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Abstract
Postoperative complications of radical gastrectomy seriously affect postoperative recovery and require accurate risk predic-
tion. Therefore, this study aimed to develop a prediction model specifically tailored to guide perioperative clinical decision-
making for postoperative complications in patients with gastric cancer. A retrospective analysis was conducted on patients 
who underwent radical gastrectomy at the First Affiliated Hospital of Nanjing Medical University between April 2022 and 
June 2023. A total of 166 patients were enrolled. Patient demographic characteristics, laboratory examination results, and 
surgical pathological features were recorded. Preoperative abdominal CT scans were used to segment the visceral fat region 
of the patients through 3Dslicer, a 3D Convolutional Neural Network (3D-CNN) to extract image features and the LASSO 
regression model was employed for feature selection. Moreover, an ensemble learning strategy was adopted to train the 
features and predict postoperative complications of gastric cancer. The prediction performance of the LGBM (Light Gradi-
ent Boosting Machine), XGB (XGBoost), RF (Random Forest), and GBDT (Gradient Boosting Decision Tree) models was 
evaluated through fivefold cross-validation. This study successfully constructed a model for predicting early complications 
following radical gastrectomy based on the optimal algorithm, LGBM. The LGBM model yielded an AUC value of 0.9232 
and an accuracy of 87.28% (95% CI, 75.61–98.95%), surpassing the performance of other models. Through ensemble learn-
ing and integration of perioperative clinical data and visceral fat radiomics, a predictive LGBM model was established. This 
model has the potential to facilitate individualized clinical decision-making and the early recovery of patients with gastric 
cancer post-surgery.
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Introduction

Gastric cancer ranks fifth in global incidence and fourth in 
mortality, with over 1 million new cases recorded in 2020 
[1]. Radical gastrectomy is the primary treatment for gastric 
cancer; however, the occurrence of postoperative complica-
tions remains challenging. Globally, the incidence of postop-
erative complications in gastric cancer patients ranges from 
11.5 to 53.9%, while in China, it is approximately 18.14% 
[2, 3]. These complications significantly impact the early 
recovery and long-term outcomes of patients undergoing 
radical gastrectomy, with higher severity correlating with 
lower relapse-free survival rates [4, 5]. Thus, the develop-
ment of an accurate predictive model to identify individuals 
at a high risk of postoperative complications is crucial for 
early intervention.
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The inflammatory response is an independent risk fac-
tor for poor prognosis in patients with cancer. For every 
one standard deviation increase in inflammatory load, there 
was a 10.3% increase in the risk of poor prognosis in cancer 
patients [6]. The dysregulation of the systemic inflamma-
tory response after surgery is closely linked to complications 
such as incision infection, anastomotic leakage, and cardio-
pulmonary issues [7, 8]. Inflammatory status significantly 
affects cancer-related mortality [9]. Obesity is characterized 
by chronic low-grade systemic inflammation [10], which can 
contribute to the development of insulin resistance [11]. Adi-
pose tissue secretes numerous pro-inflammatory factors, and 
over 15 adipocytokines have been linked to cancer [12–14]. 
In an inflammatory and hypoxic environment, adipocytes 
release a variety of adipokines, maintain the inflammatory 
state, promote angiogenesis, and provide energy for tumor 
cells, thereby promoting the growth, invasion, and metas-
tasis of cancer cells. In addition, the interaction between 
dysfunctional adipocytes and cancer cells can also lead to 
inflammatory and fibrotic changes in adipose tissues [15, 
16]. High visceral adipose tissue (VAT) is an independent 
risk factor for postoperative complications in patients under-
going radical gastrectomy [17]. A recent study showed that 
visceral fat parameters, such as mean attenuation of visceral 
fat, are important factors in predicting peritoneal metastasis 
in patients with gastric cancer [18]. This may be related to 
the secretion of CXC motif chemokine ligand 2 (CXCL2) 
by visceral adipocytes to induce the invasiveness of gastric 
cancer cells and promote peritoneal metastasis [19]. Most 
studies have focused solely on assessing the visceral fat area, 
with little exploration of other imaging features [20–23]. 
Inflammatory markers and visceral fat parameters can effec-
tively indicate early signs of postoperative complications. 
Integrating a patient’s clinical data and radiomic data into a 
prognostic model is expected to enhance its effectiveness.

The medical field has widely embraced technologies 
such as artificial intelligence, machine learning, and radi-
omics to make significant progress in assisting clinicians 
with individualized disease prevention, early diagnosis, and 
efficacy evaluation [24, 25]. Machine learning technology 
has shown great potential in image reconstruction, segmen-
tation, identification, and classification, and is an essential 
technical basis for radiomics. Moreover, with the related 
algorithms and development platforms of machine learning 
gradually mature, it has the unique advantage in processing 
high-dimensional data, which provides great help for the in-
depth analysis of medical images [26]. The machine learn-
ing model demonstrated a strong predictive performance in 
assessing the risk of postoperative complications, surpass-
ing the current general-purpose risk prediction model of 
the American College of Surgeons National Surgical Qual-
ity Improvement (ACS-NSQIP) in terms of sensitivity and 
specificity. In addition, they were able to identify subtle 

associations that were not detectable by traditional statis-
tical analysis [27]. However, in the field of prediction of 
postoperative complications of gastric cancer, most studies 
focus on traditional statistical models and machine learning 
algorithms. Due to the low complexity of the model, it fails 
to perform well in dealing with high-dimensional data and 
possesses poor generalization ability. This prompted us to 
explore more advanced algorithms. Ensemble learning can 
improve generalization performance, reduce error rate, and 
avoid overfitting by integrating multiple learners to better 
deal with high-dimensional data and obtain better clinical 
prediction effect [28].

