚𝑎𝑥_𝑝;
5: Select a pair 𝑝 with maximum loading rate from P according

to lookahead mechanism;
6: if 𝑝 exists then
7: Place 𝑏 at the corner of 𝑠 closest to the origin;
8: Update Ω by adding (𝑖, 𝑥,𝑦, 𝑧, 𝑜) for each item 𝑖 in 𝑏;
9: Update S and B;
10: else
11: Break;
12: end if
13: end while
14: return Ω.

max_p

m

(a) Lookahead before pruning

x x n

(b) Lookahead after pruning

Figure 3: Lookahead before and after pruning

in lookahead procedures, as shown in Figure 3(b), where 𝑛 is the
branch size after pruning. It helps the total computational time
acceptable with a little loss of performance. It is worth mentioning
that we check all constraints in the tree search algorithm and then
input feasible states into machine learning methods, thus avoiding
the problem that the end-to-end learning needs to guarantee the
feasibility of solutions.

4.2.1 State representation. In our algorithm, we need to select the
appropriate pair for execution. We do not model the candidate pair
but model the state after the corresponding pair is executed. In this
section, we use a CNN-based network to represent the state in the
tree search. The main component of our network consists of two
branches, one is to capture container features, the other is to retain
features of a set of items.

Container representation.CNNhas achieved great performance
in processing images, video, speech and text for extracting features.
For 3D-BPPs, recent researches attempt to apply deep learning tech-
nologies, and the CNN model has been used to extract the features
of containers. In this work, we continue to employ CNN to capture
the container features. Before constructing CNN, we first need to
encode the raw information of a container into an input format for
neural networks. To this end, we use a method called “height map”
to encode the container. The height map is of size 𝐿 ×𝑊 indicating
the height of stacked items in the container at each cell, which is
shown in Figure 4. After encoding the raw container information

Applied Research Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4396

Item Representation

670, 920, 400
670, 920, 400

1360, 920, 552
0,0,0
......

0,0,0

120 120 120 120

120 120 120 120

75 75

75 75

75 75

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

x2

Batch Normalization Layer

Flatten

Full-connected Layer

Convolutional Layer

Container Representation

32
units

CNN LayersEncoder

Encoder

0/1

Concatenate

Pooling Layer

Raw Data Representation

State Representation

Figure 4: State representation

into a height map, we construct a CNN to convert the height map
into features. In the following, we explain the details of our CNN.
Firstly, we apply a batch normalization layer that makes the heat
map to a transformation that maintains the mean output close to
0 and the output standard deviation close to 1. Then we use a 2D
convolution layer to produce a tensor of outputs. The number of
output filters in the convolution is 1, and the height and width of
the 2D convolution window are both 3. We use ReLU as the acti-
vation function. Then we downsample the input along its spatial
dimensions (height and width) by taking the maximum value over
an input window of 2× 2 for each channel of the input. Afterwards
repeat the above three layers, and flatten and normalize the output.
Finally, a fully-connected layer with the ReLU activation function
is applied to obtain a 32-dimensional tensor.

Item representation. In our large-scale 3D-BPP, the number of
items is 658 on average. As far as we know, the number of items in
the existing deep learning related studies of 3D-BPPs is small, such
as 1 to 8 [23, 26]. Therefore, for the large-scale 3D-BPP in this paper,
we design an encoder for items as [𝐿𝑖 ,𝑊𝑖 , 𝐻𝑖] ∈ Z3, 𝑖 ∈ I ′, I ′ ⊆ I,
where I ′ is the set of items to be packed. For the size of neural
networks needs to be specified, we set a threshold of the maximum
number of items called𝑚𝑎𝑥_𝑖𝑡𝑒𝑚. If the number of items in the
state is less than this threshold, then the last vectors are filled
with [0, 0, 0]. This item encoder is effective in our problem and is
shown in Figure 4. After encoding the items, first we normalize
the input and then apply a fully-connected layer with ReLU as the
activation function to obtain a 128-dimensional tensor. Then flatten
and normalize the output. Finally, a fully-connected layer with the
ReLU activation function is used to obtain a 32-dimensional tensor.

State representation. Having known the representation of a
container and items, first we concatenate the two tensors, then
normalize the output, finally we apply a fully-connected layer with
the ReLU activation function to obtain a 32-dimensional tensor.
Moreover, we use a boolean mask value to indicate whether the
state is empty or not. 0 for empty and 1 for not. If there are less
than𝑚 candidate states, for the network size is fixed, we set the last
states as 32-dimensional tensors whose elements are all 0 and set
their corresponding mask values to 0. In brief, the representation of
a state consists of two parts: a 32-dimensional tensor and a boolean
mask value, as shown in the blue shaded area in Figure 4.

