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surface urban heat island intensity and footprint based 
on urban-rural temperature gradients
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Administration, Hunan University, Changsha, China 

ABSTRACT 
Past decades have seen substantial efforts devoted to observing, 
assessing, and documenting the urban heat island (UHI) phenom
enon. However, the discrepant criteria of non-urban references 
and ambiguous distinctions between urban and rural landscapes 
pose great challenges in measuring UHI magnitudes and spatial 
extents. This study goes beyond the conventional urban-rural 
dichotomy and introduces a new two-step approach based on 
the continuous transition of thermal environments along urban- 
rural gradients. The approach is applied to quantify Surface UHI 
(SUHI) intensities and footprints across 283 Chinese cities from 
2005 to 2018 using multiple satellite-derived data sources. The 
results include: 1) The two-step approach avoids the limitations in 
subjective rural reference selections and provides reliable quantifi
cation of SUHI characteristics in various cities over time. 2) The 
SUHI footprints extracted by our approach are more reasonable 
than those obtained by two existing methods, with footprint 
ratios generally ranging within 0 − 6 times the urban area. 3) The 
two-step approach provides more concentrated estimates of SUHI 
intensity. Typically, ignoring heat sources in non-built-up areas 
can cause an overestimation of SUHI effect and misidentification 
of remote rural areas with high temperatures. Overall, the two- 
step approach enables more accurate estimates of SUHI effect, 
thereby facilitating policy-making for SUHI mitigation.
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1. Introduction

The accelerating urbanization processes and growing anthropogenic activities have 

drastically altered the Earth’s atmospheric and surface features, thus affecting local 

energy balance and thermal climate in cities (Carrillo-Niquete et al. 2022; Eugenio 

Pappalardo et al. 2023; Grimm et al. 2008; Jones et al. 2008; Kalnay and Cai 2003; Xia 

et al. 2022; Zhang et al. 2021). Among the most evident aspects of human impacts, 

the urban heat island (UHI) effect is known as the phenomenon where urban centers 

have higher temperatures than adjacent, less-developed suburban and rural areas, 
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which has become a grave concern globally, especially in developing countries such 
as China (e.g. Cao et al. 2016; Carrillo-Niquete et al. 2022; Gal�an D�ıaz et al. 2023; Liu 
et al. 2023; Rizwan et al. 2008; Stone 2007; Zhao et al. 2014). The UHI effect poses sig
nificant challenges to the sustainable development of urban systems and serious 
threats to human health due to its negative impacts on air and water quality, strong 
associations with increases in energy consumptions, and substantial contributions to 
the rise of global warming and extreme heat events (e.g. Cao et al. 2018; Li et al. 
2020; Zhao et al. 2018). Furthermore, the UHIs can exacerbate the harmful impacts of 
thermal stress on humans in both summer and non-summer seasons (Heaviside et al. 
2017; Sadeghi et al. 2022; Schwarz et al. 2020). For example, heat-induced fatalities 
and diseases are often much greater in cities than in suburban or rural areas as a 
result of increased urban temperatures during heat waves (Roy�e et al. 2020; Xu et al. 
2016). Therefore, there is a strong impetus to identify the UHIs and investigate their 
magnitudes and spatial extents.

Substantial efforts have been devoted to gaining a nuanced understanding of the 
UHI effect using both observed air temperatures monitored by ground weather sta
tions (e.g. Oke et al. 2017) and surface temperatures derived from satellite images (e.g. 
Imhoff et al. 2010; Khan et al. 2023; Peng et al. 2012; Khan et al. 2023; Yao et al. 2024). 
In consideration of the sparse density of in-situ station networks and potential influen
ces of very local weather conditions, satellite-derived land surface temperature (LST) 
has been increasingly and widely used to characterize spatial and temporal patterns of 
UHI effects across different cities or regions. Satellite-derived LST has advantages, such 
as continuous spatial coverage, sufficient resolution, and easy data access. On the 
other side, surface temperatures are more directly related to modifications in surface 
environments and urbanization processes (Phelan et al. 2015; Xiang et al. 2021), even 
though they are frequently higher and more variable than the concurrent air tempera
tures. Despite the fact that LST, as one of several types of temperatures, is not identi
cal to human heat exposure and fails to capture the severity of urban heat, it can 
reflect important aspects of urban climate and be most relevant for characterizing 
regional UHIs (Turner et al. 2022). This study focuses on the surface UHI (SUHI) effect, 
which is characterized using LST and frequently just called the UHI, and deals with the 
estimates of the intensity and footprint of the SUHI effect.

While there is general evidence that SUHI intensity exhibits distinct temporal pat
terns, such as diurnal variation, comparative analysis on the spatial heterogeneity of 
SUHI effects across cities has been hindered by the loose and diverse definitions of 
urban versus non-urban extents and their temperature differences (Imhoff et al. 2010; 
Khan et al. 2023). The estimates of SUHI intensities and footprints in different studies 
can vary greatly due to the lack of an objective and commonly accepted method for 
identifying the temperatures or areas as unaffected references (Clinton and Gong 
2013; Imhoff et al. 2010). For example, the SUHIs defined as temperature differences 
between urban and suburb areas could have lower intensity and a smaller footprint 
compared to those using urban-rural differences (Liu et al. 2023). The selection of non- 
affected references can significantly alter the SUHI measures, and the method of delin
eating non-urban areas can affect the amplitude and even direction of SUHI trends 
(Liu et al. 2023; Stewart 2011; Wang 2022). Furthermore, ecological contexts related to 
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the functions and types of the broader landscape surface have significant influence on 
the identification of SUHI intensity and sign. The negative urban heat differential 
between the urban core and its surroundings, referred to as heat sinks or surface 
urban cold islands (SUCIs) in previous studies (e.g. Carnahan and Larson 1990; Clinton 
and Gong 2013; Khan et al. 2023), can be widely observed in cities surrounded by des
ert land and with semi-arid and arid climates. Significant daytime SUCI phenomenon 
can occur in high-rise and high-density cities if there is little or no anthropogenic heat 
(Yang et al. 2017). In fact, the SUHIs and SUCIs co-exist in many cities, which has been 
found to be associated with building forms and urban structures (Duan et al. 2019; 
Hamada and Ohta 2010). All these issues can lead to significant biases and challenges 
in estimating and comparing the SUHI effects across different geographic settings.