Radical gastrectomy is prone to many postoperative com-
plications, which is an urgent clinical problem that needs to 
be better solved. Based on the correlation between inflam-
mation, obesity, and postoperative complications and the 
limitations of current work, this study innovatively inte-
grated the radiomics of visceral fat and clinical inflamma-
tion and used four ensemble learning algorithms (LGBM, 
GBDT, XGB, and RF) to construct a prediction model for 
postoperative complications of gastric cancer. Through the 
verification of the prediction performance of the model, the 
best model is selected to assist clinicians in early warning of 
potential high-risk groups of complications, timely interven-
tion of possible complications, and ultimately promote early 
postoperative rehabilitation for patients.

Materials and Methods

Patients

A total of 213 patients who underwent radical gastrectomy 
for gastric cancer at the First Affiliated Hospital of Nanjing 
Medical University between April 2022 and June 2023 were 
retrospectively enrolled. Based on the exclusion criteria, 166 
patients were finally included in the analysis (Fig. 1). Ethi-
cal approval for this study (Approval No. 2022-SR-591) was 
provided by the Ethics Committee of the First Affiliated 
Hospital of Nanjing Medical University, Nanjing, China on 
22 November 2022. And the requirement for informed con-
sent was waived.

The inclusion criteria were as follows: (1) age ≥ 18 years, 
(2) clinical diagnosis of primary gastric cancer, (3) radical 
gastrectomy, (4) preoperative abdominal CT examination 
within 1 month, and (5) complete perioperative clinical data.

The exclusion criteria were as follows: (1) incomplete or 
low-quality CT images, inability to delineate the region of 
interest or data analysis, (2) infection within 2 weeks before 
surgery, and (3) preoperative complications such as bleed-
ing, obstruction, perforation, or distant metastasis.

Baseline data, laboratory examination results, and early 
postoperative complications were collected. The baseline 
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data included many factors such as sex, age, BMI, smoking 
history, comorbidities, TNM stage, chemotherapy history, 
Borrmann classification, and Lauren classification. In 
addition, a series of laboratory indicators were included, 
such as CA125, CA153, CA724, AFP, CEA, and CA199, 
as well as the preoperative and postoperative neutrophil 
count, lymphocyte count, monocyte count, and albumin 

level. To assess inflammation and immune response more 
accurately, we calculated the preoperative and postopera-
tive lymphocyte-to-monocyte ratio (LMR), platelet-to-
lymphocyte ratio (PLR), neutrophil-to-lymphocyte ratio 
(NLR), and systemic immunoinflammatory index (SII). 
SII is defined as the platelet count × neutrophil count/lym-
phocyte count.

Fig. 1  Flow chart
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Preoperative abdominal enhanced CT was collected, 
and the CT parameters were as follows: kV, 120 kV; mA 
mode, SmartmA 400–700; scan type, helical; rotation 
time, 0.50 s; detector coverage, 80 mm; contrast agent, 
ioversol injection, 100  mL; image matrix, 512 × 512; 
reconstruction image thickness, 5 mm.

According to the “Chinese Expert Consensus on the 
Diagnosis and Registration of Postoperative Complica-
tions of Gastrointestinal Cancer Surgery,” complications 
occurred within 30  days after surgery were counted, 
including the following eight categories: gastrointestinal 
complications, surgical site complications, respiratory 
complications, cardiovascular complications, thrombo-
embolic complications, urinary complications, infectious 
complications, and other complications. Among them, 
gastrointestinal complications include anastomotic leak-
age, abdominal/pelvic infection, pancreatic fistula, hemor-
rhage, intestinal obstruction, and delayed gastric emptying. 
Surgical site complications include wound dehiscence, 
infection, fat liquefaction, and delayed wound healing. 
Respiratory complications included postoperative atelec-
tasis, pneumonia, pleural effusion, and empyema. Cardio-
vascular complications refer to postoperative arrhythmia, 
heart failure, myocardial infarction, etc.

Data Pre‑processing

CT Data Cleaning and Optimization

In our study, the quality and accuracy of CT data are of 
utmost importance, directly influencing subsequent image 
processing and analysis outcomes [29]. We initiated a 
series of cleaning and optimization processes on the raw 
CT images to ensure data quality and accurate analysis. 
First, we employed advanced denoising algorithms to iden-
tify and eliminate noise and disturbances in the images, thus 
enhancing the image clarity and precision in detail. Based 
on denoising, we applied filtering techniques to further opti-
mize the image quality by eliminating both low- and high-
frequency interferences, preserving the main features and 
details of the images. During the cleaning process of CT 
data, specific methods for noise filtering and outlier removal 
of the data include the use of Gaussian filters and anomaly 
detection based on Z scores [30, 31].

Subsequently, we adjusted the contrast of the images to 
highlight the details, facilitating subsequent feature extrac-
tion and analysis. We adopted adaptive contrast adjustment 
techniques that dynamically alter the contrast levels based 
on the specific content and characteristics of the image. It 
emphasizes different areas and details, which improves the 
overall image quality and analyzability.

