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ABSTRACT 
Road network selection plays a key role in map generalization for 
creating multi-scale road network maps. Existing methods usually 
determine road importance based on road geometric and topo
logical features, few evaluate road importance from the perspec
tive of road utilization based on human travel data, ignoring the 
functional values of roads, which leads to a mismatch between 
the generated results and people’s needs. This paper develops 
two functional semantic features (i.e. travel path selection prob
ability and regional attractiveness) to measure the functional 
importance of roads and proposes an automatic road network 
selection method based on graph convolutional networks (GCN), 
which models road network selection as a binary classification. 
Firstly, we create a dual graph representing the source road net
work and extract road features including six graphical and two 
functional semantic features. Then, we develop an extended GCN 
model with connectivity loss for generating multi-scale road 
networks and propose a refinement strategy based on the road 
continuity principle to ensure road topology. Experiments demon
strate the proposed model with functional features improves the 
quality of selection results, particularly for large and medium scale 
maps. The proposed method outperforms state-of-the-art meth
ods and provides a meaningful attempt for artificial intelligence 
models empowering cartography.
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1. Introduction

Road network serves as the fundamental space for human travel activities, and multi- 
scale urban road network maps form the data foundation of current location-based 
applications in cities. Road network selection, a crucial generalization operator, is 
essential for producing smaller-scale road network maps from larger-scale maps, which 
aims to retain important roads and omit less important ones (Li and Zhou 2012). Two 
critical challenges in road network selection are evaluating the importance of roads 
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and determining the optimal number of roads to retain (Foerster et al. 2010). 
Compared to other map elements, such as points and polygons, the road network is 
presented as polylines with more complex geometries and topological relationships, 
posing greater difficulties in identifying the required important roads while preserving 
the overall connectivity of the selected road network. Moreover, the close relationship 
between the road network and human activities further complicates the road network 
selection. Therefore, multiple factors that describe the importance of roads from differ
ent perspectives should be considered and still require further research and explor
ation, especially in the era of geospatial big data (Zheng et al. 2021).

Compared with rural road networks, urban road networks exhibit higher density 
and structural complexity, which is the focus of this study. Numerous studies have 
explored the urban road network selection (Thomson and Richardson 1995, Chen et al. 
2009, Benz and Weibel 2014, Zheng et al. 2021). Existing road network selection meth
ods can be divided into semantic-based methods, graph-based methods, stroke-based 
methods, mesh density-based methods, and machine learning-based methods. These 
methods typically construct road network graphs or stokes, evaluating road impor
tance based on geometric, topological, and semantic features. Although these studies 
have received remarkable achievements for road network selection, some limitations 
still need further investigation. First, previous studies primarily focus on evaluating 
road importance using graphical features. The social function values of roads are rarely 
considered due to the limited acquisition of human travel data, leading to inconsisten
cies between the road selection results and practical requirements. For example, some 
less traveled roads are preserved, whereas some frequently used roads may be omit
ted. Second, existing methods heavily rely on manually setting selection parameters, 
such as mesh density thresholds and road feature weights, which is challenging with
out prior knowledge.

In recent years, the advancements in positioning, navigation, and sensor technolo
gies have facilitated the acquisition of human activity-related data, providing new data 
sources for studying human-road relationships and human travel patterns (Çolak et al. 
2016, Siła-Nowicka et al. 2016, Peng et al. 2023, Peng et al. 2024). Points of Interest 
(POIs) surrounding the roads are the motivations that attract humans to travel, while 
the trajectories are the records of the human travel process. The collaborative consid
eration of trajectories and POIs can reflect the social attributes (i.e. functional value) 
and actual utilization of roads from the perspective of human travel. They can help 
select roads that are more consistent with human cognition. In addition, with the 
rapid development of artificial intelligence, artificial neural networks have emerged as 
a promising data-driven approach for learning the experience and knowledge of carto
graphic experts (Zhou and Li 2014). Some studies have demonstrated the feasibility of 
deep learning-based methods in improving the automation and intelligence of map 
generalization (Touya et al. 2019, Zheng et al. 2021, Ai 2022, Yu and Chen 2022), moti
vating the development of deep learning methods for road network selection.

Inspired by these, this study introduces two new features to assess the functional 
importance of roads and proposes a GCN-based method for automatic road network 
selection. Specifically, the road network selection is modelled as a binary classification 
with GCNs. Six graphical structure features and two functional semantic features are 
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used to evaluate the importance of the roads. Further, an improved loss function with 
the connectivity penalty and the refinement process are performed to ensure the con
nectivity of the selected roads. The main contributions of this paper are summarized 
as follows:

� Two new features (i.e. travel path selection probability and regional attractiveness) 
are proposed to measure the functional importance of the roads besides commonly 
used graphical structure features.

� A GCN-based road network selection model is developed. The model can automat
ically learn the number of roads to be retained at different target scales and the 
weights of different features for road network selection.

� Experiments are conducted to compare the performances of the proposed method 
and baseline methods, and the influence of different feature combinations on the 
selection of road networks at different scales is analyzed.

� The transferability and generalization ability of the proposed method are explored 
with road network data in different cities.

The remainder of this paper is organized as follows. Section 2 reviews the related 
work for road network selection. Section 3 introduces the proposed method in detail 
and Section 4 evaluates the performance of the proposed method and analyses the 
effects of the proposed method with different feature combinations. Section 5 dis
cusses other datasets for evaluating road functional importance, the significance of 
road features at different scales, and the transferability of the proposed method. 
Section 6 concludes the study.

2. Related work

For road network selection, T€opfer’s radical law is most used to determine how many 
roads should be selected at the target scale in map generalization (T€opfer and 
Pillewizer 1966). Jiang (2015) modelled the map generalization as a head/tail breaks 
process and proposed the head/tail breaks statistics to guide the selection of urban 
streets. With the recent advances in artificial intelligence, machine learning-based 
methods such as BP (Zhou and Li 2014), SVM (Zhou and Li 2017), and GNN (Zheng 
et al. 2021, Guo et al. 2023) have emerged as powerful new techniques for automatic
ally determine the number of roads retained at the target scale. And to determine 
which specific roads to retain at the target scale, many methods have been proposed. 
These methods can be categorized into semantic-based methods, graph theory-based 
methods, stroke-based methods, mesh density-based methods, and machine learning- 
based methods. They are reviewed in detail below.

� Semantic-based methods: These methods evaluate the importance of roads based 
on attribute information, such as road level and road type, and select a certain 
number of roads in order of their importance. The semantic information of roads is 
often employed as auxiliary features in conjunction with geometric and topological 
road features for road network selection.
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� Graph theory-based methods: These methods abstract the road network into a 
graph (Thomson and Richardson 1995) and are quantitatively evaluated using com
plex network theory indicators (e.g. shortest path, centrality, minimum spanning 
tree) to assess road importance (Mackaness and Beard 1993, Jiang and Claramunt 
2004, Porta et al. 2006, G€ulgen and G€okg€oz 2011). A certain number of roads that 
occupy important positions in the road network are then selected. These methods 
primarily focus on the graphical characteristics (i.e. connectivity and topology) of 
the road network (Richardson and Thomson 1996), forming the foundation for 
many other subsequent road network selection methods.