In previous studies on quantifying the SUHI effect, impervious surface areas and dis
tances (e.g. buffer zones) are used to delineate the optimal urban boundary based on 
various classification criteria. The areas with surface temperatures above the threshold 
values (e.g. rural references) are identified as the footprint of SUHI (Imhoff et al. 2010; 
Peng et al. 2020; Quan et al. 2014; Si et al. 2022; Streutker 2003). For example, Zhou 
et al. (2014) distinguished high-density urban areas from adjacent suburban regions 
by employing a 50% threshold of built-up density (i.e. the proportion of impervious 
surface pixels) and a buffer zone equivalent to 100% of the urban area (i.e. the buffer 
matches the urban area in size). However, the temperature differences between urban 
and surrounding suburban areas can be significantly influenced by the selection of 
thresholds and distances (e.g. Liu et al. 2023; Wang 2022). Furthermore, many studies 
have indicated that the spatial extent of SUHI can extend to more than twice the size 
of urban areas (e.g. Peng et al. 2020; Yang et al. 2022). Thus, the equal-area or larger 
surroundings may not necessarily be far enough from the urban contour to truly rep
resent the unaffected areas. It could be impossible to find a fixed buffer ring (e.g. 
100% or 150% of urban areas) applicable for all cities with different geographic and 
socioeconomic settings. As Yang et al. (2022) suggested, part of these potential biases 
and uncertainties in SUHIs arise from overlooking the footprint of the SUHI effect. 
Hence, the combined estimates of SUHI intensity and footprint are essential.

The temperature features and SUHI profiles along the urban cross-sections have 
long been demonstrated to be mainly a result of the urban surface factors (i.e. land 
uses and distance to the city center) and independent of local weather conditions 
(Oke et al. 2017; Imhoff et al. 2010; Unger et al. 2001). In general, the magnitude of 
the SUHI effect significantly decreases with distance from urban areas, reaching peak 
values in city centers and dropping sharply at urban/rural boundaries (e.g. Oke 1987). 
Therefore, the temperature profiles along the urban-rural gradients have great poten
tial to improve the estimates of the SUHI intensity and footprint (Krehbiel et al. 2016; 
Peng et al. 2020; Qiao et al. 2019; Zhang et al. 2004; Zhao et al. 2016; Zhou et al. 
2015), but have not been widely utilized in current literature. Several attempts have 
been made to incorporate temperature profiles into SUHI estimates in various ways 
(Peng et al. 2020; Yang et al. 2022; Zhao et al. 2016; Zhou et al. 2015; Zhang et al. 
2004). In particular, Zhou et al. (2015) created twelve buffers to analyze the UHI effect 
in the spatial extent around seven times the actual urban area. They quantified the 
footprint as the continuous areas emanating outward from urban core to rural areas 
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with temperatures higher than the reference value (i.e. urban-rural temperature differ
ences greater than zero). However, this method hypothesized that the SUHI footprints 
for the studied cities must be larger than the actual urban area. The SUHI estimates 
still suffered from the uncertainties associated with fixed and subjective definitions of 
unaffected references (Yao et al. 2024). The exponential model proposed by Zhang 
et al. (2004) and Yang et al. (2022) identified the SUHI footprints based on the distance 
at which temperature differences reach 95% of the asymptotic values. However, this 
model failed in cities where there was an insignificant exponential decrease trend of 
temperatures towards rural areas. Zhao et al. (2016) and Peng et al. (2020) applied the 
radius method to determine the threshold of SUHIs. The former considered the area of 
the critical circles as the footprint, while the latter used breakpoint values as the 
threshold for extracting SUHIs.

To date, there is still a lack of an integrated and systematic approach that combines 
temperature profiles and SUHI estimates remarkably well. Therefore, this study aims to 
propose a two-step SUHI estimation approach based on temperature profiles. It fol
lows the geomorphic analogy with a typical SUHI as described by Oke (1987) in the 
analysis of horizontal temperature gradients. The study uses commonly acquired LST 
products from Aqua/MODIS (MYD11A1 V6) at a 1 − km spatial resolution to measure 
SUHI intensities and footprints across 283 cities in China from 2005 to 2018. The study 
employs the proposed method along with two existing methods utilized in previous 
studies. China has witnessed an unprecedented pace of urbanization process during 
the past decades, accompanied by tremendous changes in urban landscapes and con
siderable variations in local climates (Grimm et al. 2008). As a result, the SUHI effect, 
particularly its intensities and footprints, would have varied dramatically. The primary 
objective is to identify similarities and deviations in the spatial patterns of SUHI across 
numerous urban cross-sections, laying the foundation for a more accurate estimation 
of SUHI and its intensity and spatial extent. This will serve as a basis for further in- 
depth analysis of the characteristics and mechanisms of the SUHI effect, and aid in the 
alleviation and mitigation of associated risks.

2. Temperature profiles and SUHI effect

The temperature in urban areas is often warmer than that in the surrounding rural 
areas. The exact magnitude and form of the SUHI effect vary across space and time 
due to local climatic, ecological, and urban attributes. As shown in Figure 1, Oke 
(1987) described the generalized cross-section of a typical SUHI in large cities using a 
geomorphic analogy. To simplify matters, a series of restrictions are imposed in the 
SUHI profiles: the heat island immediately after sunset, under cloudless skies, and with 
mild winds. The temperature gradients with distance away from urban center to rural 
area can be defined as follows: the center of an urban area exhibits a temperature 
peak where the maximum temperature is often observed. Most of the rest of the 
urban area is characterized by a warm ‘plateau’, where the temperature increases 
steadily but with a relatively weak horizontal gradient towards the urban core. 
The urban/rural boundary is expected to experience dramatic temperature drops from 
the urban area outward, analogized to a ‘cliff’ in the SUHI. The difference between the 
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temperature at the bottom of the cliff and the maximum urban temperature defines 
the intensity of a heat island (DT). The sharp horizontal temperature gradient in the 
urban-rural transition zone is one of the most prominent features in the SUHI profiles.