Data Augmentation

Owing to the specificity and complexity of gastric cancer 
imagery, there could be significant imbalances in the distri-
bution of samples from different categories and types. This 
could lead the model to learn and predict biases towards 
certain specific categories or features, thereby affecting its 
overall predictive performance and accuracy. To enhance 
the generalization capabilities and predictive accuracy of the 
model, we utilized data augmentation techniques to expand 
and optimize the original data. In the data enhancement 
stage, we applied three techniques including random rotation 
(± 30°), scaling (0.8 to 1.2 times), and horizontal flipping to 
improve the model’s adaptability to different viewing angles 
and scales. Thus, the image features can be better presented 
and the learning and recognition ability of the model can 
be improved.

Through the integrated use of the above data cleaning 
and augmentation techniques, the quality and diversity of 
the CT image data were ensured, which laid a solid founda-
tion for subsequent feature extraction, model training, and 
complication prediction.

Region of Interest (ROI) Segmentation

The segmentation of the region of interest (ROI) referred 
to in this study focused on visceral fat within the umbili-
cal horizontal plane. A trained diagnostic imaging special-
ist independently conducted the segmentation. The initial 
range of CT values (-150,-50) Hu was established within 
the umbilical plane. Subsequently, the 3D Slicer software 
(version 5.0.3) was utilized to semi-automatically seg-
ment the visceral fat area during the portal vein stage of the 
abdominal enhanced CT scan. This process aimed to obtain 
an approximate area of the visceral fat tissue. Following the 
semi-automatic segmentation, manual boundary adjustments 
were made to ensure a more precise delineation of the vis-
ceral fat tissue.

Feature Extraction and Selection

3D‑CNN Feature Extraction

We employed a 3D-CNN (Three-Dimensional Convolutional 
Neural Network) to extract radiomic features of the adipose 
region from CT images of patients with gastric cancer. Spe-
cifically, using the PyTorch framework, we implemented a 
3D-CNN model composed of multiple convolutional and 
pooling layers. The model’s architecture is as follows. Ini-
tially, the input layer accepts single-channel three-dimensional 
image data. This is followed by the first convolutional layer 
(with 32 3 × 3 × 3 kernels, stride of 1, and padding of 1) and 
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a ReLU activation function for feature extraction and non-
linear mapping. Subsequently, a max-pooling layer (with 
2 × 2 × 2 pooling kernels)is used for downsampling. The 
second convolutional layer contained 64 3 × 3 × 3 kernels 
with stride and padding unchanged and then passed through 
ReLU activation and max-pooling. The third convolutional 
layer employs 128 3 × 3 × 3 kernels, which are consistent 
with the parameters of the preceding layers, followed by a 
global average pooling layer for feature aggregation. Finally, 
a 1 × 1 × 1 convolutional layer reduced the feature dimen-
sionality to 300 dimensions. This design ensures rich and 
representative features from intricate three-dimensional 
CT images, thereby setting the stage for subsequent feature 
selection and model training.

Key Radiomic Feature Selection

After the 3D-CNN feature extraction, we obtained a 
300-dimensional feature vector for each sample. To enhance 
the interpretability and predictive performance of a model, 
it is essential to further refine these features and retain only 
the most informative and representative features. We used the 
LASSO regression model for feature selection. By introducing 
an L1 regularization term into the regression model’s objective 
function, LASSO can automatically select features, compress-
ing the weights of less relevant features to zero [32].

By adjusting the regularization strength α of the LASSO 
model, we controlled the model’s complexity and the strict-
ness of feature selection. Within a cross-validation frame-
work, we identified the optimal α value that delivered the 
best predictive performance and determined the final set of 
features. These features not only offer a sound interpreta-
tion of the underlying mechanisms of postoperative com-
plications in gastric cancer but also provide robust feature 
support for our predictive model, aiding in a more precise 
prognosis of postoperative complication risks for gastric 
cancer patients.

Construction of the Prediction Model

Early machine learning models, such as single decision trees 
and rudimentary neural networks, were often limited by their 
generalization capabilities. These models are often prone 
to overfitting in the face of complex data distributions and 
are very sensitive to noise and outliers. Furthermore, they 
do not work well when dealing with high-dimensional data 
because the simplicity of the models limits their ability to 
capture complex patterns. To overcome the limitations of 
the earlier models, we introduced an ensemble learning 
strategy. In this study, we used the Light Gradient Boosting 
Machine (LGBM), XGBoost (XGB), Random Forest (RF), 
and Gradient Boosting Decision Tree (GBDT) models for 

feature learning and complication prediction. The LGBM 
employs a histogram-based decision tree algorithm, which  
effectively handles large-scale data while maintaining high 
accuracy. XGB is an extensible and flexible gradient-boosting  
algorithm with features such as the automatic handling of 
missing values and regularization to reduce overfitting. RF 
utilizes multiple decision trees for training and enhances 
prediction accuracy and robustness through a voting mech-
anism. The GBDT constructs multiple decision trees in a 
stepwise optimization manner, with each tree learning the 
residuals of the previous tree, continuously improving the 
model’s predictive performance. In this study, we combined 
selected radiomic features with preoperative and postopera-
tive clinical features and input them into each model for 
training (Fig. 2).