� Stroke-based methods: The concept of strokes was first proposed by Thomson and 
Richardson (1999) based on the ‘good continuation’ grouping principle of Gestalt 
theory as the basic unit for road network selection. The construction of strokes usu
ally relies on geometric criteria (Liu and Li 2019), road names, or road levels with 
strategies like every-best-fit, self-best-fit, and self-fit (Jiang et al. 2008, Zhou and Li 
2012). Then, stroke length, average stroke density, centrality indicators, and stroke 
level are often employed to calculate the importance of strokes (Liu et al. 2010, Xu 
et al. 2012, Yang et al. 2013, Weiss and Weibel 2014). Recently, Yu et al. (2020) 
extended the classical stroke-based selection method with traffic flow patterns 
based on the thought that strokes with a close relationship in the traffic flow sys
tem should be selected simultaneously, which enriches the topological connectivity 
relationships between strokes. In their method, four common features of stroke 
length, degree centrality, closeness centrality, and betweenness centrality were 
used to determine the relative importance of strokes. While known for maintaining 
good road continuity at target scales, stroke-based methods heavily depend on 
specific parameters such as road deflection angle threshold and the weights of dif
ferent features, potentially reducing their applicability.

� Mesh density-based methods: This type of method was proposed by Hu et al. 
(2007) and Chen et al. (2009), aiming to maintain the relative density of the road 
network before and after selection. This approach first divides the road network 
space into sub-regions (meshes). Then, the relative importance of bounding road 
segments for different meshes is calculated and the least important road segments 
are eliminated. Benz and Weibel (2014) utilized an extended stroke-mesh algorithm 
for road network selection at a medium scale.

� Machine learning-based methods: These methods aim to apply intelligence models 
to improve the automation and intelligence of road network selection. Traditional 
machine learning-based methods such as self-organizing neural networks (Jiang and 
Harrie 2004), genetic algorithms (Van Nimwegen et al. 1999, Mathew and Isaac 
2014), BP neural networks (Zhou and Li 2014), support vector machines (SVM) (Zhou 
and Li 2017), decision tree models (Karsznia et al. 2022) have been used for road 
network selection, which reduces the difficulty of feature integration compared to 
the above methods. With the remarkable progress of deep neural networks in fea
ture extraction and classification, deep learning methods also exhibit great potential 
in automatic and intelligent map generalization (Touya et al. 2019, Ai 2022, Courtial 
et al. 2023). For example, Zheng et al. (2021) explored the applicability of three 
graph neural networks (GNNs) for road network selection, demonstrating the 
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feasibility and effectiveness of GNNs in map generalization. However, their work 
only considered statics graphical features and focused on small-scale maps. The 
effectiveness of GNNs, considering more semantic features at medium or large-scale 
maps in more cities, requires further exploration.

Although existing research has achieved significant improvements in road network 
selection, some limitations still remain and are worth further exploration. First, the 
importance of roads is usually determined based on the graphical features of roads, 
such as road level, length, connectivity, and centrality, overlooking the social attributes 
and functional values of roads. As a result, the generated road network map may not 
be consistent with actual human travel demands. Second, existing road network selec
tion methods rely on manually setting selection parameters (e.g. the number of roads 
to be selected and the weights of different road features), resulting in low automation 
and intelligence. To overcome these limitations, this study proposes two new func
tional features besides six commonly used graphical features to evaluate the impor
tance of roads. A CGN-based method is proposed for automatic road network 
selection, which models connectivity loss and integrates the topology refinement pro
cess. The framework of the proposed method is shown in Figure 1, which comprises 
four critical steps: road network abstraction representation, road feature extraction, 
road network selection model construction, and road selection result evaluation.

3. Methodology

3.1. Dual graph abstraction of the road network

The primitive graph and dual graph are two commonly used ways to represent the 
road network (Porta et al. 2006). The primitive graph abstracts the intersections or 
road endpoints as nodes and road segments as edges, as shown in Figure 2(b), which 

Figure 1. The framework of the proposed method.
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directly reveals the spatial structure of the road network. However, the implicit expres
sion of topological relationships between different roads is not conducive to road seg
ment-based geographical analysis. In contrast, the dual graph abstracts road segments 
as graph nodes and connections between road segments as edges, as shown in 
Figure 2(c), which directly reveals topological relationships between different road seg
ments. Therefore, the dual graph is better suitable for road network selection, which 
can be naturally transformed into the binary classification of nodes in the dual graph. 
Here, we give a formal description of the binary classification model for road network 
selection using the dual graph.

Let N be the number of road segments in the road network and K be the number 
of road features. The road network can be represented as an undirected graph, 
denoted as G¼(V, E, X, Y), where:

� V¼ fvij0� i�Ng is the set of graph nodes representing road segments in the ori
gin road network.

� E¼ feij¼ (vi, vj) j 0� i�N, 0� j�Ng denotes the set of graph edges denoting the 
connectivity between road segments. eij exists if and only if i 6¼ j and node vi is 
directly connected to node vj.

� X¼ fxikj0� i�N, 0� k� Kg is a K-dimensional feature matrix used to calculate 
road importance.

� Y¼ fyij0� i�Ng denotes the classification label of road segment vi at the target 
scale with 1 for selected and 0 for unselected.

3.2. Road features extraction for road selection

In road network selection, road feature extraction for road importance evaluation is a 
critical step that determines the quality of the road network selection results. This 
study considers not only the graphical structures of roads but also their social func
tional values for human travel when assessing the importance of roads. Six graphical 
structure features and two proposed functional features of roads are extracted and 
assigned to the feature matrix X, which will be used as inputs for the proposed GCN- 
based road network selection model.

3.2.1. Graphical structure features extraction for road selection
Six graphical structure features of roads include two geometric features (i.e. road 
length, road density), three topological features (i.e. degree, closeness centrality, 

Figure 2. Illustration of the road network abstraction.
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betweenness centrality), and one semantic feature (i.e. road type). The definitions of 
each feature are as follows.

� Road length (L): Length is a fundamental and commonly used feature to describe 
the spatial domain of a road. It reflects the range of the road and is positively cor
related with its importance.

� Road density (RD): Maintaining the relative consistency of road density within subre
gions before and after selection is crucial for evaluating the rationality of the 
selected road network structure (Liu et al. 2009). The calculation of road density fol
lows the method outlined by Tian et al. (2016).