The decay in density of urban elements (e.g. built-up land, population, and eco
nomic activities) from the city center outward has been extensively studied across vari
ous research disciplines using different models, such as Gaussian and negative 
exponential functions (e.g. Batty & Sik Kim 1992; Clark 1951; Jiao 2015). This further 
demonstrates the aptness of the SUHI profiles. However, due to the lack of consider
ation for the temporal dimension, impacts of various climatic conditions, and city 
attributes, there may be similarities and deviations in the SUHI profiles for different cit
ies or the same city at different times. For example, the uniformity of the SUHI profiles 
can be disrupted by the coexistence of high-density residential, commercial, and 
industrial built-up areas that generate and trap heat, as well as urban parks and water 
bodies that can mitigate heat island formation (e.g. Oke 1987; Cao et al. 2010). As a 
result of the presence of green and blue spaces, the cities’ geographic or functional 
centers may not exactly be occupied by a heat ‘peak’. Besides, urban spatial structure 
(e.g. monocentric and polycentric) can alter the SUHI profile, making it distinct from 
that observed under ideal conditions. More importantly, the simplified SUHI profile 
can vary noticeably throughout the day and night or under different weather condi
tions. All of these examples illustrate that the SUHI profiles can be influenced not 
only by differences in surface features between urban and rural areas but also by 
time-varying factors and the unique characters of cities.

The time-varying and city-specific factors cause huge biases and uncertainties in the 
estimates of the SUHI effect across different geographic contexts (Yang et al. 2023; 
Zhang et al. 2023). Nevertheless, despite the considerable modifications caused by the 
aforementioned factors, some recently published studies support that the temperature 
drops along urban cross-sections with profiles that remarkably align with typical charac
teristics if the SUHI effect is significant (Unger et al. 2001). Therefore, this study aims to 
propose a fundamental and effective approach to depict the SUHI intensity and footprint 
based on the profiles of urban-rural temperature variations. Compared with estimation 

Figure 1. Generalized cross-section of a typical SUHI (adapted from Oke 1987).
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methods that heavily rely on observations at fixed locations (e.g. weather stations or pre
defined buffers), profiles are less affected by uncertainties associated with spatiotempo
ral changes in SUHIs. As shown in Figure 2, the critical points and critical circles in the 
gradient variation of urban-rural temperature can be crucial in quantifying the SUHI 
intensity and extracting the SUHI footprint in a dynamic way. Since there is no clear dis
tinction between urban and rural landscapes, temperature profiles along the urban-rural 
gradients can offer a promising avenue to move beyond the traditional SUHI estimation 
relying on the urban-rural dichotomy (Wang 2022). Hence, the advantages of the two- 
step method also lie in the correction and dynamic identification of unaffected reference 
temperature based on the critical points and critical circles.

3. Methodology

3.1. Study area and data sources

The study examined the SUHI effect in 283 cities at and above the prefecture level in 
China, including 4 municipalities, 15 sub-provincial cities, and 264 prefecture-level cit
ies (Figure 3). These cities were selected based on the administrative division in 2018, 
excluding some cities with missing data. It is noted that the spatial distribution of 
large cities and population in China is denser in the east and sparser in the west, 
resulting in a small number of prefecture-level and above cities in western provinces. 
Our study area covers most cities at the prefecture-level and above in China, with 
varying climate conditions, terrains, and development statuses, providing representa
tive samples to validate our new approach. Given that temperature profiles can be 
affected by time-varying factors, this study compares the results of SUHI measures in 
different seasons to further validate the feasibility and applicability of our new 
approach. To identify the SUHI effect in these cities (i.e. administrative cities), multiple 
data sources are used and illustrated in the following section.

Remote sensing data are the primary data source used in the estimation of SUHI 
intensity and footprint, including data of LST, land cover, and digital elevation model 

Figure 2. SUHI estimation based on temperature profiles and observations at fixed locations.
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(DEM). The LST data used in this study is the 1 − km global daily LST/emissivity prod
uct (MYD11A1 V6) with both daytime and nighttime surface temperature bands pro
vided by the NASA’s Land Processes Distributed Active Archive Center (Wan et al. 
2015). The seasonal and annual LSTs in the years of 2005, 2010, 2015, and 2018 were 
calculated based on the daily data from the Google Earth Engine (GEE) platform 
(Gorelick et al. 2017). For seasonal values, we computed spring (March − May), summer 
(June − August), autumn (September − November), and winter (December − February in 
the second year) mean values, whereas the annual mean is calculated from January to 
December in a year. The land cover data for the years of 2005, 2010, 2015, and 2018 
were derived from the National Land-Use/Cover Database of China (NLUD-C), which 
were generated by manual visual interpretation based on Landsat TM images (Zhang 
et al. 2014), which include 6 primary classes and 25 subclasses and have classification 
accuracies exceeding 90% according to a nationwide field verification. The DEM data 
were provided by the Resource and Environment Science and Data Center (http:// 
www.resdc.cn/), and resampled from the NASA’s Shuttle Radar Topography Mission 
(SRTM) V4.1 products. Besides, the data for urban central and sub-central areas, identi
fied using newly available points of interest data, were collected from Li et al. (2018), 
which is used in this study to extract the main centers and sub-centers.

3.2. A two-step SUHI estimation approach

In this study, a two-step SUHI estimation approach is proposed to estimate the SUHI 
intensity and extract the SUHI footprint based on the identification of critical points 
and critical circles in the SUHI profile. The major steps of this method are shown in 
Figure 4.