Regarding the training details and specific parameter set-
tings for each model, in the LGBM model, we set the learning 
rate to 0.01 and the number of trees to 100 to ensure learning 
precision and generalization ability. We also apply feature and 
data subset sampling to enhance the robustness of the model. 
For XGBoost, we selected a learning rate of 0.1 and a tree 
depth of 6 to balance learning efficiency and accuracy, and 
pruning was enabled to prevent overfitting. In the RF model, 
we configured 100 trees and determined the maximum feature 
count automatically to achieve high accuracy. The settings for 
GBDT included a learning rate of 0.05 and 50 trees to ensure 
model learning and predictive performance. All model param-
eters were optimized through cross-validation and a grid search 
to achieve the best performance in predicting complications 
after gastric cancer surgery.

Our ensemble learning model fully considers the 
strengths of each base model and combines their predic-
tive abilities to achieve higher accuracy and robustness. By 
employing multiple models, this strategy mitigated the chal-
lenges posed by data heterogeneity and complexity for a sin-
gle model, thereby enhancing the adaptability and predictive 
capabilities of the model for different gastric cancer cases 
and types of complications.

Model Evaluation

In the model evaluation phase, we used accuracy (Acc), 
recall, precision, F1-score, and area under the receiver oper-
ating characteristic curve (AUC-ROC) as evaluation metrics. 
Accuracy represents the proportion of correctly predicted 
samples to the total number of samples and is used to meas-
ure the overall performance of the model. Recall focuses on 
the proportion of true positive samples correctly identified 
by the model among all actual positive samples, empha-
sizing the model’s ability to recognize positive samples. 
Precision focuses on the proportion of correctly identified 
positive samples among the samples predicted as positive, 
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evaluating the prediction accuracy [33]. The F1-score is 
the harmonic mean of the precision and recall, providing a 
comprehensive assessment of the robustness [34]. The AUC-
ROC reflects the overall performance of the model in classi-
fying positive and negative samples; a higher value indicates 
better classification performance [35]. For result represen-
tation, we calculated the average evaluation metric values 
from cross-validation experiments and computed their 95% 
confidence intervals (CI). We comprehensively assessed the 
performance of all models using these evaluation metrics to 
ensure their accuracy and reliability in predicting complica-
tions after gastric cancer surgery.

Results

Experimental Setup

In this study, we employed fivefold cross-validation to 
evaluate the performance of all models. During this process, 
all data were randomly divided into five subsets, with four 
subsets used as training data every time, and the remaining 
one subset was used as the test data. This process was 
repeated five times with different test sets each time to obtain 
performance metrics for the models on different data subsets. 
Each model was trained and tested on the same data partitions 

Fig. 2  Summary diagram of 
main research contents The 
main research contents include 
image acquisition and segmen-
tation, feature extraction and 
selection, and model construc-
tion and evaluation
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Table 1  Baseline information of clinical characteristics in gastric cancer patients

Value Total (n = 166) Postoperative complications P value

No (n = 122) Yes (n = 44)

Sex, n (%) 0.779
Men 118 (71.08) 86 (70.49) 32 (72.73)
Women 48 (28.92) 36 (29.51) 12 (27.27)
Age (years) 65.00 (57.00–70.00) 66.00 (57.00–70.00) 62.00 (56.75–70.00) 0.750
BMI (kg/m2, mean ± SD) 24.24 ± 2.91 24.18 ± 3.00 24.40 ± 2.65 0.668
Operation method, n (%) 0.102
Open 19 (11.45) 11 (9.02) 8 (18.18)
Laparoscope 147 (88.55) 111 (90.98) 36 (81.82)
Chemotherapy, n (%) 0.618
No 152 (91.57) 113 (92.62) 39 (88.64)
Yes 14 (8.43) 9 (7.38) 5 (11.36)
Smoking, n (%) 0.622
No 112 (67.47) 81 (66.39) 31 (70.45)
Yes 54 (32.53) 41 (33.61) 13 (29.55)
Comorbidities, n (%) 0.128
No 88 (53.01) 69 (56.56) 19 (43.18)
Yes 78 (46.99) 53 (43.44) 25 (56.82)
TNM stage, n (%) 0.261
I 54 (32.53) 42 (34.43) 12 (27.27)
II 18 (10.84) 14 (11.48) 4 (9.09)
III 22 (13.25) 14 (11.48) 8 (18.18)
IV 65 (39.16) 49 (40.16) 16 (36.36)
V 7 (4.22) 3 (2.46) 4 (9.09)
Borrmann classification, n (%) 0.505
I 30 (18.07) 21 (17.21) 9 (20.45)
II 46 (27.71) 35 (28.69) 11 (25.00)
III 78 (46.99) 57 (46.72) 21 (47.73)
IV 12 (7.23) 9 (7.38) 3 (6.82)
Lauren classification, n (%) 0.824
Enteric 73 (47.1) 54 (46.96) 19 (47.50)
Diffuse 36 (23.23) 28 (24.35) 8 (20.00)
Mixed 57 (34.34) 40 (32.79) 17 (38.64)
CA125 (U/ml) 9.40 (7.00–13.88) 9.60 (6.85–14.00) 9.40 (7.35–13.35) 0.973
CA153 (U/ml) 8.26 (6.34–11.49) 8.21 (6.32–11.62) 8.26 (6.65–10.07) 0.646
CA724 (µg/L) 1.91 (1.23–3.42) 1.97 (1.19–3.54) 1.67 (1.28–2.83) 0.665
AFP (ng/mL) 2.43 (1.69–3.11) 2.37 (1.65–3.08) 2.58 (1.94–3.12) 0.286
CEA (ng/mL) 2.33 (1.56–3.75) 2.31 (1.57–3.71) 2.38 (1.55–3.74) 0.996
CA199 (u/ml) 9.06 (4.96–19.80) 10.06 (5.00–20.04) 8.80 (4.66–14.83) 0.487
Preoperative albumin (g/L) 38.50 (35.73–40.27) 38.45 (35.73–40.30) 38.80 (35.65–40.12) 0.910
Postoperative albumin, (g/L, mean ± SD) 35.53 ± 3.77 36.12 ± 3.56 33.89 ± 3.91  < .001***