4.2.2 Pruning network. The raw input of the pruning network is𝑚
states. The output is a vector of scores between 0 and 1. Under the

guidance of the output, the tree search can only retain the valuable
branches with the top 𝑛 scores and explore their loading rates.
The network architecture is shown in Figure 5. For our pruning
network, on one hand, we concatenate𝑚 32-dimensional tensors
from states and then normalize them. Afterwards, we apply a fully-
connected layer with the Sigmoid activation function to obtain a𝑚-
dimensional tensor. Value in each dimension is the score of the state
at the corresponding position. On the other hand, we concatenate𝑚
masks. Finally, we multiply masks with the𝑚-dimensional tensor to
invalidate the score of dummy states and avoid selecting them. The
optimizer used in our model is RMSprop. Our model uses binary
cross entropy as the loss function and binary accuracy as the metric.

0/1

32
units

0/1

32
units

m .
.
.

State Input OutputProcess

Multiply

Outputs

Full-connected
Layer

Batch Normalization
Layer

Concatenate

Figure 5: The architecture of pruning network

4.2.3 Workflow. We have two types of orders: historical orders and
new orders. Historical orders are solved by a time-consuming tree
search algorithm with lookahead width𝑚. During the search, we
collect branch decision records. In more detail, for each lookahead
procedure, we create a branch example (x, y). Feature x records the
information of a list of𝑚 states T ′, of which T ′ is the set of state
𝑡 ′ and is introduced in Section 4.1. That is, x = {𝑡 ′1, · · · , 𝑡

′
𝑖
, · · · , 𝑡 ′𝑚}.

Label y is a boolean vector of length𝑚. y = {𝑦1, · · · , 𝑦𝑖 , · · · , 𝑦𝑚},
where 𝑦𝑖 = 1 only when 𝑙 (𝑡 ′

𝑖
) is large enough to be selected, oth-

erwise, 𝑦𝑖 = 0,
∑𝑚
𝑖=1 𝑦𝑖 = 𝑛. After finishing all historical orders,

we accumulate a large number of instances. Instances are split
into training and test sets. Then a pruning network is learned in a
supervised way and saved for later usage. With a well-trained net-
work, we do not need to calculate loading rates for all𝑚 branches
in lookahead procedures. We could only explore the promising 𝑛
branches according to the output of the pruning network. In brief,
a data-driven tree search algorithm means learning from historical

Applied Research Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4397

branching choices to make future choices with fewer detours. Recall
the example shown in Figure 3,𝑚 = 4, 𝑛 = 2, that is, for each state
(dark blue circle) to be evaluated, we reduce𝑚 − 𝑛 = 2 times of
simulation loading.

5 COMPUTATIONAL EXPERIMENT
5.1 Experimental setup
The experiments are conducted on a Linux server of Ubuntu 18.04.4
LTS with 4 Intel(R) Xeon(R) Platinum 8180M CPUs@ 2.50GHz and
1T Memory. The tree search algorithm is mainly coded in Java and
network models are implemented using TensorFlow v2.4.0.

Dataset. Our dataset consists of real-world large-scale packing
orders from September to December 2020 in Huawei logistics. It
contains 1784 orders. Each order has 500 to 1000 items. Among all
orders, the average number of item categories is 61, the average
number of items is 658, and the average number of depots is 5. The
total number of item categories is 4697, and the total number of
depots is 71. Orders are similar to a certain extent. The length, width
and height of our vehicle are 4.1 meters, 2.3 meters and 2.27 meters
respectively. The dataset is randomly divided into the training set
and test set with the order number of 1249 : 535. We run the tree
search algorithmwithout pruners using all orders in the training set,
and extract 25419 branch decision records, then use these branch
samples to train and test the pruning network.

Compared Methods. We implement one state-of-the-art algo-
rithm, and other algorithms are conducted to observe the profit
of modules, such as simulation loading to evaluate states and the
lookahead procedure.

• Random: Select the block and space randomly under con-
straint conditions.

• Constructive Heuristic: Select the block and space according
to heuristic rules such as selecting the largest block that can
be put into the space satisfying all constraints.

• Greedy Search: Algorithm 1 without lookahead procedures.
Select the block and space according to the simulation load-
ing rates directly.

• Beam Search [1]: The state-of-the-art algorithm that was
proposed to solve the 3D-BPP.

Metrics. We use 3 evaluation metrics in this paper.
• Loading rate: The objective of 3D-BPPs illustrated in Eq. 1.
• Time: Calculation time for each order in seconds.
• Best loading: The ratio of best packing plans obtained by the
current method.

Parameter settings. The size of the pruning network is 𝐿 =

41,𝑊 = 23, 𝑚𝑎𝑥_𝑖𝑡𝑒𝑚 = 1000. We empirically set the learning
rate as 5e-5. The maximum number of training epochs is set as
500. The early stopping mechanism is applied to our CNN models.
The monitored quantity is the loss of the validation set. The early
stopping patience is set as 20 epochs. We restore model weights
from the epoch with the best value of the monitored quantity. We
reduce the learning rate when the loss of the validation set has
stopped improving for 10 epochs. The factor by which the learning
rate will be reduced is 0.5. The lower bound on the learning rate
is 1e-6. For our DDTS,𝑚 = 12, 𝑛 = 4,𝑚𝑎𝑥_𝑏𝑘 = 5000,𝑚𝑎𝑥_𝑝 = 12.
For Beam Search, the beam width is 150.