� Degree (D): In the dual graph, the degree of a road vi is the number of its neigh
bouring roads directly connected to vi (Brintrup et al. 2016). It reflects the accessi
bility of the road within the road network, with higher degrees corresponding to 
greater influence.

� Closeness Centrality (CC): It is defined as the reciprocal of the total shortest paths 
from a single road to all other roads (Yi et al. 2018). Closeness centrality reflects 
the proximity of the road to its non-directly connected roads in the entire road net
work with higher closeness centrality values indicating stronger associations 
between the given road and other roads.

� Betweenness Centrality (BC): Betweenness centrality is widely used to measure the 
ability of a node that allows information to be transmitted from one node to 
another in a graph. Its calculation is shown in Equation (1), where o(s, tj i) denotes 
the number of shortest paths between any pair of nodes (say node s and node t) 
that pass through the target node i, and o(s, t) denotes the total number of short
est paths between any pair of nodes (Brandes 2008).

BCi ¼
X

s, t2 V, s, t 6¼ i

oðs, tjiÞ
oðs, tÞ

(1) 

� Road level (RL): Road level, also called road type, reflects the designed traffic- 
carrying capacity of a road. In general, the importance of a road is positively corre
lated with the road level.

3.2.2. Functional semantic features extraction for road selection
The importance of a road is determined not only by its graphical structure features 
but also by the functional values it carries. For example, if a wide and long road is 
abandoned for a long time with little traffic flow, it is deemed less important. 
Conversely, a short and low-level road carrying a large traffic flow can be more crucial. 
Therefore, two new features, namely regional attractiveness and travel path selection 
probability are proposed to evaluate the social functional values of roads. They are 
combined with six graphical structure features to comprehensively evaluate the impor
tance of roads within the road network.

1. Regional attractiveness: Various POIs are the main destinations that motivate 
humans to travel, such as malls for shopping, schools for education, and hospitals 
for healthcare. Roads with more POIs around them are likely to attract more 
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crowds and thus be more important. Current studies indicate that POIs are helpful 
for road network selection (Xu et al. 2018, Han et al. 2020). However, due to the 
diverse functional types of POIs, the impacts of different POIs on the importance 
of roads vary. Simply considering the number of POIs around the road ignores the 
heterogeneous distribution of different types of POIs. For example, in Figure 3, 
roads A, B, and C are surrounded by a school, a hospital, residential buildings, and 
many shopping stores. If only considering the number of POIs, road B with more 
shopping stores nearby might be more important. However, the actual factors 
attracting people to this area are more likely the school and hospital near road A. 
Simply relying on the number of POIs can lead to misjudging the importance of 
roads.

To address this issue, we propose an enhanced indicator, regional attractiveness, to 
measure the importance of roads by considering the attractiveness of POIs from the 
perspective of human travel purposes. If more appealing and weighted POIs are near 
a road, it is considered to be more important and has a higher probability of being 
retained. The differences in the number of different types of POIs around the road are 
considered. The regional attractiveness of road i is calculated as:

RANi ¼
XM

m¼1

wm � PNim

Li

wm ¼
PN

PNm

(2) 

where M is the number of POI types (e.g. residential, commercial, industrial, green 
spaces), wm is the weight of POIs of type m, PNim denotes the number of POIs of type 
m in the road buffer zone, Li is the length of road i, PN is the total number of all POI 
types, and PNm is the total number of POIs of type m in the study area.

The regional attractiveness indicator calculates the ratio of the total number of POIs 
belonging to type m to the total number of POIs of all types in the study area and 
uses this ratio as a coefficient to adjust the weight of POIs of type m, which can 
reduce the differences in the number of different POI types. We also consider the line 
density of POIs by dividing by the road length since the denser the surrounding POIs, 
the more important the road. In addition, the road buffer zone size should not be too 

Figure 3. An example of spatially heterogeneous distribution of different types of POIs.
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large or too small to exactly represent the surrounding environment influence of the 
road. In the experiments, we first match the POIs to the source road network using a 
geometric-based approach (Yang et al. 2014), and finally set the buffer size to 300 m 
according to previous studies (Schipperijn et al. 2010, Xu et al. 2018) and the max
imum road width in the study area.

2. Travel path selection probability: While POIs are the attractors for human travel, 
traffic flows (calculated from vehicle trajectories) can directly reveal the actual 
usage of roads, reflecting the importance of roads to some extent. In general, 
roads with larger traffic flows in the road network are more likely to be selected 
for travel, indicating their greater importance, which is also consistent with human 
cognition. Therefore, the functional importance of roads can also be measured by 
their traffic volume. Traffic volume refers to the number of vehicles passing 
through a specific location during a given period. As illustrated in Figure 4, consid
ering that there is variability and randomness of traffic volume at small-time scales 
(e.g. per minute, per hour), the long-term traffic volume (e.g. per week), which 
exhibits stable patterns, is employed to model the importance of roads. Here, 
another road functional semantic feature based on the traffic volume, namely, 
travel path selection probability, is defined for the road network selection. 
Travel path selection probability refers to the probability that a road is selected 
among many roads when people travel, which can reflect the relative usage 
intensity of the roads. The travel path selection probability of road i is calculated 
as follows:

PTi ¼
WTi

PN
i¼1 WTi

(3) 

where WTi denotes the weekly traffic volume of road i, and N is the number of roads 
in the study area.

3.3. Road network selection model based on graph convolutional network

In the road network selection process, there are only two states of a road: selected or 
unselected, and its importance is determined not only by its own features but also by 

Figure 4. Comparison of traffic volumes of four roads (R1, R2, R3, and R4) in Beijing at different 
time scales in November 2019 of (a) at the hour scale, (b) at the day scale, and (c) at the week 
scale.
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the characteristics of its neighbouring roads. Therefore, the road network selection 
problem can be naturally modelled as a binary classification task, where selected roads 
are marked as 1, and unselected roads as 0. We propose an automatic road network 
selection model based on the graph convolutional network (GCN) owing to its power
ful ability of feature extraction and information aggregation. As illustrated in Figure 5, 
it includes an input layer, two convolutional layers, a dropout layer, and an output 
layer. The input layer receives an N�K feature matrix, where N denotes the number of 
road nodes and K is the number of road features. The dropout layer randomly discards 
certain neurons to alleviate the overfitting problem. The convolutional layer is 
employed to extract salient feature information from road nodes and their adjacent 
road nodes, and it is described as:

Hðlþ1Þ ¼ rð~D
−1=2~A ~D

−1=2
XðlÞWðlÞÞ (4) 

where r represents a nonlinear activation function, � D denotes the degree matrix, 
� A is the adjacency matrix, X(l) is the output matrix of the last layer l, and W(l) 

denotes the connection weight matrix of layers l and lþ 1. More detailed information 
can be found in Kipf’s work (Kipf and Welling 2016).

