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ABSTRACT 
Accurate and reliable traffic flow data are essential for intelligent 
transportation systems; however, limitations arising from hardware 
and communication costs often lead to missing data. Tensor 
decomposition is widely used to address these issues. However, 
existing imputation methods employ a fixed geographic feature 
similarity matrix to constrain the tensor decomposition process, 
which fails to accurately capture the spatial heterogeneity of traffic 
flows, thus limiting the imputation accuracy and robustness. This 
study proposes a tensor decomposition method embedded with 
geographic meta-knowledge (Meta-TD) to accurately determine the 
spatial heterogeneity of traffic flows. The key innovation is estab
lishing a dynamic relationship between the geographic meta-know
ledge and spatial heterogeneity of traffic flows, and then using the 
spatial heterogeneity of the traffic flows to constrain the tensor 
decomposition process. Experimental results based on real urban 
traffic flows demonstrated the superiority of Meta-TD over fifteen 
baseline models under random, block, and long time-series missing 
patterns, achieving reductions in MAE, RMSE, and MAPE of 6.97– 
97.05%, 3.33–94.68%, and 0.72–90.89%, respectively. Notably, 
Meta-TD maintained high accuracy for sudden changes in traffic 
flow states, evidencing its robustness to varying missing data rates 
and distribution patterns. This adaptability makes it highly suitable 
for complex and dynamic urban traffic environments.
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1. Introduction

Accurate and reliable traffic flow data are fundamental for traffic engineering research 
and application of intelligent transportation systems. The acquisition of traffic flow 
data primarily relies on specialized fixed detection devices such as cameras and radar/ 
laser speed detectors. However, the communication and data storage capabilities of 
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these devices are susceptible to extreme weather conditions, power supply issues, and 
equipment performance limitations, inevitably leading to missing data. This limitation 
hinders the accurate and reliable acquisition of traffic flow data within urban road net
works (Jain and Oh 2014, Cheng et al. 2018).

Traffic flow imputation involves the application of interpolation methods to esti
mate small-scale occasional or large-scale periodic missing traffic data, and is mainly 
classified into two categories: statistical-based and machine learning-based methods 
(Bala�zevi�c et al. 2019, Zhang et al. 2023, Xie et al. 2024). Statistical-based methods 
employ mathematical and statistical techniques to impute missing values using a 
straightforward and comprehensible structure. The algorithms commonly include prob
abilistic principal component models, Bayesian models, and kernel probability models 
(Li et al. 2013, Li et al. 2014, Benahmed & Houichi 2018, Thomas & Rajabi 2021, 
Nguyen et al. 2023). However, these methods often neglect the multidimensional spa
tiotemporal features inherent in traffic flows, making them suitable only for imputing 
small-scale episodic missing data. On the other hand, machine learning-based meth
ods train models on large amounts of sample data, enabling them to capture complex 
correlations and nonlinear relationships among the data (You et al. 2024). These meth
ods are suitable for imputing large-scale periodic missing traffic data, and have 
emerged as the mainstream approach (Liang et al. 2019, Sivakani & Ansari 2020, Yang 
et al. 2021). Matrix/tensor decomposition is an important branch of machine learning, 
particularly in the field of imputing traffic flow data. These methods utilize the low- 
rank attributes of the observed sample data to impute missing data by representing 
the data as a linear combination of low-rank approximations (Bansal et al. 2021, Ongie 
et al. 2021, Ganji et al. 2022, Chen et al. 2022). Previous studies have established simi
larity relationships among various road segments based on geographic features, such 
as the types and numbers of points of interest (POIs) (Meng et al. 2017). These rela
tionships were used to construct a geographic feature similarity matrix to constrain 
the tensor decomposition process, thereby utilizing traffic flow data from other road 
segments to impute missing values (Wang et al. 2020, Zhang et al. 2023). However, 
the reliance on a fixed similarity matrix in these methods limits their ability to accur
ately capture the spatial heterogeneity of traffic flows, thus limiting the accuracy and 
robustness of traffic flow imputation.

In general, the similarity relationships of traffic flows can be represented as a graph 
structure, where the node attributes of the graph include the surrounding environ
mental features of the monitoring points, such as the types and numbers of POIs and 
road levels, and the edge attributes of the graph represent the relationships between 
the monitoring points, such as road connectivity and distance (Pan et al. 2019, Wang 
et al. 2023). Therefore, the spatial heterogeneity of traffic flows is influenced by the 
geographic features of nodes and edges. Existing tensor decomposition methods typ
ically consider only the geographic features of nodes, while overlooking those of the 
edges. This limitation hinders the accurate modeling of spatial heterogeneity in traffic 
flows, thereby affecting the effectiveness of traffic flow imputation (Narita et al. 2012, 
Goulart et al. 2017). For example, these methods construct a similarity matrix based 
solely on the similarity of POIs around road segments without considering the actual 
connectivity or distance between these roads (Zhang et al. 2024). However, even if 
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certain road segments have similar geographic features, their traffic flow patterns may 
differ due to the road connectivity and distance. More importantly, the spatial hetero
geneity of traffic flows is dynamic and varies with changes in the traffic states of road 
segments. For example, during peak and off-peak periods, the traffic flow on a road 
segment can exhibit entirely different patterns which may not be reflected in the 
static geographic feature similarity matrix. Therefore, considering both the geographic 
features of nodes and edges as well as the dynamic traffic states during the tensor 
decomposition process is crucial for enhancing the accuracy and robustness of missing 
data imputation.

Therefore, we propose a tensor decomposition method embedded with geographic 
meta-knowledge (Meta-TD). Meta-knowledge refers to high-level semantic feature 
mappings derived from geographic attributes that influence the heterogeneity of 
traffic flows. It can be further divided into two categories, node and edge meta- 
knowledge, when expressed as a graph structure. Our main idea is to establish a 
dynamic relationship between geographic meta-knowledge and spatial heterogeneity 
of traffic flows, and then use the spatial heterogeneity to constrain the tensor decom
position process, thereby achieving accurate imputation of missing traffic flow data. 
The main contributions of this study are as follows:

� We designed a spatial weight matrix calculation method to account for the spatial 
heterogeneity of traffic flows. This method uses meta-learning to extract meta- 
knowledge from road configurations and then calculates the spatial weight matrix 
by integrating the meta-knowledge and traffic flow features through dynamic 
graph generation, thereby modeling the dynamic relationship between the meta- 
knowledge and spatial heterogeneity.

� We proposed a tensor decomposition method embedded with a spatial weight 
matrix. This method optimizes the tensor-solving process using a spatial weight 
matrix and enhances the imputation performance of missing traffic flow data in 
urban scenarios by collaboratively optimizing the spatial weight calculation and 
traffic flow imputation results.

� Extensive experiments on real urban traffic flow datasets have shown that the pro
posed method surpassed state-of-the-art baseline models in terms of imputing ran
dom missing, block missing, and long time-series missing traffic flow data. Notably, 
the proposed method maintained high accuracy even for sudden changes in traffic 
flow states, demonstrating its robustness to varying missing data rates and distribu
tion patterns. This adaptability renders it suitable for use in complex and dynamic 
urban traffic environments.