Albumin change value (g/L) -3.15 (-5.80–0.08) -2.15 (-5.40–0.80) -4.50 (-6.92 to-2.40) 0.006**

Preoperative inflammatory markers
Neutrophil(109/L) 2.95 (2.24–3.71) 2.94 (2.22–3.55) 3.08 (2.32–3.92) 0.477
Lymphocyte(109/L) 1.46 (1.17–1.89) 1.46 (1.14–1.87) 1.46 (1.20–1.94) 0.749
Monocyte(109/L) 0.42 (0.34–0.53) 0.42 (0.33–0.52) 0.47 (0.36–0.56) 0.189
NLR 1.96 (1.45–2.73) 1.97 (1.45–2.66) 1.96 (1.55–2.79) 0.606
LMR 3.49 (2.68–4.58) 3.58 (2.71–4.66) 3.41 (2.51–4.42) 0.295
PLR 138.06 (105.80–174.42) 135.33 (103.28–184.57) 143.32 (113.50–168.26) 0.612
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to ensure consistency and fairness during the evaluation. 
Furthermore, we conducted extensive hyperparameter 
tuning through detailed grid search and random search to 
optimize the parameters for each model. We monitored the 
training and validation losses for each model, confirming 
that all models converged and showed no signs of significant 
overfitting. The experiments were conducted on a high-
performance computer equipped with an NVIDIA RTX 
3070 GPU and Intel RYZEN7 CPU. Python was used as the 
primary program language, and open-source libraries such as 
Scikit-learn, LightGBM, and XGBoost were used for model 
implementation and optimization. The operating system used 
was Ubuntu 20.04 LTS, ensuring stability and efficiency in 
the software and hardware environment.

Statistical Analysis of Basic Clinical Information 
for Patients

To investigate the relationship between patient complica-
tions and baseline clinical data, we conducted a detailed 
statistical analysis of the clinical information for every 
patient. An independent t-test was used to analyze normally 
distributed data, the Mann–Whitney U test was used to ana-
lyze non-normally distributed data, and the chi-square test 
was used to analyze categorical variables. We integrated 
all data into a “Statistical Table of Patient Basic Informa-
tion” (Table 1).

One hundred and sixty-six patients (118 males and 48 
females) were enrolled in this study. Significant differ-
ences were identified by comparing patients who experi-
enced complications with those who did not experience 

complications. Statistical analysis demonstrated that the 
P values for postoperative neutrophils, monocytes, LMR, 
SII, albumin, and perioperative albumin were all < 0.05. 
This suggests that these characteristics are associated with 
the occurrence of complications.

In the short-term postoperative outcomes, 44 patients had 
postoperative complications (Table 2). Interestingly, among 
all postoperative complications, we found that postoperative 
pulmonary complications had the highest probability, with 
a total of 24 cases.

Table 1  (continued)

Value Total (n = 166) Postoperative complications P value

No (n = 122) Yes (n = 44)

SII 402.00 (255.77–585.46) 389.08 (252.69–585.46) 468.75 (278.58–583.27) 0.379
Postoperative inflammatory markers
Neutrophil(109/L) 9.96 ± 3.07 9.50 ± 3.02 11.24 ± 2.86 0.001***

Lymphocyte(109/L) 0.84 (0.63–1.16) 0.85 (0.60–1.16) 0.82 (0.68–1.09) 0.842
Monocyte(109/L) 0.66 ± 0.37 0.61 ± 0.36 0.80 ± 0.36 0.002**

NLR 11.68 (8.47–15.44) 11.41 (8.02–15.09) 13.58 (9.57–16.75) 0.074
LMR 1.33 (1.00–2.25) 1.41 (1.07–2.50) 1.09 (0.82–1.51) 0.001***

PLR 215.82 (150.18–306.72) 204.40 (142.69–306.06) 246.51 (177.13–312.49) 0.193
SII 2033.84 (1421.59–3179.52) 1917.28 (1351.70–3017.24) 2523.68 (1778.93–3876.01) 0.013*

Normally distributed data were analyzed using independent t-tests, and the results are presented as mean ± standard deviation. Non-normally 
distributed data were analyzed using the Mann–Whitney U test, and the results are presented as medians and interquartile ranges. Categorical 
variables are analyzed using chi-square tests, and the results are expressed as percentages. The asterisk (*) indicates that these measures are sta-
tistically different between patients without complications and those with complications. The asterisk (*) represents P value ≤ 0.05; the asterisk 
(**) represents P value ≤ 0.01; the asterisk (***) represents P value ≤ 0.001. The results in this table demonstrate that postoperative values of 
neutrophils, monocytes, LMR, SII, albumin, and perioperative albumin were significantly different between the two groups. BMI body mass 
index, Mean average, SD standard deviation, NLR neutrophil-to-lymphocyte ratio, LMR lymphocyte-to-monocyte ratio, PLR platelet-to-lympho-
cyte ratio, SII systemic immunoinflammatory index