Figure 3. Location of the studied cities. 
IJGIS remains strictly neutral with respect to jurisdictional claims on disputed territories and the naming conventions 
used in the maps included in the figure.
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Step 1, initial estimation of SUHI and urban-rural temperature profile.

1. Calculate the initial rural reference temperature (LSTr0). LSTr0 is first defined using 
the average LST in rural areas. Here, rural areas are extracted based on land cover 
data and DEM data, and are defined as areas excluding urban built-up areas, 
water bodies, and mountainous regions within the city (Liu et al. 2023; Zhou et al. 
2015). The extent of the city is defined according to the administrative divisions 
in 2018.

2. Generate equal-area buffers. Based on the geographical centroids of urban central 
areas, i.e. main centers, a large number of equal-area buffers are generated to 
cover the urban districts of each city1. The size of each buffer is determined as 
the lesser of 1/30 of the urban built-up area and 1/200 of the area of urban dis
tricts. These parameters are predefined by experiment to guarantee an adequate 
number of buffers in urban cores and suburban regions to capture the ‘peaks’ 
and ‘cliffs’ in temperature profiles. For sub-centers, the buffer size is reduced by 
half. The number of buffers is determined by 1.25 � the radius of the circle with 
an area equal to the urban districts and constrained by a maximum of 1000. Here, 
the urban built-up area for each city in 2005 is used to facilitate comparisons 
between different years (i.e. 2005, 2010, 2015, and 2018).

3. Calculate the initial SUHI intensity ( dSUHII) and map the temperature profile. To 
compare our approach with existing methods, this step is similar to the measures 
of SUHI customarily adopted in the literature to date. dSUHII is defined as the tem
perature differences between the LST of pixels and the LSTr0, based on the follow
ing equation:

Figure 4. Flow chat of the two-step SUHI estimation approach.
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dSUHII ¼ LST − LST r0 (1) 

The median dSUHII of the urban built-up and rural pixels within each buffer is consid
ered as the buffer dSUHII: Emanating outward from the urban core to the rural area, 
the dSUHII variations along the urban-rural gradient are mapped (refer to Figure 5). 

4. Identify SUHIs and SUCIs. The identification of critical points and critical circles in 
the gradient variation of urban-rural temperature is key to the two-step SUHI esti
mation approach. Piecewise regression and manual interpretation are adopted to 
recognize the peaks, and critical points and circles of the SUHI profiles for differ
ent years. The presence of the SUHI and SUCI effects is identified based on the 
changing trend of the temperature profiles. If the temperature differences within 
the first quarter of the urban area are larger than zero, with the temperature 
‘peak’ in the urban area and a temperature ‘cliff’ following it, the profile is classi
fied as a SUHI. By contrast, a SUCI is identified if the temperature differences 
within the first quarter of the urban area are smaller than zero and increase out
ward from the urban core.

Step 2, bias correction and extension for the initial SUHI estimation.
5. Correct the actual reference temperature and SUHI intensity. For the temperature 

profiles identified as SUHIs in Step 1, the actual reference temperature is corrected 
to the median value of the LSTs of pixels in the critical circle (LST c). Therefore, in 
the two-step SUHI estimation approach, the SUHI intensity for each pixel (SUHII) is 
estimated based on the following equation:

SUHII ¼ LST − LST c ¼ dSUHII − dSUHIIC (2) 

where dSUHIIC refers to the dSUHII of the critical point. dSUHIIC and LST c are deter
mined by the change trend of the temperature profile and are unaffected by the 
urban-rural dichotomy. Such bias correction step can reduce spatial and temporal 
uncertainties, remove the influence of confounding factors, and facilitate cross-city 
and cross-time comparisons2.

6. Calculate SUHI impact range and extract SUHI footprint. The SUHI footprint, i.e. 
the spatial extent of SUHI, refers to all pixels with SUHII higher than zero (Imhoff 
et al. 2010; Peng et al. 2020; Quan et al. 2014; Streutker 2003), reflecting the spa
tial extent of SUHI. To avoid the influence of non-urban heat sources, the two-step 
method extracts SUHI footprints within the SUHI impact range, which is a buffer 
zone created from the edge of urban built-up areas3. The buffer radius (BR) is cal
culated based on following equations:

SUHIFPR ¼
SUHIFP

A
¼

BRþ
ffiffiffiffiffiffiffiffi
A=p

p

ffiffiffiffiffiffiffiffi
A=p

p

 !2

(3) 

BRi ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SUHIFPR
p

− 1Þ �
ffiffiffiffiffiffiffiffiffi
Ai=p

p
� ð

ffiffiffiffiffiffiffiffi

dFPR

q

− 1Þ �
ffiffiffiffiffiffiffiffiffi
Ai=p

p
(4) 

dFPR ¼
Area of buffers from city center to the critical circle

Urban built up area from city center to the critical circle
(5) 
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where SUHIFPR refers to the SUHI footprint ratio, SUHIFP refers to the area of the 
SUHI footprint, A refers to the area of urban patches (i.e. continuous built-up 
areas), BRi refers to the buffer radius for urban patch i, Ai refers to the area of 
urban patch i, and dFPR refers to the estimated value of SUHIFPR. The proportion 
of urban built-up areas within the buffer zone is assumed to be the same as the 
proportion within the critical circle. This is particularly relevant because the 

Figure 5. Procedures of the SUHI estimations.
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proportion of urban built-up areas, i.e. the reciprocal of SUHIFPR, is one of the 
most important factors in SUHI formation (Unger et al. 2001).

7. Calculate statistics of SUHI magnitude. The magnitude of SUHI intensity in each 
city is measured by SUHII_mean and SUHII_max, i.e. the mean and maximum SUHII 
of all pixels within the SUHI footprints, respectively. The magnitude of SUHI foot
print in each city is measured by SUHIFP and SUHIFPR. SUHIFPR evaluates the 
actual extent of SUHI impacts (i.e. how larger areas are influenced by the SUHI 
effect compared to the actual urban size).