2. Related work

2.1. Statistical learning-based methods

Common statistical learning models include historical averaging (HA) (Campbell & 
Thompson 2008), simple exponential smoothing (SES) (Gardner 2006), principal com
ponent analysis (PCA), probabilistic PCA (PPCA), kernel probabilistic PCA (KPPCA), and 
Bayesian PCA (BPCA) (Benahmed & Houichi 2018, Ke et al. 2019, Joelianto et al. 2022). 

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 3



These methods typically consider traffic data as a matrix and impute missing data by 
constructing suitable statistical models. For example, Qu et al. (2009) proposed PPCA 
for missing data imputation, improving the accuracy by 25% compared to traditional 
PCA methods. Li et al. (2013) used PPCA to extract statistical features from known traf
fic data and constructed a sliding regression model to impute missing values. Li et al. 
(2014) used the PPCA method to construct a probability distribution model to capture 
the linear features in traffic flows, and demonstrated good performance in both ran
dom and mixed missing patterns of a single monitoring point. Additionally, methods 
such as KPPCA and BPCA have been proposed to more effectively capture the nonlin
ear features of traffic flows thereby improving the imputation accuracy (Shao & Chen 
2018, Smith and Climer 2024, Xie et al. 2024). Although statistical-based methods have 
achieved good performance, they convert traffic data into matrices, ignoring the inher
ent multidimensional spatiotemporal features. Therefore, these methods are more suit
able for the imputation of small-scale missing traffic flow data.

2.2. Machine learning-based methods

Machine learning-based methods can effectively model complex correlations and non
linear relationships in extensive sample data through training, making them more suit
able for imputing large amounts of missing data. In recent years, tensor 
decomposition methods, as an important branch of unsupervised learning, have gar
nered significant attention in the field of traffic flow imputation. According to the prin
ciples of tensor decomposition, current methods can be divided into CANDECOMP/ 
PARAFAC (CP) decomposition (Wu et al. 2017, Battaglino et al. 2018, Zhu et al. 2022), 
Tucker decomposition (Li et al. 2014, Goulart et al. 2017), and low-rank decomposition 
based on nuclear norms (Tang et al. 2020, Nie et al. 2022). For example, Sure et al. 
(2022) introduced low-rank attributes into the tensor decomposition process to cap
ture the spatiotemporal correlation of traffic flow data, thereby enhancing tensor 
decomposition accuracy. Xu et al. (2023) decomposed historical tensor data into factor 
matrices and a core tensor using Tucker decomposition, and then applied time series 
and Laplace regularization to constrain the tensor decomposition process from tem
poral and spatial perspectives, respectively, achieving traffic flow imputation under dif
ferent missing data patterns. These studies typically assume that monitoring points 
within a specific area exhibit similar traffic flow trends and can rely on flow informa
tion from upstream and downstream monitoring points to impute missing values. 
However, maintaining high completeness and consistency in imputation results is chal
lenging when observations at previous times or during the same historical period are 
missing at the monitoring points (Wu et al. 2022). Therefore, some studies constrain 
the tensor decomposition process using a geographic feature similarity matrix and 
employ traffic flow data from non-adjacent sections to impute missing values (Jia 
et al. 2021, Suleiman et al. 2022). For example, Said & Erradi (2022) used POI data to 
construct a geographic feature similarity matrix and embed it into CP decomposition. 
Huang et al. (2022) integrated POI data and traffic congestion state data to construct 
a geographic similarity matrix that constrained the tensor decomposition process, 
thereby improving the accuracy of missing data imputation. However, the fixed 
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geographic feature similarity matrix used in the current study fails to reflect dynamic 
changes in traffic flows, limiting the imputation accuracy and robustness.

Furthermore, with the rapid development of Graph Neural Networks (GNNs), new meth
ods have emerged for capturing spatial heterogeneity in traffic flow data (Khaled et al. 
2022). For example, Wang et al. (2022) proposed a multi-view bidirectional spatiotemporal 
graph network (Multi BiSTGN) that captures dynamic changes in traffic flows from various 
temporally correlated perspectives. Li et al. (2023) developed a hierarchical spatio-tem
poral graph convolutional neural network (HSTGCN) to analyze dynamic relationships 
among traffic flows across various road levels, and then impute the missing values. Zong 
et al. (2024) proposed the Dynamic Attention Generating Adversarial Network (DATGAN), 
designed to enhance imputation accuracy by capturing spatial heterogeneity within the 
data. These methods primarily capture spatial heterogeneity of traffic flows from a data- 
driven perspective. However, when traffic flow data is incomplete, the accuracy of spatial 
heterogeneity extraction is compromised, subsequently affecting the overall performance 
of data imputation. Therefore, it is essential to effectively integrate geographic features 
with traffic flow features to accurately represent the spatial heterogeneity of traffic flows, 
thereby enhancing the accuracy and robustness of data imputation.

3. Preliminary

This section introduces the fundamental concepts of graph and traffic flows, and the 
imputation problems that need to be addressed. Additionally, it adopts a consistent 
naming convention for tensor-related notation, using handwritten X for the tensor, 
boldface capital letters for the matrix (second-order tensor), X ijk for the elements of 
the third-order tensor, jjXjj for the sum of the squares of all elements in the tensor, 
and X �nQ for the product of the n-module tensor X and matrix Q:

Definition 1 (Traffic volume). The traffic volume refers to the number of vehicles pass
ing through a road section at monitoring points at specific time intervals. The traffic 
flow data for N monitoring points over D days and T time intervals can be represented 
as a tensor X 2 RN�D�T :

Definition 2 (Graph). A graph G ¼ ðV , EÞ represents the traffic monitoring points and 
their relationships, where V ¼ fv1, :::, vNg and E ¼ feijji � N, j � Ng are the sets of 
nodes and edges in the graph, respectively. The node attributes are determined by 
the surrounding environment of the monitoring point and are expressed as a feature 
vector vi ¼ fvi

1, :, vi
f ji < N; f < cg, where vi

f denotes the number of various types of 
POIs around node i, the road width, the number of intersections, and other attributes, 
and NF denotes the number of attributes. Edge attributes are determined by the rela
tionship between the monitoring points and are expressed as a feature vector eij ¼

eij
1, :, eij

k

� �

jk < c
n o

, where eij
k denotes features such as the distance and association 

strength between nodes i and j, and c denotes the number of features.

Problem Statement. Given the traffic flow data X 2 RN�D�T with missing values 
and the graph G ¼ ðV , EÞ, the goal of this research is to construct a model to impute 
the missing values in X :
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4. Methodology

The proposed method is divided into three parts (Figure 1). First, meta-learning is 
used to extract geographic meta-knowledge from the node and edge attributes that 
affect traffic flow features. Second, a spatial weight matrix calculation method is 
designed to account for spatial heterogeneity. This involves integrating meta-know
ledge with traffic flow features to generate dynamic graphs for constructing a spatial 
weight matrix between the monitoring points. Finally, a tensor decomposition method 
embedded with a spatial weight matrix is developed. This method utilizes spatial 
weight matrices to constrain the tensor decomposition process and continuously opti
mizes the spatial weight calculation and traffic flow imputation results through collab
orative learning.