In the last output layer, the Softmax function is used to perform node classification 
for road network selection. The output is an N�1 matrix, and each value indicates the 
selection result of the corresponding road with selected equal to 1 and unselected 
equal to 0. The proposed GCN-based road network model can extract the implicit fea
tures of roads, capture the influence of adjacent roads, and estimate the optimal 
weights of different features.

For training classification models, the cross-entropy loss function is commonly used 
(Shore and Johnson 1980). To preserve road connectivity at the target scale map, we 
introduce a connectivity loss term to the cross-entropy loss function. First, we define 
an indicator function I(.) to measure road connectivity. If both ends of road i are con
nected to other roads, the value of I(i) equals 0. If only one end of road i is connected 
to other roads (e.g. hanging roads), the value of I(i) equals 1. Otherwise (road i is iso
lated), the value of I(i) equals 2. The proposed indicator function differs from the con
cept of degree. As shown in Figure 6, there are four roads A, B, C, and D with the 

Figure 5. Road network selection model with GCNs.
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same level, two hanging roads E, and F, and one isolated road H. The degrees of A, B, 
C, and D are 3, 4, 2, and 1, respectively, while their indicator values are 1, 0, 0, and 1, 
respectively. Although road A has a higher degree than road C, the I(.) value of road C 
is smaller than road A, indicating that road C is more likely to be selected in terms of 
road connectivity. For the hanging roads E and F, the degree values are both 3, while 
the I(.) values are both 1. For the isolated road H, the degree is 0, and the I(.) value is 
2. In this case, the selection model with connectivity loss tends to omit isolated and 
hanging roads rather than well-connected roads.

Then, the connectivity loss is defined as the ratio of the sum of I(.) values to the 
number of selected roads. In addition, a regularization item is incorporated to mitigate 
overfitting in the road network selection model. It is defined as the ratio of the num
ber of selected roads to the total number of roads at the source scale. Using the 
extended loss function, the road selection model aims to maintain the maximum simi
larity between the selected and original roads while preserving good connectivity 
among the selected roads. The complete proposed loss function is formulated in 
Equation (5), where the first item is the cross-entropy loss, the second item is the con
nectivity loss, and the last item denotes the regularization item.

L ¼ð−ðy log ðŷÞ þ ð1 − yÞ log ð1 − ŷÞÞÞ þ ðk1 � sumðIðŷ label¼1ÞÞ=jŷ label¼1jÞþÞ

þ ðk2 � jŷ label ¼ 1j=jŷjÞ
(5) 

where y represents the road selection labels of the ground truth, ŷ denotes the road 
selection labels predicted by the model, ŷjj is the number of roads in the source scale 
map, ŷlabel ¼ 1 represents the set of roads selected by the model from the source scale 
map, and jŷlabel ¼ 1j is the number of the selected roads by the model, k1 and k2 are 
two hyperparameters to adjust the loss function.

Figure 7 gives an example to illustrate the effectiveness of the proposed connectiv
ity loss using the road network in Figure 6. There are three road selection results a, b, 
and c. The values of the proposed connectivity loss of the road selection results in 
Figure 7 are 1, 3/4, and 1/2, respectively. Obviously, the road selection result c is bet
ter than b, and result b is better than a in terms of good connectivity. The connectivity 
loss can guide the model to select roads with good connectivity when selecting the 
same number of roads.

Figure 6. The illustration of I(.) of (a) the original road network, and (b) the dual graph of the ori
ginal road network. The first and second elements of the tuple in (b) are the degree and I(.) values 
of roads, respectively.
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3.4. Refinement of the selected roads using the principle of road continuity

Maintaining road connectivity is crucial for reliable navigation applications. However, the 
road selection results obtained by the above GCN-based selection model may contain dis
connected or dangling roads, which would disrupt the topological integrity of the road 
network. This issue is particularly pronounced when utilizing functional road features, 
where shorter and lower-level roads carrying large traffic volumes and distributed with 
important POIs may be selected. To address this issue, we further propose a refinement 
strategy based on the principle of stroke construction to ensure the connectivity of the 
selected roads. Let Es be the set of the selected roads, and Eu be the set of the unselected 
roads, the refinement process comprises three key steps and is illustrated in Figure 8:

Step 1: Remove isolated roads and hanging roads with a very short length (e.g. less 
than 50 m).

Step 2: Fill gaps and connect adjacent roads in similar directions to ensure the 
selected road network maintains proper connectivity. Let Ei denote the neighbors of 
the selected road ei. For each neighbor eik2Ei, if the following conditions are met:

a. eik is not currently in the selected road set.
b. The direction difference between eik and ei is less than a predefined angular 

h, where h is determined according to the stroke construction principles out
lined by Thomson and Richardson (1999).

c. ei is not a hanging road, or its length exceeds a given threshold (as specified in 
Step 3).

Then eik is added to the selected road set Es and removed from the unselected road 
set Eu. This step ensures the continuity of the selected roads.

Figure 7. Illustration of the connectivity loss to preserve roads with good connectivity.

Figure 8. The illustration of the refinement process of the selected road network selection.
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Step 3: Remove hanging roads that are shorter than the specified length threshold to 
avoid unnecessary fragments. The rationale behind this step stems from the concept 
of the smallest visual object (SVO) for line generation (Li and Openshaw 1992). Roads 
that are too short to be visually perceptible on the target scale map may introduce 
unnecessary clutter. Specifically, if the length of a hanging road is less than d mm on 
the target scale map (i.e. the ground length of the road is less than d mm � M, 
where M is the denominator of the target scale), the road will be removed. The par
ameter d can be determined based on specific application requirements and carto
graphic conventions. Generally, it should be greater than 0.5 mm to ensure the 
legibility of the selected roads on the target scale map.

After the above steps, the remaining roads are the final result of the proposed 
method.

4. Experiments

4.1. Study area and data processing

To evaluate the effectiveness of the proposed method, experiments were conducted 
on real road network data within the Fifth Ring Road in Beijing, China, covering an 
area of 667 square kilometers. This area was chosen for its dense and complex road 
network, as well as the abundant floating car trajectory data and POIs. In the experi
ments, road segments were used as basic units for road network selection. The raw 
road network data in 2019 at the source scale of 1:10,000 in the study area was down
loaded from OpenStreetMap (https://www.openstreetmap.org). Road centreline extrac
tion, topology check, and correction were performed to obtain the source road 
network, which finally contains 11,727 road edges and 7,829 intersections or end
points. Road networks at target scales of 1:50,000 and 1:200,000 in 2019 were 
obtained from the National Mapping Agency (NMA) (https://www.tianditu.gov.cn) and 
aligned with the road network at the scale of 1:10,000. The three handled road net
works are shown in Figure 9. It should be noted that road network maps from NMA 
are generally produced by cartographers, where road structural characteristics, func
tional values, cultural factors, and practical application demands are considered. As 
many scholars have done in previous studies, in the experiments, the road network 
data obtained from NMA were used as the benchmark data to evaluate the perform
ance of the road network selection method. Hereafter, the road network at the source 
scale is referred to as the source road network, the corresponding benchmark road 
network at the target scale is referred to as the target road network, and the road net
work selected by the generalization algorithm is referred to as the selected road 
network.