The detailed procedure to implement the two-step SUHI estimation in the empirical 
study is illustrated in Figure 5 and the subsequent sections.

It is noteworthy that the SUHIs and their impact ranges can vary substantially across 
space and time. The assessment and validation of SUHI estimation approaches based on 
various definitions, data, and measurements are necessary but complicated. In this study, 
we compare the proposed two-step SUHI estimates with the most widely used definition 
of urban-rural difference. The urban-suburban temperature difference is not included in 
the comparison due to the significant uncertainties and biases resulting from the lack of 
consideration of the spillover effect of the SUHI (Chun and Guhathakurta 2017; Liu et al. 
2023; Zhou et al. 2015). Down to the root of the footprint concept, that is, the extent of 
increased temperature compared to rural references, three estimates of SUHI footprints 
can be obtained. One feasible method described in the literature (Zhou et al. 2015) quan
tifies the footprint as the continuous extent from the urban core to rural areas with a 
temperature difference significantly greater than zero value (termed as zero-value extrac
tion hereafter). This common measure assumes that the observations from fixed loca
tions represent an unaffected rural reference. The second method is adopted in some 
studies and is based on the transition points of the temperature profiles (Peng et al. 
2020; Qiao et al. 2019), in which the locations are considered part of the SUHI footprints 
if the temperature is larger than the thresholds (Figure 5, critical value extraction). The 
two-step approach is expected to improve the above methods based on the SUHI impact 
extent and temperature profile. The classic Gaussian surface method proposed by 
Streutker (2003) is not considered here, as the UHI footprint is described as a two-dimen
sional spatial ellipse rather than the exact spatial extent of the UHI. Based on the 
extracted footprints based on the above three methods, four estimates of the SUHI mag
nitude (i.e. SUHII_mean, SUHII_max, SUHIFP, and SUHIFPR) can be acquired with temporal 
dynamics and spatial footprint of SUHI taken into account. We calculate the four SUHI 
indices for different time periods and cities.

4. Results

4.1. Quality assessment of the identified results based on two-step approach

An in-depth quality assessment is conducted to discuss the applicability and robust
ness of the two-step approach before its application. The temperature profiles across 
283 cities revealed that the critical buffer circles in cities where the heat island effect 
occurs were generally consistent across different years but varied between day and 
night. Here, the probability of accurate estimates (Prob) for the critical buffer was 
assessed by comparison of the same periods across different years (Figure 6). 
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Specifically, Prob was calculated based on the probability density of the normal distri
bution function, which was determined by the mean value and standard deviation of 
different years. Results with low Prob means the automatic recognition results of the 
algorithm might be unreliable, and further manual interpretation is needed. As shown 
in Figure 7, the accuracy of the results is lower during the day than at night, with the 
lowest accuracy observed during daytime in winter compared to other seasons. This 
may be because the nighttime SUHI footprints are usually more concentrated, and the 
SUHI characteristics in winter are relatively less obvious. Cases where the average criti
cal buffer distance of the city is greater than 1.5 times the standard deviation were 
excluded when analyzing the characteristics of the SUHI. Overall, the two-step 
approach can provide a reliable quantification of the SUHI effect and its characteristics 
in various cities over time.

4.2. Urban heat and cool islands identification

Figure 8 shows the proportions of SUHI, SUCI, and uncategorized events during the 
day and night in different seasons and years, based on temperature changes with dis
tance away from the city center. Among the 283 Chinese cities, more than 90% of cit
ies experienced the SUHI effect in summer, followed by autumn, spring, and winter, 
whereas the SUCI effect exhibits an opposite seasonal trend, with no more than 4% of 
cities witnessing a SUCI in summer. The proportions of SUHIs and SUCIs vary signifi
cantly between day and night. The SUHI occurs more frequently at night and the SUCI 
occurs almost during the daytime. This is particularly obvious in winter, with around 
34% and 82% heat islands and 39% and 6% cool islands during the day and night, 
respectively. In terms of the annual trend, daytime SUHIs show a slightly downward 
trend from 2005 to 2018, whereas the percentage of nighttime SUHIs has increased 
and reached its peak in 2015. The decrease in daytime SUHIs is found to be more 

Figure 6. The nighttime SUHI identification results in Beijing based on the two-step estimation 
approach (x-axis: buffer number, unit of y-axis: �C).
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concentrated in North China, where daytime SUCIs in non-summer seasons signifi
cantly increase due to the increased green infrastructures in city centers on one hand 
(Orkomi and Ameri 2024) and the higher elevation of newly built urban areas on the 

Figure 7. The quality of results based on the two-step estimation approach.

Figure 8. Statistics on the proportions of heat and cool islands.
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other hand (Liu et al. 2021). It is noted that the overall trend of SUHIs is still increasing 
during the study period.

Figures 9–13 present the spatial distribution of SUHIs and SUCIs for 283 cities in 
China. Regardless of the seasons and years, southern cities in China experience a sig
nificantly higher daytime SUHI effect compared to cities in the northern regions, 
whereas the cold island effect is predominantly observed during the day in North 
China. By contrast, nighttime SUCIs exhibit opposite distribution patterns, with almost 
all of them are found in the central and southern regions, especially in the Yangtze 
River Basin. Furthermore, daytime SUCIs occur much more frequently in winter than in 
other seasons. It can be found that the transition from SUCI in spring to SUHI in sum
mer during the daytime occurs in some cities in North China. Subsequently, many 
northern cities experience a transition from daytime SUHI to daytime SUCI in autumn 
and winter. This may be related to the significant impact of humidity on SUHI, as day
time SUHI is stronger in a more humid climate. The reduction of vegetation and urban 
evaporation can cause urban dry islands, especially in mid-latitude cities with a water- 

Figure 9. The distribution of heat and cool islands in spring. 
IJGIS remains strictly neutral with respect to jurisdictional claims on disputed territories and the naming conventions 
used in the maps included in the figure.
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limited evaporation climate, which can explain the prevalence of daytime SUCIs in 
North China during winter (Zhang et al. 2023). However, the SUHI effect occurs con
sistently in the northeast, southeast coastal, and southwestern areas regardless of the 
time of day, season, or year.