Figure 1. Framework of the proposed method.
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4.1. Geographic meta-knowledge extraction based on meta-learning

In a complex urban traffic system, the similarity of traffic flow between monitoring 
points can be represented by a graph structure that is influenced by both node and 
edge attributes (Jiang et al. 2023). However, directly using the attributes of the nodes 
and edges as input features may lead to redundant information and noise, complicat
ing the task of capturing the complex relationships and patterns inherent in the graph 
structure. Therefore, we designed a geographic meta-knowledge extraction module 
based on meta-learning to extract node and edge meta-knowledge from their respect
ive attributes, enabling the mapping of high-level semantic features. For each node i 
in the graph, we constructed a 100-meter radius buffer centered on its spatial coordi
nates to obtain the number of POIs and each type around that node (Pan et al. 2019), 
including companies, living services, transportation facilities, etc. Then, we calculated 
the Euclidean distance between node i and each type of POIs, summed these distan
ces, and normalized the result to serve as the features of node i: For each edge eij in 
the graph, the attributes comprised association strength features, such as the distance 
and connectivity between nodes. The distance feature is quantified using the 
Euclidean distance between monitoring points, representing their spatial proximity. 
The connectivity feature is quantified using an adjacency matrix, where elements cor
responding to connected nodes are assigned a value of 1, and those for disconnected 
nodes are assigned a value of 0.

Based on this, we employed the Multilayer Perceptron (MLP) as a meta-learner to 
extract meta-knowledge from node and edge attributes. The model achieved this 
through the following formulation:

hv ¼ MLPðviÞ (1) 

he ¼ MLPðeijÞ (2) 

where hv 2 RN�c and he 2 RN�N�c represent the node meta-knowledge and edge 
meta-knowledge, respectively. Here, c denotes the embedding dimension of the 
features.

4.2. Calculation of spatial weight matrix considering spatial heterogeneity

The spatial heterogeneity relationship of traffic flows is influenced by both node and 
edge meta-knowledge and varies with changing traffic states of road segments. The 
traffic flow state between monitoring points can be characterized at both the global 
and local scales. At the local scale, traffic flows exhibit periodic seasonal patterns. For 
instance, on weekdays, traffic flows typically increase during peak hours in the morn
ing and afternoon, whereas on weekends, peak periods tend to be more stable. At the 
local scale, traffic flows may experience fluctuations or disturbances within a specific 
time range due to events or special circumstances (Bhanu et al. 2021). To accurately 
capture the spatial heterogeneity of traffic flows across different timescales using 
meta-knowledge and traffic flow features, we designed a spatial weight matrix calcula
tion module. This module takes into account spatial heterogeneity and employs 
dynamic graph generation to effectively aggregate node and edge meta-knowledge.
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Specifically, to capture the dynamic spatial heterogeneity of traffic flows over time, 
we introduced the learnable embedding FD

p 2 R
D�c and FT

p 2 R
T�c, which represented 

the daily features and time interval features of traffic flows. We then expanded the 
dimensions of hv to N� 1� 1� c, FD

p to 1� D� 1� c, and FT
p to 1� 1� T � c: Since 

these features shared, the same last dimension c after dimension expansion, they can 
be multiplied element-wise to obtain a spatiotemporal embedding Est

p 2 R
N�D�T�c:

The motivation behind this fusion method was to weigh the meta-knowledge derived 
from node attributes, aligning it with the varying characteristics of traffic flows to 
establish a dynamic relationship between geographic meta-knowledge and the spatial 
heterogeneity of traffic flows. The spatiotemporal embedding Est

p 2 R
N�D�T�c can be 

formulated as follows:

Est
p ¼ hv � FD

p � FT
p (3) 

where FD
p and FT

p denote the daily embedding and time interval embedding, respect
ively, which are determined by the daily index p: Besides, a dimension expansion strat
egy is employed before the element-wise product operation to maintain consistency 
in dimension.

Traffic flows X were input into the MLP layer to accurately characterize the 
dynamic changes in traffic flow features. The formula used is as follows:

Ip ¼ MLP Xpð Þ (4) 

where Ip represents the output features from the MLP layer that encapsulates the 
dynamic features of the traffic flows at daily index p: By performing an element-wise 
multiplication of Ip with Est

p , we generated the dynamic graph embedding Eh
p 2 R

N�c:

The formula used is as follows:

Eh
p ¼

X

T
Ip � Est

p (5) 

Subsequently, the dynamic graph embeddings Eh
p were multiplied by their trans

pose EhT
p and integrated with edge meta-knowledge he to infer heterogeneous rela

tionships between nodes. This methodology facilitated the construction of a dynamic 
graph that encapsulated both meta-knowledge and spatial heterogeneity. Through 
this process, dynamic and static features were effectively combined to provide a com
prehensive representation of the heterogeneous relationships inherent in traffic flows. 
To facilitate the calculations for subsequent tensor decomposition, we normalized the 
features of the dynamic graph to generate the spatial weight matrix Ah

p 2 R
N�N:

Ah
p ¼ ReLU Eh

p EhT
p � he

� �

(6) 

where p incrementally increased from 1 to D, the resulting spatial weight matrices col
lectively formed a tensor U 2 RN�N�D, encapsulating the spatial weight information 
across different locations and days. Additionally, S ¼

P
pAh

p=p denotes the spatial 
weight matrix for different locations of the N monitoring points.
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4.3. Tensor decomposition method embedded with spatial weight matrix

The tensor decomposition model decomposes a high-order tensor into the product of 
a core tensor and multiple-factor matrices. This model can handle high-dimensional 
sparse data and extract hidden features, making it suitable for addressing the problem 
of traffic flow imputation (Kolda & Bader 2009). Traditional tensor decomposition 
methods typically utilize a static geographic feature similarity matrix for constraints, 
overlooking the geographic features of nodes and edges as well as the dynamic traffic 
state, which affects the accuracy and robustness of missing data imputation. 
Therefore, we proposed a tensor decomposition method embedded with spatial 
weight matrix, which utilizes the Tucker model to decompose X into a core tensor 
G 2 RdN�dD�dT and three factor matrices N 2 RN�dN , D 2 RD�dD , and T 2 RT�dT (Malik 
and Becker 2018). Here, N 2 RT�dN is the spatial factor matrix of N monitoring points, 
D 2 RD�dD and T 2 RT�dT are temporal factor matrices, D 2 RD�dD can reflect the flow 
features between different days, T 2 RT�dT can reflect the flow features within T time 
intervals of a day, and the core tensor G 2 RdD�dN�dT represents the variation of flow 
in different spaces and times. Based on this, we established the index set X of known 
traffic flows. Then, the set of known traffic flows of X can be represented as PXðXÞ, 
as shown in the following formula:

PX Xð Þ½ �ijk ¼
X ijk , if i, j, kð Þ 2 X

0, otherwise

�

(7) 

The objective function controlling the decomposition error of the core tensor and 
factor matrices is shown in Equation (8).