For this study, floating car trajectory data from November 1 to November 30, 2019, 
and POIs in 2019 were collected to derive the functional semantic features of the 
roads, i.e. travel path selection probability and regional attractiveness. The floating car 
trajectory data and POIs are shown in Figure 10. Noise trajectories such as redundant, 
stranded, and abnormal trajectory points were first eliminated manually. Then, the ST- 
matching algorithm (Lou et al. 2009) was implemented to match trajectories to the 
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road segments. Notably, in the trajectories and road segments matching process, the 
merged two-way road still has two directions and can match the trajectories passing 
through its left or right lanes, and we summed the traffic flows in two directions as 
the traffic volume of the merged two-way road for calculating the travel path selection 
probability. To calculate the regional attractiveness of each road in the road network, 
a coordinate transformation was first performed on the POIs obtained from Amap 
(https://lbs.amap.com) to address the coordinate offset issue due to the map encryp
tion policy. Then we matched the POIs to the source road network using the geomet
ric-based approach from Yang et al. (2014) and extracted the POIs within the buffer 
zones of the roads.

After that, the dual graphs were constructed and eight road features including six 
graphical structure features and two functional sematic features were extracted, as 
shown in Figure 11. The Pearson coefficient of 0.218 between travel path selection 
probability and regional attractiveness indicates that there is little correlation between 
the two proposed features, which can also be observed from Figure 11(g–h).

Figure 9. Study area and road network data. (a) The source road network data at 1:10,000; (b) the 
target road network data at scale 1:50,000; (c) the target road network data at scale 1:200,000.

Figure 10. Floating car trajectory data and POIs. (a) Trajectory data on 2019-11-01 from 16:00 to 
17:00 in the study area; (b) POIs within the Fifth Ring Road of Beijing.
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4.2. Experimental design

4.2.1. Baselines and evaluation indicators
Four representative baseline methods were used to evaluate the effectiveness of the 
proposed method: the stroke-based method (Liu et al. 2010), RBF neural network- 
based method (Jeatrakul and Wong 2009) (hereafter abbreviated as RBF), Backward 
Propagation Network-based method (Zhou and Li 2014) (abbreviated as BP), and 
Support Vector Machine-based method (Zhou and Li 2017) (abbreviated as SVM). 
Additionally, the recent road network selection method based on GCNs by Zheng 
et al. (2021) was compared in ablation experiments. Six commonly used indicators, 

Figure 11. The visualization of the road importance features.
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including Precision, Recall, F1-score, Similarity (Zhou and Li 2011), Commission error 
(Tian et al. 2019), and Connectivity (Li and Zhou 2012), were used to evaluate the per
formance of different methods.

1. Precision: It is defined as the proportion of correctly selected roads (positive 
samples) in the selected road network, which evaluates the algorithm’s 
capability to discriminate against negative samples (i.e. roads that should not be 
selected).

2. Recall: It is defined as the proportion of roads in the target road network that are 
correctly selected by the algorithm, which measures the algorithm’s ability to find 
all positive samples.

3. F1-score: It is the harmonic mean of precision and recall, which comprehensively 
measures the algorithm’s ability to identify positive samples and is calculated as:

F1-score ¼
2 � Precision � Recall

Precision þ Recall
(6) 

4. Similarity: If the selected road network retains the main roads of the target road 
network, the similarity value will be larger, indicating more consistency of the 
selected road network to the target road network (Zhou and Li 2011). The value 
of Similarity ranges from 0 to 1 and is calculated as:

Similarity ¼
A \ B

Aþ B − A \ B
(7) 

where A and B denote the total length of roads in the selected and target road net
works, respectively, and A\B represents the total length of common roads in the 
selected and target road networks.

5. Commission Error: It measures the difference between the selected road network 
and the target road network with a value ranging from 0 to 1 (Tian et al. 2019). A 
lower commission error value indicates a smaller difference between the selected 
and target road networks. It is calculated as:

Commission Error ¼
A\ � B

A
(8) 

where A and B are defined as in the Similarity metric, and A\�B represents the total 
length of roads that are in the selected road network but not in the target road 
network.

6. Connectivity: It measures the connectivity of the road network (Li and Zhou 2012) 
and ranges from 0 to 1. The larger the connectivity value, the better the road net
work topology. If there exists a path between any two roads in the road network, 
the connectivity value is 1. It is calculated as:

Connectivity ¼

P
i2N

P
j2N;j6¼i aij

NðN − 1Þ
(9) 
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where N is the total number of roads in the road network, and indicates the connec
tion status of roads i and j. If there exists a path from roads i to j, aij equals 1; other
wise, aij equals 0.

4.2.2. Experimental settings
In the experiments, a quarter of the source road network data in the upper left corner 
was selected as the testing data for the machine learning-based method and the pro
posed method, and the rest was used for the training of these methods. The target 
scales for the experiments are 1:50,000 and 1:200,000. The parameter settings of the 
proposed method and the baseline methods are shown in Table 1. The grid search 
algorithm was used to find the optimal hyperparameter combinations for the pro
posed method. For the stroke-based method, the number of roads to be selected is 
determined according to T€opfer’s principles of selection (T€opfer and Pillewizer 1966). 
The hidden layer sizes of RBF, BP, SVM, and GCN models were all set to 128. The 
Adam optimizer (Kingma and Ba 2014) was employed to calculate and update the 
weights and the initial learning rate was set to 0.01. The cross-entropy function (Shore 
and Johnson 1980) was used as the loss function for RBF-based and BP-based meth
ods and the proposed method utilized the improved loss function presented in 
Equation (5).

4.3. Results and comparison analysis

The road network selection results of the proposed method are visualized at target 
scales of 1: 50,000 and 1:200,000. As shown in Figure 12, it indicates that the proposed 
method effectively retains the primary roads and preserves good spatial connectivity 
and topological structure of the road network at both target scales. Although some 
hanging roads exist in the road network selection results, they are mostly located near 
boundaries and in sparsely populated areas, which is acceptable. In addition, we find 
that the proposed method performs better for road network selection at the medium 
scale (1:50,000) compared to the small scale (1:200,000). The possible reason is that 
the functional semantic features may play a more important role in road network 
selection at medium or large scales, whereas graphical structure features (such as road 
length and road level) have a greater impact at small scales.

Table 1. Parameter settings of the proposed methods and the baseline methods.
No. Methods Parameters

1 Stroke-based method 
(Liu et al. 2010)

The number of roads to be selected at the target scale is 
determined according to T€opfer’s principles of selection.