4.3. SUHI intensity and footprint

Based on the above identification results, the intensity and footprint of the SUHI effect 
are calculated using the proposed two-step estimation approach. In terms of SUHI 
intensity, most observations of SUHII_mean and SUHII_max (excluding outliers) fall 
within the ranges of 0 to 4 �C and 0.5 to 14 �C, respectively. The intensity during the 
daytime is, on average, 0.58 �C and 1.75 �C higher than that at night. Meanwhile, as 
shown in Figure 14, the high values of daytime SUHII_mean and SUHII_max are most 
concentrated in the northeastern and southeastern coastal cities and southwestern cit
ies, but the nighttime values in north, northeast, and northwest China are the largest 

Figure 10. The distribution of heat and cool islands in summer. 
IJGIS remains strictly neutral with respect to jurisdictional claims on disputed territories and the naming conventions 
used in the maps included in the figure.

2362 A. ZHANG AND C. XIA



(Figure 15). Besides, most cities have higher daytime SUHI intensity in summer than in 
other seasons, particularly those located in the southern and southwestern regions, 
but the opposite is true for nighttime SUHI intensity (Figure 15).

The magnitude of SUHI footprints (i.e. SUHIFPR) ranges between 0 and 6 times the 
urban area in most cities after excluding the outliers, with daytime values, on average, 
0.55 times greater than nighttime values. Meantime, as shown in Figure 14, the distri
butions of high SUHIFP or SUHIFPR values are similar during the day and night, which 
are concentrated in the eastern and southwestern regions, respectively. This implies 
that, the spatial area affected by the SUHI effect in eastern cities is large, while the 
impact range per unit of urban area in southwestern cities is large. In addition, 
SUHIFPR may not necessarily be the highest in summer compared to other seasons. 
However, SUHIFPR is larger in winter than in other seasons during the day, while the 
differences between seasons are less significant at night.

Figure 11. The distribution of heat and cool islands in autumn. 
IJGIS remains strictly neutral with respect to jurisdictional claims on disputed territories and the naming conventions 
used in the maps included in the figure.
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5. Discussions

5.1. Benefits of the two-step SUHI estimation approach

The spread and temporal patterns of the SUHI intensity and footprint identified using the 
two-step approach and the critical value and zero-value extraction methods are com
pared. Figures 16–18 illustrate the boxplots of SUHI measures for all 283 cities in different 
years and seasons, with outliers excluded from the comparison. It was found that the 
footprints of SUHI extracted by the two-step approach are much smaller than the other 
two methods, with SUHIFPR between 0 − 6 times the urban area, and the median value of 
approximately 1.7 times during the day and 1.1 times during the night. Despite the similar 
estimated results, the two existing methods, especially zero-value extraction, obtained 
SUHI footprints that can reach up to more than 50 times the urban area of cities in 
China. This is not reasonable according to the findings of previous studies. For example, 
the footprints can be up to 5.5 and 6.5 times the urban size for the day and night, 
respectively, in the research of 32 Chinese cities from 2003 to 2012 by Zhou et al. (2015); 

Figure 12. The distribution of heat and cool islands in winter. 
IJGIS remains strictly neutral with respect to jurisdictional claims on disputed territories and the naming conventions 
used in the maps included in the figure.
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2.4 times the urban size in the research of eastern North America by Zhang et al. (2004); 
and smaller than twice the urban core area in the research of 141 cities in China from 
2003 to 2020 by Hu et al. (2022). The median value of SUHI footprints is about 5 times 
(i.e. day: 5.4 times and night: 4.7 times) and 7 times (i.e. day: 6.7 times and night: 7.8 
times) for the critical value extraction and zero-value extraction, respectively. In terms of 
the SUHI intensity, the two-step estimation technique and the other two methods show 
similar results; however, the two-step estimation technique tends to provide more concen
trated estimates of SUHI intensity. These results suggest significant variations among vari
ous methods. Overall, the two-step technique provides more reasonable estimates of the 
area affected by the SUHI effect according to the estimations in existing literature.

Therefore, the two-step estimation approach is recommended in most cases, as it 
can provide a more accurate estimate for the SUHI footprint and intensity. Taking 
Beijing as an example, the zero-value extraction identifies the urban center as the 
SUHI footprint, but many urban areas are ignored, particularly those located far away 

Figure 13. The distribution of heat and cool islands based on annual mean. 
IJGIS remains strictly neutral with respect to jurisdictional claims on disputed territories and the naming conventions 
used in the maps included in the figure.
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from the urban center (e.g. the Yanqing district, Figure 19). Meantime, the SUHI foot
prints, identified by the zero-value extraction, are determined by the definition of the 
rural area and its reference temperature. The critical value extraction method, without 
considering the impact range of the SUHI, often misidentifies some rural areas with 
high temperatures but far away from the urban area as the SUHI footprints.

Moreover, this new two-step estimation approach can be useful in some compli
cated cases. For example, multiple peaks may be found in the temperature profiles for 
both urban and rural areas, as 1) the sandy land, bare land, and grassland with low 
coverage may become the local hottest areas during the daytime (an example shown 
in Figure 20), and 2) the influences of the SUHI effect of surrounding big cities are 
large. In such cases, previous methods without considering heat sources and their 
impact ranges, usually identify much larger SUHI footprints compared to the actual 
impact extent (Figure 20).