Table 2  Postoperative complications

If patients had two or more postoperative complications, we repeated 
the count. Pulmonary complications* include pulmonary infection, 
atelectasis, empyema, and pulmonary embolism. Gastrointestinal dys-
function* including postoperative nausea and vomiting and intestinal 
obstruction

Postoperative complications Number

Fever 1
Lymphatic fistula 1
Anastomotic leak 4
Pulmonary complications* 24
Incision infection 4
Incision fat liquefaction 2
Abdominal infection 3
Abdominal hemorrhage 1
Stump fistula 1
Elevated aminotransferase 2
Gastrointestinal dysfunction* 5
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Results of Feature Extraction and Selection

In the process of patient feature extraction based on 3DCNN, 
300-dimensional feature information was successfully 
extracted from expert-annotated fat regions (Fig. 3), provid-
ing a rich dataset for subsequent analysis. However, in order 
to construct an efficient and accurate prediction model, it is 
essential to simplify the feature space and eliminate redun-
dant features. Thus, a feature selection process using the 
LASSO regression method was conducted, ultimately lead-
ing to the selection of 12 key radiomic features for applica-
tion in subsequent models.

To illustrate the feature selection process and its effec-
tiveness visually, a series of visualizations were employed. 
The correlation heatmaps before and after feature selection 
are presented in Fig. 4a and b, respectively. These heatmaps 
demonstrated a notable decrease in feature correlations fol-
lowing selection, indicating the elimination of highly cor-
related features and the provision of unique information to 
the model by each feature. Additionally, Fig. 4c shows the 
relationship between the penalty term coefficient (α) and the 
mean squared error throughout the iterations of the LASSO 
model. Furthermore, Fig. 4d shows the variation in AUC 
with changes in the penalty term coefficient. Through a 

Fig. 3  Segmentation of visceral 
fat regions of interest based on 
CT images. Among them, the 
left is the visceral fat of patients 
without complications, and 
the right is the visceral fat of 
patients with complications

Fig. 4  Visual results of the feature selection process. Correlation heatmaps before and after feature selection (A, B). The process of feature selec-
tion model iterations (C), and the selection results for different feature dimensions (D)
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thorough examination of the iterative results, α was identi-
fied as the optimal parameter for the LASSO regression, 
with a value of 0.004. This parameter selection resulted in 
a stable model and a satisfactory predictive performance.

Complication Prediction Model Results

Training Process

Throughout the training process of our complication predic-
tion model, we incorporated a diverse range of advanced 
techniques and strategies to enhance efficiency and guaran-
tee stability. To leverage the benefits of automatic learning 
rate adjustment and accommodate varying data characteris-
tics, we opted for Adam as the optimizer, a choice backed 
by its exceptional performance across various tasks. To 
expedite convergence to the optimal solution in the initial 
stages of training and avoid being ensnared in suboptimal 
local solutions, we tailored the initial learning rates for each 
model based on specific circumstances. Moreover, to strike a 
balance between model stability and memory utilization, we 

carefully deliberated the choice of a batch size of 32, consid-
ering the dataset size and available computational resources.

Light GBM Ensemble Learning Model Results

We adopted the ensemble learning LGBM model, which 
demonstrated remarkable performance across various evalu-
ation metrics. Notably, the model achieved an impressive 
ROC-AUC value of 0.9232, indicating an exceptional pre-
dictive capability. Furthermore, the high levels of recall 
and precision attained by the model provided additional 
evidence of its robustness and reliability. The visualization 
of the ROC curve in Fig. 5a clearly indicates the excellent 
discriminative power of the model between the positive and 
negative classes. This observation was corroborated by the 
cross-validation comparison in Table 3.

Results of Other Ensemble Learning Models

We compared our adopted LGBM model with other com-
monly used ensemble learning models, such as RF, GBDT, 

Fig. 5  ROC curves and AUC values for various prediction models where A, B, C, and D represent LGBM, RF, GBDT, and XGB, respectively. 
As can be seen from the figure, the LGBM model has the highest AUC value, and the prediction efficiency is better than other models
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and XGB. Although these models exhibited a good per-
formance on most evaluation metrics, they ultimately fell 
short of the LGBM model. For example, RF achieved an 
ROC-AUC value of 0.8731, and XGB scored 0.8586, both 
of which were lower than the performance of the LGBM 
model. The ROC curves demonstrated the relatively weaker 
ability of these models to distinguish between positive 
and negative samples (Fig. 5b–d). Additionally, the cross- 
validation comparison in Table 3 offers detailed perfor-
mance on various evaluation metrics, further confirming the 
superiority of the LGBM model over other models.

Discussion

We successfully developed the LGBM model capable of pre-
dicting early postoperative complications in patients with 
gastric cancer. This is an efficient machine learning algo-
rithm based on the gradient boosting framework. We use the 
grid search technique to optimize the main parameters such 
as the learning rate, the number of trees, and the maximum 
depth of trees, and finally select the best combination of 
parameters to achieve the best classification effect. The AUC 
value in the LGBM model reached 0.92, indicating a high 
level of accuracy and prediction efficiency, which is signifi-
cantly superior to that of the GBDT, RF, and XGB models. 
This model is based on easily obtainable clinical data, labo-
ratory measurements, and CT examination images, making 
it suitable for widespread application in clinical practice. It 
can assist in identifying high-risk groups for postoperative 
complications of gastric cancer, enabling timely adjustments 
to clinical decision-making and proactive interventions.