L G, N, D, Tð Þ ¼
1
2
kPX Xð Þ − PX G� NN� DD� T Tð Þk2

þ
k

2
kGk2 þ kNk2 þ kDk2 þ kTk2
� � (8) 

where k:k2 denotes the l2 paradigm; k=2ðkGk2 þ kDk2 þ kNk2 þ kTk2Þ is the regulariza
tion penalty term, which controls the decomposition error; and k is a parameter con
trolling the degree of the penalty of the regularization term. G� NN� DD� T T 
represents the reconstructed flow value, while PX Xð Þ − PX G� NN�DD� T Tð Þ denotes 
the difference between the non-missing position and the corresponding position after 
reconstruction. By minimizing the objective function, the optimized core tensor G 2
RdN � dD � dT and factor matrices D 2 RD� dD , N 2 RN� dN and T 2 RT � dT can be 
obtained, and the missing values in X can be filled using Equation (9); the process is 
shown in Figure 2. First, multiply the factor matrix N with the matrix Gð1Þ of the core 
tensor G expanded along mode-1 to obtain G

0

2 RN� dD � dT : Based on this, multiply 
the factor matrix D with the matrix Gð2Þ of G

0

expanded along mode-2 to obtain G00 2
RN�D� dT : Lastly, multiply the factor matrix T with the matrix Gð3Þ of G00 expanded 
along mode-3 to obtain the complemented tensor bX 2 RN�D� T :

PX
bXð Þ � PX G� NN� DD� T Tð Þ (9) 

where � represents matrix multiplication and �D represents the product of the tensor 
and matrix.
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Additionally, S 2 RN�N and U 2 RN�N�D obtained in Section 4.2 were used to con
strain the process of tensor decomposition, where S 2 RN�N represents the spatial weight 
matrices of different monitoring points, S can be converted to NN� dN � ðNN� dNÞ

T , and 
U 2 RN�N�D contains the spatial weight matrices in different time intervals. The spatial 
weights bX sim of bX at different time intervals were calculated using Equation (10). Therefore, 
the objective function for the imputation of X can be transformed into Equation (11):

bX sim ¼
X̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1
bX ð:, j, :Þ

q �
bX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPJ
j¼1
bX :, j, :ð Þ

q

0

@

1

A

0
0

B
@

1

C
A

iij

(10) 

L G, N, D, T , S,Uð Þ ¼
1
2
kPXðXÞ − PXðG�NN�DD�T TÞk2 þ

k1

2
kS − N� NTk2

þ
k2

2
kU − bX simk

2 þ
k3

2
kGk2 þ kNk2 þ kDk2 þ kTk2
� �

(11) 

Here, kPX Xð Þ − PX G� NN� DD� T Tð Þk2 controls the decomposition error of X , 
kS − N�NTk2 controls the decomposition error of the factor S, which was used to con
strain the relationship of the flow at different locations; kU − bX simk controls the 
decomposition error of the factor U , which was used to constrain the relationship of 
the flow at different times; kGk2 þ kNk2 þ kDk2 þ kTk2 is a regularization term, which 
was used to prevent the objective function from being overfitted; and k1, k2, and k3 

are the weights for controlling the regularization term.
To obtain the updated core tensor and factor matrices, we used the conjugate gra

dient descent method to solve the objective function (Golub and Van Loan 2013). This 
allowed separately obtaining the least squares estimation approximate solutions for 
the partial derivatives of G, N, D, T , S, and U: The calculations were as follows:

@L

@G
¼ −PX X − G�NN�DD�T Tð Þ�NNT�D

T�T TT

−k2ðU − NG D� Tð Þ
T
ðD� TÞGTÞðD� TÞT NT þ k3G

(12) 

@L

@N
¼ −PX X 1ð Þ − NG 1ð Þ D� Tð Þ

T
� �

D� Tð ÞG 1ð Þ
T þ k1 NNT − Sð ÞN

−k2ðU − NG 1ð Þ D� Tð Þ
T
ðD� TÞG 1ð Þ

TÞG 1ð ÞðD� TÞTðD� TÞG 1ð Þ
T þ k3N

(13) 

Figure 2. Overview of the tensor decomposition and reconstruction process: The incomplete tensor 
X is decomposed into a core tensor G and three factor matrices N, D, and T , which are then 
used to reconstruct the tensor to obtain bX :
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@L

@D
¼ −PX X 2ð Þ − DG 2ð Þ N� Tð Þ

T
� �

N � Tð ÞG 2ð Þ
T

−k2 U − NG 2ð Þ D� Tð Þ
T D� Tð ÞG 2ð Þ

T
� �

NG 2ð Þ
� �T

ðG 2ð Þ � TTÞ þ k3D
(14) 

@L

@T
¼ −PX X 3ð Þ − TG 3ð Þ N � Dð Þ

T
� �

N � Dð ÞG 3ð Þ
T

−k2 U − NG 3ð Þ D� Tð Þ
T D� Tð ÞG 3ð Þ

T
� �

DG 3ð Þ D� Tð Þ þ k3T
(15) 

@L

@S
¼ k1 S − NNTð Þ (16) 

@L

@U
¼ k2 U − NG D� Tð Þ

T D� Tð ÞGT
� �

(17) 

where � denotes the Kronecker product of matrices, X 1ð Þ � NG 1ð Þ D� Tð Þ
T is the 

matrix of the tensor expanded along the N dimension, X 2ð Þ � DG 2ð Þ N� Tð Þ
T is 

the matrix of the tensor expanded along the D dimension, X 3ð Þ � TG 3ð Þ N � Dð Þ
T is the 

matrix of the tensor expanded along the T dimension, and G 1ð Þ, G 2ð Þ and G 3ð Þ stand 
for the matrices of the core tensor expanded along the N, D and T dimensions, 
respectively.

4.4. Algorithm and training

As shown in Algorithm 1, the core tensor G and the three factor matrices N, D and 
T were initialized. The meta-knowledge of the nodes and edges extracted from the 
meta-learning module was used as the input for the spatial weight matrix imput
ation module to obtain the initial values of the spatial weight matrices S and U
(lines 1–2). Based on this initialization, the core tensor G and three factor matrices 
N, D and T were updated by the tensor decomposition module, embedding the 
spatial weight matrices S and U as constraints to control the decomposition error 
(line 3–11). The iterative process calculated the loss value Lossepoch between the 
imputation result bX and original tensor X : The loss value was back-propagated to 
each layer of the meta-learning module, optimizing the calculation of the spatial 
weight matrices, and dynamically updating the spatial weight matrices S and U
(lines 12–16). To summarize, the time complexity and space complexity of the Meta- 
TD algorithm primarily focused on three core modules: geographic meta-knowledge 
extraction, calculation of spatial weight matrix, and tensor decomposition. 
Specifically, the geographic meta-knowledge extraction module exhibited a time 
complexity of OðN2 · cÞ and a space complexity of OðN · cþ N2 · cÞ, where N is the 
number of nodes and c is the dimensions of the embedded features. The calculation 
of the spatial weight matrix module had a time complexity of OðN · D · T · cÞ and a 
space complexity of OðN2 · cÞ: The tensor decomposition module demonstrated a 
time complexity of OðkðN · D · T · dD · dN · dTÞÞ and a space complexity of OðN · D · T þ
dD · dN · dTÞ, where dD, dN and dT corresponded to the three dimensions of the core 
tensor, and k signified the number of iterations required to solve the objective func
tion. Consequently, the overall time complexity of the Meta-TD algorithm could be 
expressed as OðN · ðD · T · cþ k · D · T · dD · dN · dTÞÞ, while the space complexity was 
represented as OðN2 · cþ N · D · T þ dD · dN · dTÞ:
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Algorithm 1: Tensor decomposition module considering spatial heterogeneity