2 RBF-based method 
(Jeatrakul and Wong 2009)

Feature number ¼ 8, hidden size ¼ 128, epochs ¼ 1000, 
optimizer¼Adam, loss function¼ cross entropy function.

3 BP-based method (Zhou and Li 
2014)

Feature number ¼ 8, epochs ¼ 1000, optimizer¼Adam, loss 
function¼ cross entropy function.

4 SVM-based method (Zhou and Li 
2017)

Feature number ¼ 8, kernel¼ linear, C¼ 1.0, gamma¼ auto.

5 The proposed method Feature number ¼ 8, convolutional layer number ¼ 2, hidden size 
¼ 128, epochs ¼ 1000, learning rate ¼ 0.01, optimizer¼Adam, 
k1¼ 10, k2¼ 1, loss function¼ the proposed loss function (see 
Equation (5)).
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As shown in Figure 12(a), the road density distribution is uneven, with some areas 
having denser roads. For example, the selected roads in the circled areas A and B are 
denser than in other areas. This is because these two areas contain plentiful POIs and 
attract more crowds there, thus bringing large traffic volume. Area A, called 
Zhongguancun Science Park(Z-park), gathers the largest number of high-tech enter
prises in China, while area B, the government activity concentration area of Xicheng 
District, gathers a large number of administrative departments. Despite some roads in 
the two areas being short and low-level, they are frequently chosen routes and play 
significant roles in the road network at this scale. By considering multiple road fea
tures comprehensively, the proposed method adaptively selects roads with varying 
densities and ensures the suitability of their display at different target scales. This can 
also be observed in Figure 12(b), where the selected roads in regions A and B are less 
densely distributed at the smaller scale. Further, we checked the official map at the 
scale of 1:50,000 and found that roads in area A and area B are similar to the selection 
results of our method. There may be densely distributed roads in the large-scale maps 
(e.g. 1:50,000). In this case, the concern about the visual conflict problem of the map 
is unnecessary, because there is sufficient space for the representation of the selected 
roads in these target scale maps. In smaller-scale maps, visual conflict issues need to 
be considered due to the limitation of space on a map. However, in the selection 
results of our method on smaller-scale maps (e.g. 200,000), the selected roads are 
sparsely distributed (see Figure 12(b)), which also meets the needs of map representa
tion. In the proposed method, we apply the refinement steps described in Section 3.4
to remove the short hanging roads that could not be displayed at the target scale 
map from the selection results, which can further reduce the occurrence of visual 
conflicts.

Furthermore, we evaluated the density change of four partitions (see Figure 13(a)) 
at the source scale and two target scales. The result shown in Figure 13(b) demon
strates that the selected roads largely preserve their relative density before and after 

Figure 12. Road network selection results by the proposed method of (a) at the target scale of 
1:50,000, and (b) at the target scale of 1:200,000.
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selection. Overall, the results demonstrate that the proposed road network selection 
method can automatically determine the number of roads to be selected at different 
target scales, maintain road connectivity, and preserve the relative density of roads in 
different areas.

To further evaluate the effectiveness of the proposed method, a quantitative com
parison with four representative baseline methods (Stroke-based method, RBF-based 
method, BP-based method, and SVM-based method) was conducted at target scales of 
1:50,000 and 1:200,000 using the above-introduced evaluation indicators. The RBF, BP, 
and SVM methods were evaluated in two experiments: using features in the reference 
paper and using all features in this paper). The evaluation results of different road net
work selection methods at target scales are listed in Table 2 and Table 3, respectively, 
with the bolded numbers indicating the best performance for that metric (the subse
quent Tables have the same meaning of bold values).

As shown in Table 2 and Table 3, the proposed method outperformed baseline 
methods across almost all metrics, demonstrating its effectiveness in preserving road 
topology, overall structure, and shape at the target scales of 1:50, 000, and 1:200, 000. 
The proposed method achieved a connectivity value of 1, which indicates that the 
roads selected by our approach are completely connected. In contrast, the road net
works selected by baseline methods contain disconnected roads. This disparity under
scores the superior ability of the proposed method to ensure the continuity of the 

Figure 13. The road density contrasts before and after the selection of (a) partitions in the test 
area, and (b) road density in different partitions at different scales.

Table 2. Evaluation of different road network selection results at the target scale of 1:50,000.
Methods Precision Recall F1-score Similarity Commission error Connectivity

Stroke-based method 
(Liu et al. 2010)

0.8789 0.7559 0.8128 0.7220 0.0899 0.9777

RBF (Jeatrakul and Wong 2009) 0.8303 0.9098 0.8682 0.7988 0.1658 0.9688
RBF with all features 0.8432 0.9104 0.8755 0.8158 0.1454 0.9815
BP (Zhou and Li 2014) 0.8415 0.9104 0.8746 0.8056 0.1567 0.9684
BP with all features 0.8540 0.9215 0.8864 0.8298 0.1355 0.9774
SVM (Zhou and Li 2017) 0.7912 0.9410 0.8596 0.7899 0.1838 0.9795
SVM with all features 0.8217 0.9393 0.8766 0.8141 0.1562 0.9903
The proposed method 0.8764 0.9448 0.90923 0.8570 0.1179 1.0000
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selected road network, which is important for urban planning and navigation-oriented 
map applications.

At the target scale of 1:50,000, the machine learning-based methods including our 
proposed method achieved significant improvements over the stroke-based methods 
in the recall, F1-score, and similarity indicators, indicating their superior capability in 
avoiding the omission of important small roads at a large or medium scale. Because 
the stoke-based method prioritizes continuous and primary roads, it excelled in preci
sion and exhibited lower commission error, whereas it may have omitted some impor
tant short roads, resulting in the lowest recall value at this scale. Among the machine 
learning-based baseline methods (RBF, BP, and SVM), they performed better when uti
lizing all road features compared to solely relying on features from the reference 
paper. At the target scale of 1:200,000, the stroke-based method performed worst on 
most evaluation metrics, while the machine learning methods performed better. The 
machine learning-based baseline methods had comparable performance when using 
all features and only features from the reference paper, which is different from the 
results at the scale of 1:50,000. The proposed method had significant improvements in 
recall and similarity, suggesting its effectiveness in learning cartographic rules and 
knowledge implicitly and better adapting to the road network selection task at the 
target scale than baselines. Moreover, the overall results at the scale of 1:50,000 are 
better than those at the scale of 1:200,000. It indicates that the road network selection 
results obtained by current methods have relatively large differences with the official 
road networks at a smaller scale which needs further exploration.

Next, we visualized the selection results of the machine learning-based methods at 
the target scale of 1:200,000. As shown in Figure 14, the proposed method is more 
effective in preserving the spatial shape, topological relationship, and continuity of the 
selected roads compared to baseline methods. It can be observed that road segments 
circled in red were better selected by the proposed method, but partially erroneously 
removed by BP, RBF, and SVM methods, leading to a disruption of the connectivity 
and incorrect topology relationship of the road network. This further illustrates the 
effectiveness and applicability of the proposed method for road network selection.