5.2 Results

Table 1: Comparison results

Loading
rate (%) Time (s) Best

loading (%)2

Random 53.80 1.42 1.88
Constructive Heuristic 72.91 1.92 43.44
Greedy Search 74.04 0.61 60.00
Beam Search 74.84 30.18 61.88
DDTS 76.69 27.32 97.19

Comp1 2.47% -10.47% 36.12%
1 Comp = (DDTS - Beam Search) / Beam Search.
2 A best packing plan may be obtained by more than one
method, so its sum of all methods may be over 100%.

Random Constructive
Heuristic

Greedy Search Beam Search DDTS

Methods

0

20

40

60

80

100

Lo
ad

in
g

ra
te

 (%
)

Figure 6: Comparison of loading rates for all 5 algorithms,
over 500 test orders

The test accuracy of the trained pruning model is 0.89. Compu-
tational results are presented in Table 1. "Comp" means the com-
parison between our algorithm and the state-of-the-art algorithm,
i.e., (DDTS - Beam Search) / Beam Search. In the following, the
effects of each module in DDTS are analyzed. Not surprisingly,
the loading rate of Random demonstrates that there is still much
room for improvement. That is, although constraints are numerous,
different methods will lead to a great difference in the quality of so-
lutions. The loading rate of Constructive Heuristic is over 1% lower
than those methods using simulation loading procedures to select
actions, which illustrates the importance of proper selection with
simulation loading procedures. Our new proposed DDTS obtained
a loading rate of 76.69%, which is 2.47% higher than the state-of-the-
art algorithm in a shorter time. Moreover, DDTS obtained 97.19%
best packing plans for all orders, which explains the stability of
DDTS on various orders, instead of performing extremely well
only on some orders to obtain a higher average loading rate. It is
crucial for practical use. The box whiskers plot shown in Figure 6
illustrates that DDTS has higher median loading rates and average
loading rates than other algorithms, and the distribution is more
centralized. At last, considering the time and the quality of the solu-
tion, Greedy Search is recommended when acceptable solutions are
needed in extremely limited time (The reason why Greedy Search
takes less time than Random and Constructive Heuristic is because
that Greedy Search needs fewer steps to finish the loading).

Applied Research Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4398

5.3 Ablation Study
5.3.1 Does the CNN modeling methods work well? To find out how
well the CNN works for modeling states, we design a simplified net-
work to estimate loading rates of states. The simplified network is
almost the same as the design in the state representation, as shown
in Figure 4, but the network structures following the concatenate
layer are different. For the simplified network, after concatenating
tensors, we normalize the output which is followed by a fully-
connected layer of 32 units with the ReLU activation. Then we
continue to normalize the output and use a fully-connected layer
of 1 unit with the Sigmoid activation to output a loading rate value.
Besides, the simplified network does not need the mask output.
The workflow of sample collecting and model training is similar
to the pruning network. A sample consists of a state as features
and a calculated loading rate as its label. During the algorithm,
a time-consuming method is designed to calculate near-optimal
loading rates for states. The states and their corresponding near-
optimal loading rates are collected as samples. The input of the
simplified network is a state and the output is a decimal between 0
and 1 which means the loading rate of the input state. We use the
mean squared error as the loss function and the root mean squared
error as the metric. Other compiling settings are the same as the
pruning network. The prediction results of states in the test set
are shown in Figure 7, in which the X axis represents the near-
optimal loading rate (i.e., the ground truth), and the Y axis is the
loading rate predicted by the network or calculated by simulation
loading. For simulation loading is almost impossible to get better
loading rates than near-optimal values as a lower bound, the green
points in Figure 7(a) do not appear in the upper left. We evaluate
the performance of simulation loading and network estimation by
Root Mean Squared Error (RMSE) compared with the ground truth,
respectively. Given the ground truth 𝑦𝑡 and the predicted loading
rate 𝑦𝑡 for state 𝑡 in the test set Q, RMSE calculates the standard
deviation of the residuals over all states, as shown in Eq. 2.

𝑅𝑀𝑆𝐸 =

√
1
|Q|

∑
𝑡 ∈Q

(𝑦𝑡 − 𝑦𝑡)2 (2)

According to the RMSE metric, networks perform similarly to the
simulation loading when predicting loading rates. But networks
do not need to explicitly construct packing plans, which is time-
saving. In brief, the comparison results show that our CNN model-
ing method can represent states in tree search algorithms well.