5.2. SUHI characteristics and implications

Based on the identification of heat and cool islands, as well as the analysis of SUHI 
intensities and footprints, the spatiotemporal variations of SUHIs are demonstrated. In 

Figure 14. Spatial distribution of median SUHI intensities and footprints over the period of 2005– 
2018 and different seasons (point sizes represent the level of administrative regions, and the larg
est points are the municipalities directly under the central government, followed by sub-provincial 
cities and prefecture-level cities). 
IJGIS remains strictly neutral with respect to jurisdictional claims on disputed territories and the naming conventions 
used in the maps included in the figure.
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terms of temporal variations, increasing trends in SUHI intensities and footprints (i.e. 
the magnitudes and spatial extents) over the period of 2005 − 2018 are observed in 
most cities (Figures 16–18). This trend has been linked to the rise in heat emissions 
and reduction in vegetation during urbanization processes in China (Yang et al. 2019; 
Zhou et al. 2014). The increase in greenery in rural areas may also be a significant fac
tor driving the rise in daytime SUHI intensities (Yao et al. 2019). Given the increasing 
trends of SUHI intensity and footprint, it is essential to incorporate more green spaces, 
such as parks, gardens, and green rooftops, into urban planning, especially in areas 
covered by SUHI footprints. These spaces can help regulate temperature, reduce heat 
island effects, and improve overall urban climate resilience. Furthermore, some cities 
require special care. In cities with frequent SUHIs, Daqing and Yinchuan experienced a 
more than 90% rise in daytime SUHII_mean, and Tongchuan and Shangqiu saw an 
increase of over 65% in nighttime SUHII_mean. In these northern Chinese cities, con
ducting rigorous monitoring of SUHI intensity is essential to prevent its further growth. 
Meanwhile, Zhangzhou, Ganzhou, Chifeng, Huaihua, Nanping, and Chongqing, 

Figure 15. SUHI intensities and footprints over the period of 2005–2018 in different regions. (x- 
axis: a: Northeast China, b: North China, c: East China, d: Central South China, e: Northwestern 
China, f: Southwestern China; units of y-axis: (a) �C, (b) times the urban area).
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primarily in southern China, had their daytime SUHIFPR increased by more than 250%. 
In contrast, Weinan, Hohhot, and Jiuquan in northwestern China, witnessed an over 
190% increase in nighttime SUHIFPR. Prioritizing the design of urban and rural green 
belts is critical for these cities to reduce the spread and severity of SUHI effect.

In terms of the spatial distribution of SUHIs and SUCIs for 283 cities in China, the 
southern cities experience much more daytime SUHIs than the cities located in north
ern parts of China, regardless of the seasons and years. Conversely, the SUCIs during 
the day are predominantly observed in North China. This finding is in line with the 
recent report by Liu et al. (2021), who revealed that the increased green cover and 
higher elevations in newly developed urban areas, combined with the growing dispar
ities in land development intensity during urban sprawl, led to a decrease in SUHI 
intensities in the North China Plain. In contrast, most cities in southern China experi
enced warmer temperatures in newly expanded urban areas, resulting in an overall 
rise in SUHI. Such variations in SUHI evolution across regions could also be partially 
attributed to background climates, which have the potential to alter the effects of 
land cover, such as green cover or impervious surfaces, on urban surface temperatures 
in different climate zones (Liu et al. 2023; Manoli et al. 2019; Naserikia et al. 2022).

Figure 16. Statistics of the SUHIFPR values based on three different methods. (a-c: the results of 
the two-step estimation, critical value extraction, and zero-value extraction method, respectively; 
unit of y-axis: times the urban area).
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In terms of the variations in SUHIs between day and night, daytime SUHIs have a 
lower proportion but higher intensity and footprint than nighttime SUHIs (Figure 8
and Figure 14). Specifically, SUHIs occur more frequently (i.e. higher SUHI occurrences) 
at night, which is in line with the research of Peng et al. (2018). Daytime footprints 
were found to be generally larger than nighttime ones based on the results of the 
two-step estimation approach (Figure 16). This finding contrasts with the results of the 
zero-value extraction method used in this study and the research by Zhou et al. 
(2015). However, Hu et al. (2022) and Yang et al. (2019) obtained similar findings based 
on analyses conducted in 141 and 302 Chinese cities, respectively. The possible reason 
is that the LST in suburban areas is slightly greater than LST in rural areas but signifi
cantly lower than LST in the city center. This causes different results from the zero- 
value extraction method and our two-step estimation approach (i.e. it identifies the 
inflection points). Besides, the daytime SUHI intensity is generally higher than the 
nighttime intensity (Figures 17, 18), which aligns with the findings of Peng et al. 
(2018) and Imhoff et al. (2010). However, it is worth noting that the SUHI intensities 
reported by Peng et al. (2018) exhibited contrasting trends in winter. To mitigate the 
higher daytime SUHI intensity, it is helpful to promote the use of cool building 

Figure 17. Statistics of the SUHII_max values based on three different methods. (a-c: the results of 
the two-step estimation, critical value extraction, and zero-value extraction, respectively; unit of y- 
axis: �C).
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materials such as reflective surfaces, and the urban design and renewal that can 
enhance natural ventilation and increase the building shading area (Wang and Shu 
2020). These measures can reduce the heat absorbed by buildings and land surfaces, 
thereby lowering the overall temperature of the urban environments.

In terms of seasonal variations, the possibility of SUHI occurrence and the intensity 
of daytime SUHI are highest in summer (Figure 8 and Figure 14), as supported by the 
research of Peng et al. (2018). The seasonal variation of SUHI footprints in this study is 
different from Hu et al. (2022) and Yang et al. (2019). Our study reveals that the occur
rence of the SUHI effect is obviously lower in winter compared to summer. However, 
for cities where the SUHI effect occurs in winter, their median SUHI footprint ratio and 
nighttime intensity in winter are larger than the median value for cities experiencing 
the SUHI effect in summer (Figure 14). This may be caused by the increasing heating 
demand, which leads to higher energy consumption, more waste heat production, 
and more severe air pollution. Therefore, it is necessary to encourage the construction 
of energy-efficient buildings and infrastructure to reduce energy consumption and 
minimize waste heat generation. This includes adopting passive solar design, improv
ing insulation, and using energy-efficient heating systems. Given the higher daytime 

Figure 18. Statistics of the SUHII_mean values based on three different methods. (a-c: the results 
of the two-step estimation, critical value extraction, and zero-value extraction, respectively; unit of 
y-axis: �C).
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SUHI intensity in summer and its impacts on urban dwellers, it is essential to develop 
targeted heat adaptation plans for vulnerable populations in urban areas with high 
SUHI intensity, such as the elderly and low-income households (Xia 2024). These plans 
may include the establishment of cooling centers, distribution of cooling aids, and 
public education on heat-related health risks. Besides, enforcing stricter air pollution 
regulations and investing in cleaner energy sources to reduce air pollution levels in 
urban areas can help limit the warming effects of air pollutants during winter.