Input: Tensor X , spatial weight matrix S, U , a loss threshold e, regularized term 
weights k1, k2 and k3, learning rate g, an epoch threshold num

Output: G, N, D, T , S,U , bX
1. Initialize G 2 RdN�dD�dT、D 2 RD�dD、N 2 RN�dN、T 2 RT�dT

2. Calculate S,U by equation (6)
3. epoch ¼ 1
4. While jLossepoch − Lossepochþ1j > e and epoch <num
5.  Solve equation (11) using the conjugate gradient method
6.  Update N by equation (12)
7.  Update D by equation (13)
8.  Update T by equation (14)
9.  Update G by equation (15)
10.  Update S by equation (16)
11.  Update U by equation (17)
12. bX ¼ G�NN�DD�T T
13. Lossepoch ¼ X − bX

14. Updates S,U by equation (6)
15. epoch ¼ epochþ 1
16. Return bX , G, N, D, T, S,U

5. Experiments

In this section, we evaluate the performance of the Meta-TD based on real traffic data
sets to answer the following research questions (RQs):

RQ1. How does the imputation performance of Meta-TD vary under different miss
ing patterns?

RQ2. Is Meta-TD sensitive to parameter selection?

RQ3. Are the designs of each component in Meta-TD effective?

RQ4. Is the geographic meta-knowledge in Meta-TD effective?

RQ5. How does the robustness of the Meta-TD method manifest?

5.1. Data description

5.1.1. Data source
The performance of Meta-TD was evaluated based on real urban traffic flow data col
lected in Wuhan, China. Data were collected using automatic license plate recognition 
technology with 67 surveillance cameras, with each camera treated as a traffic moni
toring point with a unique identifier. As shown in Figure 3, the monitoring points 
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were located within the second ring of Wuhan, with each point surrounded by 
multiple commercial and residential areas. The time span of the traffic flow data was 
from March 01, 2021, to March 28, 2021, and the time window size was 5 min (Wang 
et al. 2023). Table 1 presents the data from a single traffic monitoring point, with each 
record including the monitoring point ID, time interval, longitude, latitude, and traffic 
flows. In addition, the geographic meta-knowledge required for Meta-TD was extracted 
from POIs and road networks, where POIs include 14 categories such as restaurants 
and food, shopping and consumption, living services, transportation facilities, and leis
ure and entertainment; and road networks include five types such as urban arterials, 
secondary arterials, and intersections.

Figure 3. Distribution of traffic monitoring points and points of interest.

Table 1. Example of data from a single traffic monitoring point.
Monitoring point ID Time Longitude Latitude Traffic flow

4201���� 2021-3-6 
00:00-00:05

114.1�� 30.6�� 30

4201���� 2021-3-6 
00:05-00:10

114.1�� 30.6�� 23

… … . … … . … … . … … . … … .
4201���� 2021-3-6 

23:55-00:00
114.1�� 30.6�� 10

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 13



5.1.2. Data preprocessing
To evaluate the imputation performance of Meta-TD for traffic flow data under various 
missing patterns, three specific patterns were defined: random missing (RM), block 
missing (BM), and long time-series missing (TM). Each pattern included two overall 
missing rates (OMR) of 20% and 40%, as shown in Figure 4. In addition, to better 
assess the performance of the algorithm under the TM pattern, we imposed con
straints on the missing rate at individual traffic monitoring points (IMRs): with an OMR 
of 20%, the IMR was set to 40% and with an OMR of 40%, the IMR was set to 80%.

5.2. Evaluation metrics

The accuracy of the traffic flow imputation results was evaluated using widely used 
quantitative metrics, including mean absolute error (MAE), root mean square error 
(RMSE), and mean absolute percentage error (MAPE). These metrics are defined as fol
lows.

MAE ¼
1
N

XN

i¼1

X i − bX i

�
�

�
� (18) 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N

XN

i¼1

X i − bX i

�
�

�
�2

v
u
u
t (19) 

MAPE ¼
1
N

XN

i¼1

X i − bX i

X i

�
�
�
�
�

�
�
�
�
�

(20) 

Figure 4. Traffic flow data under different missing patterns.
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where N denotes the number of missing instances, bX i is the imputation result, and X i 

is the ground truth.
The performance of Meta-TD was evaluated against fifteen baseline methods, 

which can be broadly classified into two main groups. The first group consists of 
statistical learning methods, including Historical average (HA) (Campbell & Thompson 
2008), Harmonic mean clustering (KHM) (Anwar et al. 2019), and Simple exponential 
smoothing (SES)(Gardner 2006). The second group comprises machine learning meth
ods, such as K-Nearest Neighbors (KNN) (Pujianto et al. 2019), Bidirectional Recurrent 
Imputation for Time Series (BRITS) (Cao et al. 2018), temporal convolutional networks 
(TCN) (Bai et al. 2018), semi-supervised generative adversarial network model 
(SSGAN) (Miao et al. 2021), temporal modeling network (TimeNet) (Wu et al. 2023), 
and three classes of tensor decomposition methods. The first class comprises 
improved models based on CP decomposition, including tensor factorization with 
alternating least squares (TF-ALS) (Jain and Oh 2014) and Bayesian Gaussian 
CANDECOMP/PARAFAC (BGCP) (Chen et al. 2019); the second class comprised 
improved models based on Bayesian decomposition, such as Bayesian temporal ten
sor factorization (BTTF) (Chen et al. 2019), Bayesian augmented tensor factorization 
(BATF) (Chen et al. 2019), and Bayesian temporal matrix factorization (BTMF) (Chen 
et al. 2022); the third class includes models improved upon low-rank tensor imput
ation with the nuclear norm, such as low-rank tensor completion with truncated 
nuclear norm (LRTC-TNN) (Chen et al. 2022) and low-rank autoregressive matrix com
pletion with truncated nuclear norm (LAMC-TNN) (Chen et al. 2020). The tensor fac
torization methods in the second and third classes are sourced from the Transdim 
Library (https://transdim.github.io/).

� HA: HA imputes the flow values at the missing locations by calculating the average 
of the observations from historical data.

� KHM: KHM employs a clustered distribution of observations for the imputation of 
missing values.