0.0 0.2 0.4 0.6 0.8 1.0
Ground Truth

0.0

0.2

0.4

0.6

0.8

1.0

S
im

ul
at

io
n

Lo
ad

in
g

RMSE = 0.023

(a) Simulation loading

0.0 0.2 0.4 0.6 0.8 1.0
Ground Truth

0.0

0.2

0.4

0.6

0.8

1.0

Le
ar

ni
ng

 E
st

im
at

io
n

RMSE = 0.029

(b) Network estimation

Figure 7: Prediction accuracy of simulation loading and net-
work estimation

0.0 0.2 0.4 0.6 0.8 1.0
Greedy pruner

0.0

0.2

0.4

0.6

0.8

1.0

Le
ar

ni
ng

 p
ru

ne
r

ME = 0.0027

(a) Greedy pruner

0.0 0.2 0.4 0.6 0.8 1.0
No pruner

0.0

0.2

0.4

0.6

0.8

1.0

Le
ar

ni
ng

 p
ru

ne
r

ME = -0.0019

(b) No pruner

Figure 8: Prediction accuracy of the learning pruner

Table 2: Comparison results of tree search with different
pruners

Loading
rate (%) Time (s) Best

loading(%)2

Greedy pruner 75.05 24.74 79.69
Learning pruner 76.69 27.32 98.44
No pruner 76.72 43.46 98.75

Gap1 0.04% 37.14% 0.31%
1 Gap = (No pruner - Learning pruner) / No pruner.
2 A best packing plan may be obtained by more than
one method, so its sum of all methods may be over
100%.

5.3.2 Does the pruning network bring benefits? We believe that the
more proper we pick out states in the intermediate process, the
better the final solution performs. Therefore, to observe the effect
of the pruner network thoroughly, we need to not only check the
final solution performance of tree search algorithms but also the
effect of inner selection with different pruners. When facing the
same𝑚 states in the lookahead process, we record the maximum
loading rate in the three groups of selected states. The results are
reported in Table 2. "Gap (%)" represents the gap between tree
search algorithms with learning pruner and without pruner, i.e.,
(No pruner - Learning pruner) / No pruner. The methods involved
in comparison are as follows.

• Greedy pruner: The tree search algorithm with a greedy
pruner. Spaces are sorted by the distance from the origin,
blocks are sorted by size. It selects top 𝑛 states satisfying all
constraints.

• Learning pruner: The tree search algorithm with a learning
pruner, i.e., DDTS proposed in this paper. It selects 𝑛 states
guided by the pruning network.

• No pruner: The tree search algorithm with a "perfect" pruner.
It explores all𝑚 states to guarantee the state with the best
loading rate can be selected.

When facing the same𝑚 states in lookahead process, we record
the maximum loading rate of each selected state group by each
pruner. We call the𝑚 states in lookahead process as a lookahead
state ℎ. We evaluate the performance of the learning pruner by
Mean Error (ME) compared with the greedy pruner and the no
pruner. We denote the best loading rate by the learning pruner as

Applied Research Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4399

𝑦ℎ , and the loading rate by greedy pruner or with pruner as 𝑦′
ℎ
for

ℎ in the test setH . ME calculates the mean error over all lookahead
states in H , as shown in Eq. 3.

𝑀𝐸 =
1

|H |
∑
ℎ∈H

(𝑦ℎ − 𝑦′
ℎ
) (3)

If𝑀𝐸 > 0, the learning pruner can capture more critical states than
the pruner corresponding to 𝑦′

ℎ
when facing the lookahead state

ℎ. As shown in Figure 8(a), the learning pruner can capture states
with greater loading rates than the greedy pruner. Compared with
no pruner in Figure 8(b), the learning pruner misses few best states,
which is because our pruning network is not "perfect". In addition to
observing the effect from the inner lookahead procedures, we also
compare the final loading rates. As shown in Table 2, the algorithm
with learning pruners can achieve almost the same performance as
the algorithm without pruners but in only half computational time.
Algorithms with greedy pruners and learning pruners take about
the same time, but the latter performs much better. In summary,
speeding up with learning pruners can save 37.14% time with only
0.04% performance loss compared to no pruner version.

5.3.3 Does the constraint scale affect the algorithm? The large-scale
constraint is one of the most important challenges in the practical
scene, and here we conduct the effect of constraint scale on DDTS.
As given in Table 3, we reduce the number of constraints to 20 by
ignoring the packing material constraint, orientation constraint,
weight constraint, etc. Compared with the results of the full con-
straint version in Table 1, the loading rates of all methods have
increased by about 7%. Beam Search is closed to Greedy Search in
full constraint version, which is far worse than DDTS. However, in
the partial constraint version, Beam Search is closed to DDTS and
far higher than Greedy Search. It illustrates that with the constraint
scale increases, Beam Search deteriorates rapidly, while DDTS can
still perform extremely well. The comparison loading rate results
of the two versions are presented in lines of Figure 9, and the box
whiskers plot shows the loading rate distribution of all orders for
the partial constraint version.