4.4. Ablation experiments

To investigate the effects of the proposed functional features of regional attractiveness 
and travel path selection probability on the road network selection results, the 

Table 3. Evaluation of different road network selection results at the target scale of 1:200,000.

Methods Precision Recall F1-score Similarity
Commission 

error Connectivity

Stroke-based method 
(Liu et al. 2010)

0.7467 0.8467 0.7935 0.6875 0.2283 0.9984

RBF (Jeatrakul and Wong 2009) 0.7948 0.8394 0.8165 0.7114 0.2048 0.9877
RBF with all features 0.7946 0.8381 0.8158 0.7272 0.1961 0.9951
BP (Zhou and Li 2014) 0.7792 0.8525 0.8142 0.7029 0.2223 0.9810
BP with all features 0.7938 0.8342 0.8135 0.7078 0.2094 0.9827
SVM (Zhou and Li 2017) 0.7956 0.8433 0.8188 0.7060 0.2157 0.9902
SVM with all features 0.7850 0.8486 0.8156 0.7124 0.2234 0.9928
The proposed method 0.7984 0.9204 0.8550 0.7666 0.2054 1.0000
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ablation experiments were conducted and the performance of the proposed road 
selection model with different road feature combination strategies at the target scales 
of 1:50,000 and 1:200,000 were evaluated. It should be mentioned that in the ablation 
experiments, in order to directly evaluate the influence of different features on road 
network selection, the selection results under different feature combinations were not 
post-processed by the refinement process.

Table 4 presents the evaluation results for road network selection at the target 
scale of 1:50,000. It demonstrates that the GCN model incorporating all road features 
enhances the road network selection accuracy compared to models utilizing only 
graphical structure features. The combinations of graphical structure features and 
regional attractiveness alone yielded minimal improvement. Regional attractiveness 
requires further incorporation of travel path selection probability to mitigate the selec
tion of disconnected roads because it may increase the probability of selecting some 
short roads that are distributed with important POIs. At the target scale of 1:200,000 

Figure 14. Road network selection results of four machine learning methods on test data at 
1:200,000: (a) RBF-based method; (b) SVM-based method; (c) BP-based method; (d) The proposed 
method.
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(Table 5), the GCN model with all features still achieved the best results. However, its 
performance was not significantly different from the GCN model combining graphical 
structure features and travel path selection probability, which achieved the highest 
Recall value. Additionally, the first two feature combination strategies exhibited similar 
Recall values. These indicate that the use of regional attractiveness did not improve 
the road network selection quality and the travel path selection probability has a posi
tive impact on road network selection at a smaller scale.

The above analysis reveals that the proposed two functional semantic features play 
an important role in road network selection at large or medium scales (e.g. 1:50,000). 
However, at smaller scales (e.g. 1:200,000), their importance differs, with travel path 
selection probability contributing more than regional attractiveness. Therefore, assign
ing different weights of road features at different target scales is essential for practical 
applications, which is challenging for traditional road network selection methods (e.g. 
the stroke-based method), while the proposed GCN-based method and other machine 
learning methods can automatically learn the optimal weights of different road 
features.

4.5. Hyperparameter sensitivity

The proposed road network selection model contains five crucial hyperparameters: (1) 
the number of neurons in the hidden layer, (2) the number of training epochs, (3) the 
learning rate, (4) k1 in the connectivity loss, and (5) regularization weight k2. To dem
onstrate model sensitivity, we present a hyperparameter analysis at a 1:200,000 scale, 
evaluating performance via the F1-score and similarity. Figure 15 displays the model 
performance attained by systematically varying each hyperparameter, holding all other 
model configuration details constant. We assess the number of neurons number from 
2-2048 (powers of 2), training epochs from 5-1000, learning rates from 0.001-0.2, and 
k1 and k2 from 0.01-10.

Table 4. Evaluation of different feature combinations at the target scale of 1:50,000.
Feature combination strategy Precision Recall F1-score Similarity Commission Error Connectivity

Graphical structure features 
(Zheng et al. 2021)

0.8451 0.9115 0.8770 0.8169 0.1424 0.9866

Graphical structure features  
with regional attractiveness

0.8485 0.9104 0.8783 0.8179 0.1411 0.9855

Graphical structure features  
with travel path selection probability

0.8632 0.9136 0.8877 0.8358 0.1240 0.9916

All road features 0.8751 0.9209 0.8974 0.8480 0.1171 0.9905

Table 5. Evaluation of different feature combinations at the target scale of 1:200,000.
Feature combination strategy Precision Recall F1-score Similarity Commission Error Connectivity

Graphical structure features 
(Zheng et al. 2021)

0.7827 0.8512 0.8155 0.7154 0.2235 1.0000

Graphical structure features  
with regional attractiveness feature

0.7929 0.8498 0.8204 0.7254 0.2131 1.0000

Graphical structure features  
with travel path selection probability

0.7939 0.8551 0.8233 0.7290 0.2123 1.0000

All road features 0.8007 0.8551 0.8270 0.7339 0.2078 1.0000
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As shown in Figure 15, the F1-score and similarity indicators reached maximum 
scores at 128 neurons in the hidden layer. They reached relatively stable levels when 
the training epoch was above 50. The optimal learning rate in the road network selec
tion at 1:200,000 was 0.01. Regarding the hyperparameters of k1 and k2 used to adjust 
the connectivity loss and regularization degree, the proper values were 5 and 10 for 
k1 and 1 for k2. Overall, F1-score and similarity are not so sensitive to the values of k1 

and k2, likely because they are primarily used to maintain the connectivity of the road 
selection results.

5. Discussions

This study proposes an automatic road network selection method based on GCNs that 
considers both graphical structure features and social functional features of roads. In 
this section, we first analyze the significance of these two types of road features across 
different scales. We then explore and discuss alternative or complementary datasets 
that can be used to evaluate the social functional importance of roads. Lastly, we 
explore the transferability and generalization of the proposed road network selection 
model through additional experiments.

5.1. Significance of road features across different scales

This paper investigates the impact of human activities on road network selection from 
the perspective of human travel by leveraging trajectories and POIs. The results illus
trate the effectiveness of the proposed road features (i.e. travel path selection 

Figure 15. The performance of the proposed road network selection model under different hyper
parameter settings. (a) Impact of different numbers of neurons in the hidden layer, (b) Impact of 
different training epochs, (c) Impact of different learning rates, (d) Impact of different k1, and (e) 
Impact of different k2.
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probability and attractiveness) at a large or medium scale. However, the effectiveness 
of the two road features, especially regional attractiveness may decrease at a small 
scale.