5.3. Limitations

In the SUHI analysis, there are three sources of error: measurement error of LST, uncer
tainties related to the conceptual simplicity of the urban-rural dichotomy, and static 
measures caused by observations from fixed locations. The errors in deriving LST will 
partially cancel out in the SUHI calculation of temperature differences, even though a 
significant source of error may still exist between urban and rural surfaces. One major 

Figure 19. SUHI identification results in the summer of 2005 in Beijing.
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advantage of the SUHI estimates considering spatial footprint, is that the magnitude 
of interest is not just the absolute contrast of the urban-rural thermal environment, 
but also the source areas of urban heat and the gradual transition from artificial to 
natural landscapes. This is important because rural surroundings can also contribute to 
the increased urban temperatures in some cases (it depends on urban-rural breezes 
and elevation), and there is a lack of clear demarcation between urban and rural envi
ronments (Wang 2022). However, SUHI estimates considering spatial footprint may still 
suffer from uncertainties related to the mismatch between the dynamic nature of 
SUHI footprint and static measurements based on fixed thresholds or locations. The 
two-step estimation approach could correct the errors described above that are com
mon in existing studies.

Despite the advantages of the two-step estimation approach, there are still certain 
drawbacks to this approach. It can be, for example, sensitive to the model used to 
identify critical thresholds and the number of buffers generated to cover the study 
area. Therefore, the new method is not recommended in some cases. For example, in 

Figure 20. SUHI identification results in the summer of 2018 in Lanzhou.
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small urban built-up areas and with coarse LST datasets (e.g. urban areas covered by a 
limited number of pixels), it can be challenging to characterize the temperature 
changes from urban to rural areas. Besides, the method may not be suitable if the 
temperature profile shows a smooth or linear trend without any critical points.

Furthermore, uncertainties remain in the estimated SUHI intensity and footprint in 
this study. First, we identified the location of the urban-rural temperature ‘cliff’ and 
assumed that the proportion of urban built-up areas is key to the formation of SUHI 
effect. The SUHI footprint was extracted from the buffer zones created at the edge of 
the urban built-up area. However, the spatial distribution of source areas contributing 
to urban heat might not be homogeneous in cities. This suggests that we may not 
capture all the areas affected by SUHI in some cases. Second, the average SUHI inten
sity can be influenced by potential biases in the estimation of the SUHI footprints. 
Finally, the median temperature of the buffer rings was used to map the SUHI profile 
in this analysis, and piecewise regression was adopted to recognize critical points in 
the profiles. Future studies can explore whether the urban-rural temperature gradient 
can be influenced by the choice of characteristic value, such as mean or mode, as well 
as the selection of methods for identifying transition points. Furthermore, employing 
more accurate and high-resolution gap-free LST data may help reduce uncertainties 
associated with SUHI estimation (Yang et al. 2023; Yao et al. 2021, 2023). The use of 
local climate zones can provide more information about how the urban three-dimen
sional layout and structure influence the SUHI. These limitations stress the need for 
more efforts to conceptualize and measure the intensity and extent of SUHI in future 
studies.

6. Conclusion

The SUHI phenomenon has become increasingly prevalent in Chinese cities in recent 
years as a result of rapidly growing urban populations and industrialization. The accur
ate SUHI estimate helps in understanding the spatiotemporal variation of SUHI effect. 
However, these estimates are hindered by imprecise criteria for non-urban references 
and a vague distinction between urban and rural landscapes. In this study, we pro
posed a two-step SUHI estimation approach based on the urban-rural temperature 
profile and the geomorphic analogy with a typical SUHI. The approach was applied to 
extract spatial footprints of SUHI in 283 cities in China during 2005-2018 and identify 
the SUHIs and their magnitudes. Through a comparative analysis, the newly proposed 
two-step SUHI estimation approach is found to have advantages in reducing possible 
biases and uncertainties in SUHI measures and obtaining concentrated estimates of 
SUHI footprints (i.e. SUHI footprints are 0 − 6 times the urban area) and intensities (i.e. 
the SUHI mean intensity ranges between 0 − 4 �C and the maximum intensity ranges 
between 0.5 − 14 �C). The findings indicate that most cities in China experience a sum
mer SUHI effect, with a general upward trend from 2005 to 2018. Southern cities are 
particularly prone to daytime SUHI, with mean and maximum intensities during the 
day averaging 0.58 �C and 1.75 �C higher than those at night. The two-step estimation 
approach used to extract SUHI footprints produces significantly smaller footprints 
compared to two existing methods and enables more accurate assessments of the 
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changing patterns, mechanisms, and consequences of the SUHI effect, thereby aiding 
in the development of effective policies for mitigation.

Notes

1. City districts (shiqu) in China constitute the urban core of prefecture-level administrative 
units, which include urban and suburban districts (chengqu and jiaoqu) but not suburban 
counties.

2. Please note that the static rural reference values can be impacted by landscape changes in 
rural areas resulting from urban sprawl or plant growth (Wang 2022). These values are 
sensitive to the ecological context (e.g., desert shrub-land) and the measurement of 
surrounding rural areas (i.e., how far is enough from the urban core to represent the 
unaffected area).

3. The reason for creating a buffer zone from the edge of urban built-up areas is that the 
critical circle is unable to represent the actual range of SUHI due to the irregular shapes of 
urban areas (Peng et al. 2020).
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