Table 3: Comparison results for partial constraint

Loading
rate (%) Time (s) Best

Loading (%)2

Random 61.37 8.38 0
Constructive Heuristic 79.88 12.21 32.48
Greedy Search 81.43 4.35 46.15
Beam Search 83.13 134.77 69.23
DDTS 83.17 50.13 78.63

Comp1 0.05% -62.80% 13.58%
1 Comp = (DDTS - Beam Search) / Beam Search.
2 A best packing plan may be obtained by more than one
method, so its sum of all methods may be over 100%.

5.3.4 Does the item scale affect the algorithm? All previous ex-
periments were conducted on large-scale orders. In this section,
we involve in small-scale and medium-scale orders to explore the
effect of item scale on algorithms. The small-scale dataset is of 0

Random Constructive
Heuristic

Greedy Search Beam Search DDTS

Methods

20

30

40

50

60

70

80

90

100

Lo
ad

in
g

ra
te

 (%
)

Partial constraint
Full constraint

Figure 9: Comparison of loading rates for partial constraint
and full constraint, on 5 algorithms, over 500 test orders

to 200 items per order and the medium-scale dataset is of 200 to
500 items per order. The loading rate results of all methods are
provided in Figure 10. Except for Random, other algorithms have
almost the same trend on three datasets. That is, our DDTS has
good generalization ability on different item scales.

0 to 200 200 to 500 500 to 1000
Item scale

40

45

50

55

60

65

70

75

80

85

Lo
ad

in
g

ra
te

 (%
)

Random
Constructive Heuristic
Greedy Search
Beam Search
DDTS

Figure 10: Comparison of loading rates on datasets of 0 to
200 items, 200 to 500 items and 500 to 1000 items

6 DEPLOYMENT
Our algorithm has been deployed in Huawei Logistics System with
distributed mode, which is used in Huawei Global Supply Centers
and warehouses. Since the algorithm went online in March 2021, it
has got huge economic value and improved customer satisfaction.
The average container loading rate has increased by 3%, which
could save millions of dollars every year. The time consumption
was reduced by 20%, making it more convenient for users to use
in real time. Also, The accuracy rate of the loading plan has in-
creased from 80% to 95%, which means 95% of the loading plans are
consistent with the final implementation, with no need for manual
modification.

7 DISCUSSION AND CONCLUSION
7.1 Lessons learned
Tomake sure the effectiveness of the deep learning guidance embed-
ded inside the tree search algorithm, we have to ensure that 1) the
improvement of the internal modules could lead to a better overall
outcome; 2) both the internal modules and the overall outcome are
improved. Quick preliminary experiments to explore the improve-
ment in intermediate procedures are necessary, as conducted in
Section 5.3.1 and Section 5.3.2.

Applied Research Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4400

We use a pruning network to reduce the number of branches
to be evaluated in the lookahead process. However, [26], who also
used lookahead strategies to score and select states, used a critic
network to speed up the process of evaluating branches. It is not
practical to our problem due to the large scale and complicated
constraints. Although from Figure 7(b) we know that the loading
rate could be estimated well by our simplified network, it is hard to
distinguish the states at the same level for we collect data during the
whole tree search without paying attention to distinguish the states
at the same level. Thus, the simulation loading is still necessary
to evaluate branches accurately in our problem. Our experiments
indicate that the pruning network can capture the difference among
the states at the same level by inputting them together and reduce
the candidate states, and the simulation loading further selects the
best one. For application, the idea of the pruning network can be
used in other problems that also need to reduce the number of
branches for acceleration, especially when the constraint scale is
large and the direct evaluation is hard. The tree search algorithm
is widely known, such as Beam Search, Branch and Bound and
Monte Carlo Tree Search, as a powerful weapon to solve various
decision-making problems in practical settings. Our idea can be
tried in these scenarios.

Moreover, we have tried to involve other features when encoding
items, but these three features in our paper are the most pivotal
and convenient for this problem.

7.2 Conclusion and future Work
We address the practical 3D-BPP in Huawei and propose a data-
driven tree search algorithm (DDTS) to solve it. Block building and
space generation algorithms are used to deal with numerous car-
goes. A lookahead tree search algorithm is used to explore diverse
solutions. A CNN-based pruning network trained with historical
records is embedded into the tree search to guide pruning. Com-
putational experiments on real-world datasets show that DDTS
outperforms the state-of-the-art approach with a loading rate im-
provement of 2.47%. Moreover, speeding up with pruning networks
saves 37.14% time with only 0.04% performance loss. Since DDTS
was deployed in Huawei logistics system, the average loading rate
of orders has increased by 3%, saving significant costs. To the best of
our knowledge, we are the first to embed pruning networks into tree
search for the large-scale 3D-BPP. In the future, we will improve
our current algorithm and try applying it to other scenarios.

8 ACKNOWLEDGMENTS
This research was supported by the Young Elite Scientists Spon-
sorship Program by China Association for Science and Technology
(Grants No. 2019QNRC001).