In existing road network selection methods, the graphical structure features (i.e. 
road length, road level, road density, degree, closeness centrality, and betweenness 
centrality) are commonly used. These features are conducive to preserving the overall 
spatial structure of the road network, but they often overlook detailed roads with 
lower road levels or shorter lengths. As a result, some roads that are crucial for human 
travel but are shorter or of lower levels may be omitted in the road network selection 
process. However, by integrating the graphical structure features with functional 
semantic features, the selected road network not only preserves well topological struc
ture but also includes roads with less apparent graphical characteristics yet vital for 
human travel. This is also consistent with the requirement for larger-scale maps to 
retain more detailed information.

In contrast, smaller-scale maps focus on more macroscopic characteristics and the 
overall structure of the road network. Therefore, it is crucial to consider the charac
teristics of road networks at different scales and select appropriate features or assign 
different weights to the features for road network selection. For example, the 
weights of road features in different areas (e.g. urban and rural areas, dense and 
sparse areas) or at different scales (e.g. 1:50,000 and 1:200,000) should be different. 
The proposed method can effectively estimate the feature weights for roads in differ
ent types of areas during the training process, as long as the training dataset covers 
such roads.

5.2. Exploring alternatives or complements for road functional importance 
evaluation

The evaluation of road importance is a crucial aspect of road network selection. In the 
era of ubiquitous social sensing and mobile positioning, the availability of various 
social sensing data provides opportunities to assess the social functional importance 
of roads from the perspective of human perception. In this study, we use POIs and tra
jectory data to evaluate the social functional importance of roads, where POIs serve as 
potential attractions for human activities carried out on roads, and trajectories (i.e. traf
fic flow) are the direct reflections of actual road usage. However, it is worth mention
ing that trajectory data and POIs are only two types of commonly used data that we 
can use to measure the social value or functional importance of roads. Other datasets, 
such as land use data, mobile phone usage data, and social opinion data, which can 
reflect the social value of roads, can also be employed as alternatives or complements 
to POIs or trajectory data in our proposed method. This does not affect the overall 
framework presented in this paper. For example, the integration of land use data, 
which reveals the distribution of residential, commercial, industrial, and other types of 
functional areas, can provide information about the types of activities and establish
ments along specific roads. Comments about POIs from online platforms (e.g. https:// 
www.dianping.com) can be used to adjust the weight of POIs, influencing the impor
tance of roads. Mobile phone usage data provide a more comprehensive perception 
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of road resource usage (Yan et al. 2022) and can be used to evaluate road importance 
for road network selection when such data are available. Additionally, social opinion 
data can capture public sentiment and perceptions about the importance of certain 
roads, which can be used to ament road importance assessment.

In summary, datasets reflecting the social functional values of roads can be 
adopted as alternatives or complements to POIs and trajectories used in this paper. 
It should also be emphasized that graphical structural features are the dominant fea
tures in ensuring the integrity and topological structure of the selected road net
work, whereas the social functional value of roads serves more as a correction and 
supplement to the road importance evaluation. In applications, the choice of road 
features for measuring road importance should be carefully considered according to 
specific demands.

5.3. Generalization capability and transferability of the proposed method

This section investigates the transferability and the effectiveness of the proposed 
selection model for road networks in other cities. The model was trained using the 
road network data in Beijing, and we tested its performance in the selection of road 
networks in other cities, such as Wuhan, in China. Experiments were conducted within 
the confines of the Third Ring Road area of Wuhan at two corresponding target scales, 
with experimental settings identical to those used in Beijing. Specifically, the experi
ment conducted at the 1:200,000 scale utilized all road data within the Third Ring 
Road area of Wuhan, while the experiment at the 1:50, 000 scale was confined to road 
data within the central district of Hankou as an example.

Quantitative results of the road network selection in Wuhan are presented in 
Table 6. It indicates that the model trained in Beijing also exhibited superior perform
ance in Wuhan, with certain metric values surpassing those observed in Beijing. Figure 
16 illustrates the road network selection results at different target scales, which show 
that the overall structure and shape of the selected road networks were well main
tained at both target scales. As shown in Figure 16(a), the selected roads within the 
red-circled block are more dense than other regions. This observation can be attribu
ted to the area’s status as the most prosperous region, characterized by heavy traffic 
flows and plenty of POIs. The roads within this area are more complex compared to 
other areas, which is why this area was chosen for the road network selection at the 
target scale of 1:50,000 in addition to guaranteeing the visual effect. The road network 
selection results in Wuhan demonstrate the transferability, effectiveness, and great 
potential of the proposed method. It provides a beneficial and meaningful attempt for 
Geographical Artificial Intelligence models empowering cartography and demonstrates 
contributions to intelligent and automatic map generalization.

Table 6. The quantitative evaluation results in Wuhan using the trained model from Beijing.
Scale Precision Recall F1-score Similarity Commission error Connectivity

1:200, 000 0.8644 0.8960 0.8799 0.8153 0.1210 1.0000
1:50, 000 0.8766 0.9422 0.9082 0.8333 0.1287 1.0000
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6. Conclusions

In this paper, we introduced two new road features of travel path selection probability 
and regional attractiveness to measure human cognition of road functional importance 
and use these features for road network selection. We established a GCN-based model 
to learn how many roads should be selected and which roads to select at the target 
scale, thereby reducing the subjectivity of parameter setting and improving the intelli
gence and accuracy of road network selection. By considering the social functional val
ues of roads, the road network selection results are more consistent with human 
cognition, which can better meet practical application requirements. We compared 
the performance of our method with four representative methods and investigated 
the effects of the proposed two functional features on road network selection. The 
experimental results show the effectiveness and superiority of the proposed method. 
We found that the travel path selection probability and regional attractiveness are 
more conducive to road network selection at a large scale than at a small scale. We 
also explored the transferability and generalization ability of the proposed method for 
road network data in different cities. The results show that when the road network 
selection model trained on the road network data of Beijing is applied to one new 
city, i.e. Wuhan, the model also performed well under different scales, and has great 
potential for automatic selection of road networks.

Although the proposed method exhibits some superiority over the available meth
ods, some limitations still exist. First, the map-matching pre-processing operation for 
computing the travel path selection probability is time-consuming. Parallel computing 
and high-performance computing can be used to improve computing efficiency in the 
future. Second, the construction of road network datasets for training the proposed 
method requires labeling part of the road network, which is slightly more laborious. In 
future work, we will modify our proposed method to further improve the automation 
of road network selection by leveraging advanced semi-unsupervised techniques. 

Figure 16. Road network selection results in Wuhan using the models trained in Beijing of (a) at 
the target scale of 1:200,000, and (b) at the target scale of 1:50,000.
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Moreover, experiments on the road network selection in more different cities and 
even countries still need to be conducted to further explore the applicability and gen
eralization of our proposed method on more different and complex road network 
structures and more target scales.
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