� SES: SES imputes missing values using a weighted average of historical time 
observations.

� KNN: KNN employs the observations of the nearest K neighbors to address missing 
data and ensure completeness.

� BRITS: BRITS employs a bidirectional recurrent neural network (RNN) to effectively 
address the complementation of multiple relevant missing values in time series 
data.

� TCN: TCN examines the relationship between sequence modeling and recurrent 
neural networks in the context of time series data analysis.

� SSGAN: SSGAN generates various dynamic weight matrices during the semi-super
vised learning phase to impute missing values in multivariate time series data.

� TimeNet: TimeNet transforms time series data from a one-dimensional format to a 
two-dimensional tensor, facilitating the extraction of multi-scale cyclical change 
information for imputing missing data.

� TF-ALS: TF-ALS interpolates data using the least squares method based on CP 
decomposition.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 15
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� BTTF: BTTF integrates low-rank matrix/tensor decomposition and vector autoregres
sion processes into a single probabilistic graphical model to impute missing traffic 
values.

� BTMF: BTMF is a variant of the TRMF model that incorporates the Bayesian theory 
into the solution of the TRMF model to impute missing traffic values.

� BATF: BATF uses variational Bayes to automatically learn the model parameters and 
discover interpretable patterns from global parameters, biases, and latent factors to 
impute missing values.

� BGCP: The BGCP is a special tensor decomposition method that integrates Bayesian 
theory to impute missing traffic states based on traditional tensor decomposition.

� LRTC-TNN: LRTC-TNN imputes the missing traffic states by decomposing the spatio
temporal tensor of the traffic values.

� LAMC-TNN: LAMC-TNN introduces alternate minimization schemes to impute miss
ing traffic values.

5.3. Baseline comparison (RQ1)

Table 2 presents the comparison results of various methods for the RM and BM pat
terns. For the RM pattern with an OMR of 20%, Meta-TD outperformed the baseline 
models by 12.15–95.57% in MAE, 3.33–91.8% in RMSE, and 22.79–88.65% in MAPE. 
With an OMR of 40%, Meta-TD demonstrated superiority over the baseline models by 
6.97–88.96% in MAE, 10.22–90.94% in RMSE, and 13.21–84.29% in MAPE. Notably, the 
accuracy of statistical learning-based methods is lower than that of machine learning- 
based methods. This discrepancy arises primarily because statistical learning-based 
methods depend on the proximity relationship between observations and missing val
ues. In the RM pattern, it is often observed that the values adjacent to the missing 
data points are also absent, which significantly undermines the efficacy of imputation 
techniques. In contrast, machine learning-based methods can maintain greater adapt
ability in handling RM pattern by mining the spatiotemporal patterns from the known 
data.

Under the BM pattern with an OMR of 20%, Meta-TD exhibited superior perform
ance over the baseline models by 36.04–97.05%in MAE, 18.14–93.76% in RMSE, and 
35.15–92.50% in MAPE. Similarly, with an OMR of 40%, Meta-TD outperformed the 
baseline models by 51.33–94.95% in MAE, 25.59–94.07% in RMSE, and 31.96–90.89% in 
MAPE. The imputation performance of the low-rank tensor imputation models, LRTC- 
TNN and LAMC-TNN, is significantly compromised under the BM pattern because it 
disrupts the low-rank property of the traffic data, thereby affecting the imputation 
results. Overall, Meta-TD performed well for both RM and BM imputation, with a 
higher accuracy in the BM pattern than that for the baseline models. This performance 
can be attributed to Meta-TD’s utilization of the kernel tensor and factor matrix 
decomposition, as well as the incorporation of a spatial weight matrix to improve the 
imputation results. Furthermore, it is noteworthy that in cases of BM pattern, the 
imputation performance of deep learning models like SSGAN and TimeNet significantly 
declines, with this downward trend becoming more pronounced as the missing rate 
increases.
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To evaluate the performance of Meta-TD in imputing missing long time-series traffic 
flow data, we conduct a comparative experiment using the TM pattern. The results indi
cate that Meta-TD achieved the highest imputation accuracy relative to the baseline 
models (Table 3). When the OMR was 20% and IMR was 40%, Meta-TD outperformed the 
baseline models by 68.44–96.74% in MAE, 28.75–87.96% in RMSE, and 28.75–87.94% in 
MAPE. Notably, the imputation performance of TCN and SSGAN decreases significantly 
as the IMR increases. When the missing rate of traffic flows at a single monitoring point 
exceeds 80%, the model struggles to effectively learn the underlying traffic patterns. 
Similarly, when the OMR was 40% and the IMR was 80%, Meta-TD surpassed the baseline 
models by 31.16–96.62% in MAE, 19.51–94.68% in RMSE, and 0.79–82.53% in MAPE. The 
imputation results reveal a significant difference in performance between Meta-TD and 
the baseline model in the TM pattern. This disparity primarily stems from the challenges 
associated with relying solely on the hidden spatiotemporal features of observed data to 
impute missing values in long time series. On the one hand, missing data can signifi
cantly impede the analysis of spatiotemporal distribution patterns, a problem that wor
sens with a higher missing rate. On the other hand, when a single monitoring point 
experiences substantial data loss, accurately determining the correlation between its 
flow and that of other monitoring points becomes challenging, complicating the imput
ation process. Therefore, introducing additional geographic features to establish flow 
relationships between monitoring points is essential.

While improved models of tensor decomposition attempt to improve the imput
ation performance for the TM pattern by introducing a fixed geographic similarity 
matrix, these methods often fail to accurately capture the spatial heterogeneity in the 
traffic flows. Although both SSGAN and TimeNet utilize dynamic weight matrices to 
reflect the changing relationships in traffic flows, their effectiveness diminishes with 
increased missing data, limiting their ability to fully learn the underlying traffic pat
terns. In contrast, Meta-TD effectively leverages additional geographic features to 
address these challenges through a dynamic spatial weight matrix to capture the 

Table 3. Comparison of Meta-TD and baselines under the long time-series missing (TM) pattern.

Model Missing type

TM

OMR ¼ 20% & IMR ¼ 40% OMR ¼ 40% & IMR ¼ 80%

MAE # RMSE # MAPE (%) # MAE # RMSE # MAPE (%) #

Statistical learning-based method HA 11.083 18.773 42.062 12.794 21.070 44.977
KHM 12.043 20.850 34.947 13.657 22.816 38.445
SES 8.221 13.732 37.113 8.093 14.564 31.139

Machine learning-based method KNN 3.264 5.811 13.833 5.158 10.251 18.553
TCN 1.963 2.456 13.879 3.209 4.474 22.821
BRITS 2.517 3.191 13.340 2.625 3.694 19.093
SSGAN 4.325 5.049 24.947 4.853 5.515 29.531
TimeNet 1.879 2.271 7.116 1.963 3.357 9.586
LAMC-TNN 15.235 15.140 19.500 32.688 43.587 45.850
LRTC-TNN 4.939 6.255 19.400 13.713 16.715 23.510
TF-ALS 3.057 4.454 18.290 5.182 9.477 25.390
BTTF 2.017 3.392 10.060 2.023 4.029 10.570
BTMF 1.575 2.413 8.250 1.601 2.880 8.070
BATF 1.684 2.522 9.270 1.877 2.977 10.660
BGCP 1.637 2.410 8.800 1.838 3.261 9.370
Meta-TD 0.497 1.571 5.070 1.102 2.318 8.012

Note: The optimal values are bolded.
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spatial heterogeneity relationships between monitoring points. This strategy enables it 
to achieve the highest imputation accuracy in the TM pattern compared to the base
line models.