REFERENCES
[1] Ignacio Araya, Keitel Guerrero, and Eduardo Nuñez. 2017. VCS: A new heuristic

function for selecting boxes in the single container loading problem. Computers
& Operations Research 82 (June 2017), 27–35. https://doi.org/10.1016/j.cor.2017.
01.002

[2] Andreas Bortfeldt and Gerhard Wäscher. 2013. Constraints in container loading
– A state-of-the-art review. European Journal of Operational Research 229, 1 (Aug.
2013), 1–20. https://doi.org/10.1016/j.ejor.2012.12.006

[3] Lei Chen, Xialiang Tong, Mingxuan Yuan, Jia Zeng, and Lei Chen. 2019. A Data-
Driven Approach for Multi-level Packing Problems in Manufacturing Industry.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining (KDD ’19). Association for Computing Machinery, New
York, NY, USA, 1762–1770. https://doi.org/10.1145/3292500.3330708

[4] A.Paul Davies and Eberhard E. Bischoff. 1999. Weight distribution considerations
in container loading. European Journal of Operational Research 114, 3 (May 1999),
509–527. https://doi.org/10.1016/S0377-2217(98)00139-8

[5] B. M. Domingo, S.G. Ponnambalam, and G. Kanagaraj. 2012. Particle Swarm
Optimization for the single container loading problem. In 2012 IEEE Interna-
tional Conference on Computational Intelligence and Computing Research. IEEE,
Coimbatore, India, 1–6. https://doi.org/10.1109/ICCIC.2012.6510262

[6] György Dósa and Jiri Sgall. 2013. First Fit bin packing: A tight analysis. In 30th
International Symposium on Theoretical Aspects of Computer Science (STACS 2013)
(Leibniz International Proceedings in Informatics (LIPIcs), Vol. 20), Natacha Portier
and Thomas Wilke (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 538–549. https://doi.org/10.4230/LIPIcs.STACS.2013.538

[7] Lu Duan, Haoyuan Hu, Yu Qian, Yu Gong, Xiaodong Zhang, Jiangwen Wei, and
Yinghui Xu. 2019. A Multi-task Selected Learning Approach for Solving 3D
Flexible Bin Packing Problem. In Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems. 1386–1394.

[8] José Fernando Gonçalves and Mauricio G. C. Resende. 2012. A parallel multi-
population biased random-key genetic algorithm for a container loading problem.
Computers & Operations Research 39, 2 (Feb. 2012), 179–190. https://doi.org/10.
1016/j.cor.2011.03.009

[9] He He, Hal Daume III, and Jason M. Eisner. 2014. Learning to search in branch
and bound algorithms. Advances in neural information processing systems 27
(2014), 3293–3301.

[10] André Hottung, Shunji Tanaka, and Kevin Tierney. 2020. Deep learning assisted
heuristic tree search for the container pre-marshalling problem. Computers &
Operations Research 113 (Jan. 2020), 104781. https://doi.org/10.1016/j.cor.2019.
104781

[11] Haoyuan Hu, Xiaodong Zhang, Xiaowei Yan, Longfei Wang, and Yinghui Xu.
2017. Solving a New 3D Bin Packing Problem with Deep Reinforcement Learning
Method. arXiv:1708.05930 [cs] (Aug. 2017). http://arxiv.org/abs/1708.05930 arXiv:
1708.05930.

[12] Leonardo Junqueira, Reinaldo Morabito, and Denise Sato Yamashita. 2012. Three-
dimensional container loading models with cargo stability and load bearing
constraints. Computers and Operations Research 39, 1 (Jan. 2012), 74–85. https:
//doi.org/10.1016/j.cor.2010.07.017

[13] Leonardo Junqueira, Reinaldo Morabito, and Denise Sato Yamashita. 2012. MIP-
based approaches for the container loading problem with multi-drop constraints.
Annals of Operations Research 199, 1 (Oct. 2012), 51–75. https://doi.org/10.1007/
s10479-011-0942-z

[14] Elias B. Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina.
2016. Learning to branch in Mixed Integer Programming. In Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence (AAAI’16). AAAI Press,
Phoenix, Arizona, 724–731.

[15] Elias B. Khalil, Bistra Dilkina, George L. Nemhauser, Shabbir Ahmed, and Yufen
Shao. 2017. Learning to run heuristics in tree search. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence (IJCAI’17). AAAI Press,
Melbourne, Australia, 659–666.

[16] Alexandre Laterre, Yunguan Fu, Mohamed Khalil Jabri, Alain-Sam Cohen, David
Kas, Karl Hajjar, Hui Chen, Torbjørn S. Dahl, Amine Kerkeni, and Karim Beguir.
2019. Ranked Reward: Enabling Self-Play Reinforcement Learning for Bin packing.
(2019).