After surgical trauma, a protective inflammatory response 
is mobilized as part of the innate immune system, contribut-
ing to the healing of the surgical incision and serving as a 
natural defense mechanism. However, when the systemic 
inflammatory response becomes dysregulated, with an 
abnormal duration and extent, it transitions from a protec-
tive response to exacerbating the cycle of tissue damage and 

immunosuppression. This imbalanced immunoinflammatory 
response frequently contributes to elevated postoperative 
complications and mortality, heightening susceptibility to 
postoperative infections, accelerating tumor recurrence, and 
prompting the onset of multiple organ dysfunction [36, 37]. 
Previous studies have demonstrated that the lymphocyte-
to-monocyte ratio (LMR) serves as an effective surrogate 
marker for the proportion of tumor-infiltrating lymphocytes 
and tumor-associated macrophages. These two types of 
immune cells play crucial roles in regulating cellular and 
humoral immunity, as well as in mounting an anti-tumor 
response. Furthermore, they are also associated with immu-
nosuppression, which can accelerate tumor progression [38]. 
Kim et al. demonstrated that a low LMR is an independent 
prognostic factor for gastric cancer patients and is associated 
with higher postoperative mortality and poorer long-term 
survival [39, 40]. The neutrophil-to-lymphocyte ratio (NLR) 
serves as a predictor of postoperative complications in gas-
tric cancer patients. An NLR value of ≥ 9.6 on the second 
day after surgery indicates a higher risk of postoperative 
complications [41]. Patients with gastric cancer display high 
levels of inflammatory factors such as interleukin-6 (IL-6) 
and tumor necrosis factor-α (TNF-α), which are significant 
predictors of postoperative outcomes. Notably, elevated 
levels of these inflammatory cytokines have been linked to 
poorer 5-year survival rates in gastric cancer, and IL-6 has 
been established as an independent risk factor for postop-
erative infection. Hence, the presence of IL-6 and TNF-α 
in patients with gastric cancer may serve as indicators of 
poor prognosis and a higher susceptibility to postoperative 
complications [42]. High levels of matrix metalloprotein-
ase (MMP) - 3,- 7,- 9,- 11, and the increased expression of 
chemokine receptors CCR- 3,- 4,- 5,- 7, and CXCR-4 are 
closely associated with poor prognosis in gastric cancer 
patients [43]. Routine measurement of cytokines in clinical 
practice is expensive and difficult to perform. Conversely, 
the use of indicators such as LMR and NLR offers a simple, 
fast, convenient, and cost-effective method for evaluating 
the systemic inflammatory immune status in predicting the 

Table 3  Performance of various 
models in five-fold cross-
validation

The accuracy, recall, precision, and F1 score of the LGBM, RF, GBDT, and XGB models in fivefold cross-
validation. The performance of each model is presented as the mean value along with its 95% confidence 
interval (CI)

Model Acc Recall Prec F1

LGBM 87.28%
(75.61–98.95%)

81.81%
(63.16–100.46%)

89.11%
(80.00–98.22%)

85.14%
(70.59–99.69%)

RF 84.29%
(78.05–90.53%)

79.54%
(68.42–90.66%)

85.14%
(75.00–95.28%)

82.03%
(74.29–89.77%)

GBDT 78.47%
(70.00–86.94%)

76.14%
(55.56–96.72%)

78.02%
(69.57–86.47%)

75.41%
(62.50–88.32%)

XGB 77.99%
(68.29–87.69%)

71.00%
(55.56–86.44%)

80.97%
(65.00–96.94%)

74.43%
(62.50–86.36%)
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prognosis of patients with gastric cancer. This approach pro-
vides a viable alternative for costly and operationally chal-
lenging routine cytokine measurements, making it a practi-
cal option for clinical applications.

Obesity is a well-established risk factor for postopera-
tive complications and a poor prognosis following digestive 
tract surgery. Obesity significantly increases the likelihood 
of several adverse outcomes, including postoperative inci-
sion infection, anastomotic leakage, intestinal obstruction, 
and cardiopulmonary complications. Moreover, obesity has 
been shown to adversely affect the efficacy of chemotherapy 
and is associated with decreased survival rates [44]. The tradi-
tional approach for assessing obesity relies on body mass index 
(BMI), which considers an individual’s height and weight. 
However, owing to the significant influence of bone and mus-
cle mass on BMI, it is not entirely accurate for determining 
the level of obesity and fat. This limitation leads to differ-
ing clinical outcomes among individuals with the same BMI, 
which is attributed to variations in muscle and fat proportions. 
Consequently, the relationship between BMI and postoperative 
complications in patients with gastric cancer has resulted in 
conflicting findings within studies [39, 45]. The development 
of imaging has made it a more accurate and reliable method 
for evaluating body composition using CT images to measure 
visceral fat, subcutaneous fat, and skeletal muscle content [46]. 
Visceral fat accumulation is more likely to cause metabolic and 
endocrine dysfunction than subcutaneous fat. This can hin-
der the exposure of the surgical visual field and identification 
of organ tissues during surgery, resulting in an increased risk 
of complications such as surgical site infection, pneumonia, 
and postoperative pancreatic fistula >[47, 48]. Okada et al. 
demonstrated that as the visceral fat area increased by 10 
 cm2, the incidence of complications after radical gastrectomy 
also increased by 9% [49]. Prof. Guang Ning’s group from 
Shanghai made a significant contribution by identifying the 
texture characteristics of visceral fat through imaging omics 
extraction and machine learning [50]. This novel approach 
has brought attention to the characteristics of adipose tissue, 
which are often ignored in most studies predicting the clinical 
outcome of gastric cancer patients after surgery. These charac-
teristics include pathological changes, immune cell infiltration, 
angiogenesis, and fibrosis. These findings hold considerable 
significance in evaluating metabolic disorders and predicting 
the effect of weight loss after surgery, providing a more com-
prehensive understanding of the factors influencing patient 
outcomes [50]. We developed a prediction model for postop-
erative complications of gastric cancer by extracting numerous 
characteristic parameters of visceral fat using radiomics, along 
with inflammation and nutritional indices. This is the first time 
that such a large number of parameters have been extracted for 
this purpose.