5.4. Hyper-parameter sensitivity analysis (RQ2)

We conducted a sensitivity analysis on three hyper-parameters that affected the per
formance of Meta-TD: the dimension of the core tensor Tdim, regularization coefficient 
k, and the number of iterations for the tensor solution epoch: To assess the impact of 
each parameter on imputation performance, the controlled variable method was 
employed by varying one parameter while keeping the others fixed for comparative 
analysis. The range of Tdim was set to [5–13], k ranged from [0.00005–0.0005], and 
epoch ranged from [1–30]. As shown in Figure 5, Tdim determines the degree of inter
action between factor matrices; an excessively small Tdim cannot effectively capture 
the key information in the original tensor, resulting in the RMSE gradually decreasing 
with increasing Tdim until reaching the optimal performance when Tdim was 12 (Figure 
5(a)); k dictates the extent to which the spatial heterogeneity matrix and Laplacian 
regularization constrain the tensor decomposition. The highest model accuracy was 
achieved when k was set to 0.0001 (Figure 5(b)); epoch represents the number of itera
tions in model training. When epoch was set to 20, the RMSE tended to stabilize, indi
cating that the model gradually converged (Figure 5(c)).

5.5. Ablation study (RQ3)

This section aims to validate the effectiveness of each key component of Meta-TD. The 
definitions of the different model variants are as follows:

Meta-TD/NM: Node meta-knowledge was used to calculate the spatial weight matrix, 
neglecting the impact of edge meta-knowledge on the spatial heterogeneity of traffic flows.

Meta-TD/EM: Edge meta-knowledge was used to calculate the spatial weight matrix, 
neglecting the impact of node meta-knowledge on the spatial heterogeneity of traffic 
flows.

Meta-TD/NEM: Utilized both node and edge meta-knowledge to calculate the spatial 
weight matrix while neglecting the impact of traffic flow features on spatial 
heterogeneity.

Figure 5. Hyper-parameter sensitivity analysis: (a) Tdim, (b) k, and (c) epoch:
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Meta-TD/ALL: Omitted both meta-knowledge and traffic flow features in the tensor 
decomposition process, aiming to validate the impact of the spatial heterogeneity 
learning module on traffic flow imputation.

As shown in Figure 6, the absence of any component adversely affects perform
ance, with all variants exhibiting increases in RMSE, MSE, and MAPE of 3.77–9.87%, 
3.67–10.42%, and 5.90–10.05%, respectively. These results indicate that each compo
nent proposed in this study played a positive role in the overall performance of Meta- 
TD. Specifically, the performance gap between Meta-TD/ALL and Meta-TD was the 
most pronounced, with differences of 9.87% in RMSE, 10.42% in MSE, and 10.05% in 
MAPE, highlighting the importance of modeling spatial heterogeneity relationships 
between nodes for the traffic flow imputation process. Moreover, the effect of changes 
in traffic flow features on spatial heterogeneity should not be neglected, as evidenced 
by the 6.21% increase in RMSE for Meta-TD/NEM relative to Meta-TD.

5.6. Effectiveness of geographic meta-knowledge (RQ4)

Influenced by node and edge meta-knowledge, the closer the distance and the more 
similar the geographic features between two monitoring points, the larger the values 
in their spatial weight matrix, resulting in more similar traffic flow variation trends, 
and vice versa. To verify this phenomenon, we randomly selected nine traffic monitor
ing points numbered N1–N9 and used pie charts to display the top five POI types for 
N1, N4, and N6 (Figure 7(a)). Additionally, we selected two time intervals, T1 and T2, 
spanning March 1 to March 7, 2021, and the calculation results of the spatial weight 
matrix and the traffic flow imputation results were visualized.

Statistical analysis showed that the POIs around N4 and N6 primarily comprised 
business residential areas, accounting for 30.6% and 31.6%, respectively. N1 was sur
rounded mainly by company enterprises, accounting for 32.6% of its POIs (Figure 
7(b)). It can be observed that N4 and N6 had similar functional zones and were closer 
to each other compared to the distance between N1 and N6. Therefore, the values in 
the spatial weight matrix were consistently larger between N4 and N6 than between 
N1 and N6 across different time intervals, leading to similar traffic flow variation trends 
between N4 and N6 compared to that between N1 and N6(Figures 7(c–e)). This phe
nomenon demonstrates that spatial weight matrices can be effectively learned 

Figure 6. Effect of different components on imputation results.
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through geographic meta-knowledge, thereby reflecting the spatial heterogeneity of 
the traffic flows between monitoring points.

5.7. Robustness of the proposed method (RQ5)

To verify the robustness of the proposed method, this analysis employed the Meta-TD 
and BGCP methods, which showed better performance, as described in Section 5.3, in 
imputing missing data for traffic flows under both normal and mutation conditions. As 
shown in Figure 8(a), under normal traffic conditions, the imputation results of the 

Figure 7. Analysis of the effectiveness of the spatial weight matrix. (a) Distribution of monitoring 
point locations; (b) distribution of POI types around monitoring points; (c) spatial weight matrix at 
time interval T1; (d) spatial weight matrix at time interval T2; (e) traffic flow trends at time interval 
T1 and T2.
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Meta-TD method were closer to the true values than those of the BGCP method, 
although the difference was small (Figure 8(c)). However, under mutation traffic condi
tions, the Meta-TD method maintained a high imputation performance, whereas the 
BGCP method showed an obvious deviation from the true values (Figure 8(b)). This is 
because the BGCP method adopts a fixed geographic feature similarity matrix to con
strain the tensor decomposition process, which ignores the dynamic impact of traffic 
states on the spatial correlation of traffic flows. In contrast, the Meta-TD method con
siders geographic meta-knowledge and traffic flow features by embedding a dynamic 
spatial weight matrix in the tensor-solving process. This allows it to capture changes 
in traffic flows effectively, thereby maintaining high accuracy in the imputation of 
missing traffic flow data.