[17] Xijun Li, Mingxuan Yuan, Di Chen, Jianguo Yao, and Jia Zeng. 2018. A Data-
Driven Three-Layer Algorithm for Split Delivery Vehicle Routing Problem with
3D Container Loading Constraint. In Proceedings of the 24th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining (KDD ’18). As-
sociation for Computing Machinery, New York, NY, USA, 528–536. https:
//doi.org/10.1145/3219819.3219872

[18] Silvano Martello, David Pisinger, and Daniele Vigo. 2000. The Three-Dimensional
Bin Packing Problem. Operations Research 48, 2 (April 2000), 256–267. https:
//doi.org/10.1287/opre.48.2.256.12386

[19] AnaMoura and Jose Fernando Oliveira. 2005. A GRASP approach to the container-
loading problem. IEEE Intelligent Systems 20, 4 (2005), 50–57. Publisher: IEEE.

[20] F. Parreño, R. Alvarez-Valdes, J. F. Oliveira, and J. M. Tamarit. 2010. Neighborhood
structures for the container loading problem: a VNS implementation. Journal of
Heuristics 16, 1 (Feb. 2010), 1–22. https://doi.org/10.1007/s10732-008-9081-3

[21] F. Parreño, R. Alvarez-Valdes, J. M. Tamarit, and J. F. Oliveira. 2008. A Maximal-
Space Algorithm for the Container Loading Problem. INFORMS Journal on
Computing 20, 3 (Aug. 2008), 412–422. https://doi.org/10.1287/ijoc.1070.0254

[22] Guntram Scheithauer. 1992. Algorithms for the container loading problem. In
Operations Research Proceedings 1991. Springer, 445–452.

[23] Richa Verma, Aniruddha Singhal, Harshad Khadilkar, Ansuma Basumatary, Sid-
dharth Nayak, Harsh Vardhan Singh, Swagat Kumar, and Rajesh Sinha. 2020.
A Generalized Reinforcement Learning Algorithm for Online 3D Bin-Packing.
arXiv preprint arXiv:2007.00463 (2020).

[24] Runzhong Wang, Tianqi Zhang, Tianshu Yu, Junchi Yan, and Xiaokang Yang.
2021. Combinatorial learning of graph edit distance via dynamic embedding. In

Applied Research Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4401

https://doi.org/10.1016/j.cor.2017.01.002
https://doi.org/10.1016/j.cor.2017.01.002
https://doi.org/10.1016/j.ejor.2012.12.006
https://doi.org/10.1145/3292500.3330708
https://doi.org/10.1016/S0377-2217(98)00139-8
https://doi.org/10.1109/ICCIC.2012.6510262
https://doi.org/10.4230/LIPIcs.STACS.2013.538
https://doi.org/10.1016/j.cor.2011.03.009
https://doi.org/10.1016/j.cor.2011.03.009
https://doi.org/10.1016/j.cor.2019.104781
https://doi.org/10.1016/j.cor.2019.104781
http://arxiv.org/abs/1708.05930
https://doi.org/10.1016/j.cor.2010.07.017
https://doi.org/10.1016/j.cor.2010.07.017
https://doi.org/10.1007/s10479-011-0942-z
https://doi.org/10.1007/s10479-011-0942-z
https://doi.org/10.1145/3219819.3219872
https://doi.org/10.1145/3219819.3219872
https://doi.org/10.1287/opre.48.2.256.12386
https://doi.org/10.1287/opre.48.2.256.12386
https://doi.org/10.1007/s10732-008-9081-3
https://doi.org/10.1287/ijoc.1070.0254

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
5241–5250.

[25] Canrong Zhang, Hao Guan, Yifei Yuan, Weiwei Chen, and TaoWu. 2020. Machine
learning-driven algorithms for the container relocation problem. Transportation
Research Part B: Methodological 139 (2020), 102–131. Publisher: Elsevier.

[26] Hang Zhao, Qijin She, Chenyang Zhu, Yin Yang, and Kai Xu. 2021. Online 3D
Bin Packing with Constrained Deep Reinforcement Learning. Proceedings of
the AAAI Conference on Artificial Intelligence 35, 1 (May 2021), 741–749. https:
//ojs.aaai.org/index.php/AAAI/article/view/16155 Number: 1.

[27] Xiaozhou Zhao, Julia A. Bennell, Tolga Bektaş, and Kath Dowsland. 2016. A com-
parative review of 3D container loading algorithms. International Transactions in
Operational Research 23, 1-2 (2016), 287–320. Publisher: Wiley Online Library.

[28] Wenbin Zhu, Wee-Chong Oon, Andrew Lim, and Yujian Weng. 2012. The six
elements to block-building approaches for the single container loading problem.
Applied Intelligence 37, 3 (2012), 431–445. Publisher: Kluwer Academic Publishers
Norwell, MA, USA.

A BLOCK BUILDING ALGORITHM
A block is a cuboid that consists of items. The block set B consists
of all possible combinations of the remaining items I. Given the
remaining item set I, the block building algorithm outputs the
corresponding block set B. The pseudocode is given in Algorithm
2.