Most early studies focused on traditional statistical mod-
els and machine learning algorithms in the field of predicting 

postoperative complications of gastric cancer. While these 
approaches have been successful to some extent, there are 
obvious limitations, including model complexity, reliance on 
feature engineering, and inadequate generalization capabili-
ties [51–53]. One major drawback of traditional models is 
their tendency to emphasize single-model architectures and 
algorithms, lacking the necessary flexibility and adaptabil-
ity to address the complex and variable clinical problems 
associated with post-gastric cancer surgery complications. 
For instance, SVM may perform poorly when handling non-
linear and high-dimensional data and can be sensitive to 
parameters and feature selection. These limitations moti-
vated us to explore more advanced and flexible models and 
algorithms to enhance the accuracy and reliability of predict-
ing complications after gastric cancer surgery.

In this study, we utilized ensemble learning techniques, 
particularly the LightGBM model within the Boosting algo-
rithm, to anticipate postoperative complications in patients 
with gastric cancer. The core of Boosting lies in its capacity 
to amalgamate numerous weak prediction models, namely 
decision trees, into a potent integrated predictor, progres-
sively rectifying errors in preceding models to boost overall 
prediction accuracy. Notably, LightGBM exhibited its supe-
riority as an efficient Boosting implementation in our appli-
cation. Its proficiency in handling large datasets and ability 
to address unbalanced data, particularly crucial in medical 
imaging data, was evident. Additionally, LightGBM offers a 
high level of flexibility and scalability, enabling us to tailor 
our models to suit specific predictive tasks. Our strategy, 
merging the intricacies of image-omics features with Light-
GBM’s efficient learning ability, yielded impressive results 
in predicting postoperative complications in gastric cancer 
patients, underscoring the potential of employing advanced 
machine learning techniques in medical image analysis.

Subtle changes in single or multiple inflammatory markers 
and visceral fat without peritoneal metastasis are often over-
looked by clinicians. Based on easily accessible perioperative 
laboratory tests and preoperative abdominal CT, this study 
constructed an efficient prediction model for postoperative 
complications of gastric cancer. Clinicians can make individ-
ualized risk prediction according to the situation of different 
patients, as well as timely and targeted intervention for high-
risk populations. In addition, this study innovatively used the 
radiomics of visceral fat to predict postoperative complica-
tions of gastric cancer, which is expected to further explore 
the specific factors and mechanisms of visceral fat affecting 
postoperative complications in the future. At the same time, 
this study provides a reference for guiding perioperative anti-
inflammatory therapy. In the future, prospective studies are 
needed to explore whether anti-inflammatory therapy can 
bring clinical benefits to patients with gastric cancer.

However, while this study has shown promising results in 
predicting postoperative complications in patients with gastric 
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cancer, there are several limitations that need to be addressed. 
First, the small sample size and the lack of external test data 
were due to the single-center and retrospective design of the 
study. Although the model developed using inflammatory indi-
cators and visceral fat demonstrated good efficacy, its general-
izability needs to be confirmed through large-scale prospective 
studies. Furthermore, the exclusion of continuous monitoring 
of clinical data may limit the accuracy of predictions and long-
term clinical outcomes have not been evaluated. Additionally, 
potential features related to imaging omics markers have not 
been analyzed, and further investigation into the mechanistic 
link between visceral fat and gastric cancer is warranted, as this 
may inform targeted therapeutic interventions. Lastly, the study 
has not progressed beyond the development stage and requires 
further refinement to be transformed into a comprehensive sys-
tem for clinical application, thereby enabling the realization of 
precision and personalized medicine.

In conclusion, to improve the long-term prognosis of 
patients undergoing radical gastrectomy, prevention of 
postoperative complications is crucial. Postoperative com-
plications in patients are typically influenced by factors 
such as the inflammatory response, nutritional status, and 
obesity. The integration of clinical-imaging characteristics 
within the LightGBM model has proven to be effective 
in predicting the occurrence of postoperative complica-
tions in patients with gastric cancer. Therefore, this model 
is anticipated to serve as a valuable risk assessment tool 
for postoperative complications of gastric cancer, offering 
essential insights into the adjustment of surgical strate-
gies and timely postoperative intervention. Ultimately, the 
LightGBM model has the potential to facilitate early recov-
ery of patients after surgery.
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