6. Discussion

6.1. Innovation of Meta-TD

Tensor decomposition is a mainstream method for traffic flow imputation, and its per
formance enhancement critically depends on the reasonable embedding of contextual 
information during the decomposition process (Zheng et al. 2014, Zhang et al. 2023). 
However, existing methods generally construct a fixed geographic feature similarity 
matrix as contextual information to constrain the tensor decomposition process. This 

Figure 7. Continued. 
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approach often fails to capture the spatial heterogeneity of traffic flows accurately, 
thereby limiting the accuracy and robustness of traffic flow imputation (Said & Erradi 
2022, Huang et al. 2022, Zhao et al. 2023). In fact, the spatial heterogeneity of traffic 
flows is determined by a complex interplay between the static geographic attributes 
and the dynamic traffic flow states. To effectively capture this heterogeneity, this study 
introduces “geographic meta-knowledge”, which creates learnable feature embeddings 
through high-level semantic mapping. This approach provides a representation frame
work for the interactions between geographic features and traffic flow conditions, 
thereby enabling a more precise and adaptive characterization of spatial heterogeneity 
in traffic flows. Building on this concept, a tensor decomposition method embedded 
with geographic meta-knowledge was proposed. This method calculates spatial weight 
matrices by integrating geographic meta-knowledge with traffic flow features to con
strain the tensor-solving process, thereby enabling the model to perceive and under
stand the spatial heterogeneity of traffic flows more accurately.

6.2. Scalability of Meta-TD

We performed comparative experiments using fifteen baseline models on real urban 
traffic flow data. The results demonstrate that the Meta-TD method maintains high 
robustness under varying missing rates and distribution patterns. To evaluate the scal
ability of the proposed method on large-scale datasets, we analyzed its time and 
space complexity. Similar to the widely used CP and Tucker decomposition methods 

Figure 8. Imputation performance of different methods in normal and mutation cases. (a) The 
imputation result curves of different methods; (b) comparison of mean error box plots under nor
mal case; (c) comparison of mean error box plots under mutation case.
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(Battaglino et al. 2018; Li et al. 2014), the time and space complexity of the Meta-TD 
method is primarily determined by the dimensionality of the decomposed core tensor, 
establishing a linear relationship with data volume. Moreover, the method facilitates 
batch training by partitioning the data along the time dimension, thereby reducing 
the data load per iteration and enhancing its applicability to large-scale datasets.

6.3. Hyper-parameter selection

The selection of hyper-parameters is crucial when applying an algorithm to different data
sets. For the Meta-TD method, three key hyper-parameters need to be considered: epoch, 
Tdim and k: During the model training process, we introduce a tolerance parameter for 
the number of iterations (epochs) in tensor solving, allowing for automatic termination 
when the improvement in the loss function falls below a specified threshold. This mech
anism enables the model to adaptively adjust the number of iterations based on the char
acteristics of various datasets. For the dimensionality (Tdim) and regularization coefficient 
(k) of the core tensor, we use the classical grid search method for hyper-parameter selec
tion (Syarif et al. 2016). By performing a comprehensive search within a predefined range 
of parameters, the method can automatically select the optimal configurations across dif
ferent datasets. Notably, the Meta-TD method exhibits robustness to the regularization 
factor k, indicating that variations in k within a certain range do not significantly affect 
model performance. This characteristic greatly reduces the search space, ensuring that 
Meta-TD maintains stable performance across diverse datasets.

6.4. Potential applications

The Meta-TD method exhibited high robustness across various missing rates and distri
bution patterns, making it particularly applicable to complex and dynamic urban traffic 
scenarios. This reliability enables traffic regulatory authorities to utilize Meta-TD for 
intelligent transportation applications, such as dynamic route planning, traffic resource 
allocation, and traffic system management. By integrating geographic meta-knowledge 
with tensor decomposition, Meta-TD provides a novel approach for exploring multidi
mensional spatiotemporal correlations and uncovering complex patterns in the data. 
Furthermore, the Meta-TD method can be applied to other spatiotemporal datasets, 
including meteorological and air quality datasets that may also contain missing values. 
These datasets can be structured as three-dimensional tensors (stations, days, and 
time intervals), facilitating effective imputation. Moreover, if the values to be predicted 
in spatiotemporal datasets are treated as missing values for imputation purposes, the 
Meta-TD method can also be utilized for spatiotemporal prediction. This application 
holds significant potential across diverse domains, such as traffic management and 
planning, environmental monitoring, and social network analysis.

6.5. Limitations and future work

Although this study validates the superiority of Meta-TD over multiple baseline models 
on a real dataset, certain limitations remain. For example, the algorithm relies on 
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geographic meta-knowledge to compute spatial weight matrices, which led to com
parative experiments being conducted on a limited range of traffic datasets with dis
tinct geographic attributes. The reliance on geographic meta-knowledge raises a 
critical question: could spatiotemporal heterogeneity be extracted directly from the 
data itself, rather than depending on geographic meta-knowledge? While this alterna
tive approach could enhance flexibility and adaptability, it is challenged by the issue 
of missing data. Specifically, the presence of missing values can significantly comprom
ise the accuracy of spatiotemporal heterogeneity extraction (Dong et al. 2024). Thus, 
extracting robust spatiotemporal heterogeneity under conditions of missing data 
remains a complex task. To address this challenge, future work may incorporate con
trastive and self-supervised learning methods to directly capture latent spatiotemporal 
heterogeneity from the data itself. These approaches could strengthen model robust
ness by structurally representing unlabeled data, thereby generating dynamic spatial 
weight matrices without relying on external meta-knowledge.

7. Conclusions

Accurate and reliable urban traffic flow data can provide essential information for vari
ous applications including urban planning, route selection, and traffic control. 
However, fixed detection devices such as cameras and radars/laser detectors are not 
effective, resulting in missing traffic flow data. This poses a challenge for smart city 
applications. Therefore, this study proposes a geographic meta-knowledge embedded 
tensor decomposition (Meta-TD) method for urban traffic flow imputation, which 
enhances the accuracy and robustness of imputing missing urban traffic flow data.

The method fully considers the geographic features of nodes and edges, as well as 
dynamic traffic states, by designing a geographic meta-knowledge extraction module 
based on meta-learning. This module extracts node meta-knowledge and edge meta- 
knowledge from the node and edge attributes. Additionally, a spatial weight matrix cal
culation module that considers spatial heterogeneity was designed to model the 
dynamic relationship between geographic meta-knowledge and spatial heterogeneity. 
Finally, a tensor decomposition method for spatial weight matrix embedding was pro
posed, with continuous optimization of the spatial weight matrix computation and flow 
imputation results through collaborative learning to obtain the final imputation results.

Experiments conducted on real urban traffic flow data demonstrate that the pro
posed method outperforms seven baseline models in the RM, BM, and TM patterns, 
with the MAE, RMSE, and MAPE reduced by 6.97–97.05%, 3.33–94.68%, and 1.97– 
82.53%, respectively. These metrics consistently remained within the ranges of 0.48– 
1.20, 1.48–2.32, and 5.03–8.01%. Furthermore, the spatial weight matrix learned by the 
Meta-TD method reflected the spatial heterogeneity of the traffic flows between moni
toring points. In the event of a sudden change in traffic flow data within a day, the 
spatial weight matrix adapts dynamically to ensure that the imputation results of the 
Meta-TD method remain accurate and robust across different missing patterns. This 
approach effectively addresses the imputation requirements for missing traffic flow 
data patterns and provides timely and dependable data support for intelligent deci
sion-making and traffic control applications.
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