Algorithm 2 Block Building

Input: The remaining item index set I; All permitted orientations
O𝑖 for each item 𝑖 ∈ I.
Output: Block set B.
1: Let B = {(𝑖𝑡𝑒𝑚𝑖 , 𝑜𝑖) |𝑖 ∈ I, 𝑜𝑖 ∈ O𝑖 };
2: Let B′ = B;
3: while |B| < 𝑚𝑎𝑥_𝑏𝑘 do
4: Let N = ∅;
5: for all block 𝑏1 in B′ do
6: for all block 𝑏2 in B do
7: for all axis in {𝑋,𝑌, 𝑍 } do
8: Combine 𝑏1 and 𝑏2 along the axis to obtain 𝑏3;
9: if 𝑏3 is cuboid and 𝑏3 ∉ N then
10: Add 𝑏3 to N ;
11: end if
12: end for
13: end for
14: end for
15: if N = ∅ then
16: Break;
17: end if
18: Let B = B ∪N ;
19: Let B′ = N ;
20: end while
21: return B.

B SPACE GENERATING ALGORITHM
After an item is packed at a corner of a space, at most three new
maximal spaces are generated [1]. To generate maximal spaces, we
first need to find the smallest cuboid that can encase all packed
items in the container. The smallest cuboid has three faces that do
not coincide with the container. We cut along one face at a time to
get a space, and three overlapping space cuboids are generated, as
shown in Figure 2(b). The pseudocode is provided in Algorithm 3.

Algorithm 3 Space Generating
Input: Original space 𝑠 with maximum and minimum coordinates
(𝑥𝑠

𝑚𝑖𝑛
, 𝑥𝑠𝑚𝑎𝑥 , 𝑦

𝑠
𝑚𝑖𝑛

, 𝑦𝑠𝑚𝑎𝑥 , 𝑧
𝑠
𝑚𝑖𝑛

, 𝑧𝑠𝑚𝑎𝑥); Index set I of the packed
item in 𝑠 ; The corresponding maximum and minimum coordinates
of the items

{
(𝑥𝑖

𝑚𝑖𝑛
, 𝑥𝑖𝑚𝑎𝑥 , 𝑦

𝑖
𝑚𝑖𝑛

, 𝑦𝑖𝑚𝑎𝑥 , 𝑧
𝑖
𝑚𝑖𝑛

, 𝑧𝑖𝑚𝑎𝑥) |𝑖 ∈ I
}
.

Output: New space set S.
1: Generate cuboid𝐶 , with the corresponding maximum and min-

imum coordinates: 𝑥𝐶
𝑚𝑖𝑛

= 𝑥𝑠
𝑚𝑖𝑛

, so do 𝑦𝐶
𝑚𝑖𝑛

, 𝑧𝐶
𝑚𝑖𝑛

; 𝑥𝐶𝑚𝑎𝑥 =

min
{
max

{
𝑥𝑖𝑚𝑎𝑥 |𝑖 ∈ I

}
, 𝑥𝑠𝑚𝑎𝑥

}
, so do 𝑦𝐶𝑚𝑎𝑥 , 𝑧

𝐶
𝑚𝑎𝑥 ;

2: Generate the largest free space along three dimen-
sions, which might mutually overlaps. Along x-axis,
the new free space 𝑠𝑥 has maximum and minimum
coordinates (𝑥𝑠𝑥

𝑚𝑖𝑛
, 𝑥

𝑠𝑥
𝑚𝑎𝑥 , 𝑦

𝑠𝑥
𝑚𝑖𝑛

, 𝑦
𝑠𝑥
𝑚𝑎𝑥 , 𝑧

𝑠𝑥
𝑚𝑖𝑛

, 𝑧
𝑠𝑥
𝑚𝑎𝑥) =

(𝑥𝐶𝑚𝑎𝑥 , 𝑥
𝑠
𝑚𝑎𝑥 , 𝑦

𝑠
𝑚𝑖𝑛

, 𝑦𝑠𝑚𝑎𝑥 , 𝑧
𝑠
𝑚𝑖𝑛

, 𝑧𝑠𝑚𝑎𝑥); Generate new spaces
generated along y-axis 𝑠𝑦 and z-axis 𝑠𝑧 in similar way;

3: Add new spaces 𝑠𝑥 , 𝑠𝑦, 𝑠𝑧 in S;
4: return S.

Applied Research Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

4402

https://ojs.aaai.org/index.php/AAAI/article/view/16155
https://ojs.aaai.org/index.php/AAAI/article/view/16155

	Abstract
	1 Introduction
	2 Related work
	2.1 3D bin packing problem
	2.2 Learning for combinatorial optimization

	3 Problem description
	4 Data-driven tree search algorithm
	4.1 Preliminaries on tree search algorithm
	4.2 Deep learning guidance

	5 Computational experiment
	5.1 Experimental setup
	5.2 Results
	5.3 Ablation Study

	6 Deployment
	7 Discussion and Conclusion
	7.1 Lessons learned
	7.2 Conclusion and future Work

	8 Acknowledgments
	References
	A Block building Algorithm
	B Space generating Algorithm

