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Abstract

Fungi are a large group of eukaryotic microorganisms that can readily adapt to diverse environments and occur in almost all climatic
zones and continents. Although some fungi are inevitable in the environment for the decay and recycling of organic material, many
species are known to produce secondary metabolites, and these mycotoxins, when ingested with food or feed materials, can adversely
affect animal and human health. Among the toxigenic fungi, Fusarium species are recognized as so-called field fungi, invading crops and
producing mycotoxins predominantly before harvest. Fusarium produces a wide array of mycotoxins, causing different plant diseases.
Fusariosis causes significant economic losses in a wide range of crops. Fusarium secondary metabolites, particularly trichothecenes, are
potent toxins in mammalian species and cause diverse adverse effects in humans and animals. Other prominent Fusarium toxins with
entirely different chemical structures are zearalenone and its derivatives and fumonisins. With an entirely different life cycle, toxins of
endophytes belonging to the genus Epichloé and Neothyphodium coenophialum and Neothyphodium lolii comprise an animal health risk,
particularly for grazing animals. This review aimed to summarize the adverse effects of selected Fusarium and Epichloé toxins, with a
special emphasis on their occurrence in roughages and their mechanisms of action, and describe their effect on animal health and welfare

and the potentially related public health risks.
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1. Introduction

Fungi are major pathogens for plants, causing signif-
icant economic losses. Fungal infestation of crops at the
pre- and post-harvest stages is also a risk for animal health,
as they produce secondary metabolites with a wide range
of biological activities; some are severely toxic to humans
and animals. These toxic metabolites are commonly de-
noted mycotoxins, and their adverse health effects are de-
scribed as mycotoxicosis to differentiate their pathogene-
sis from fungal infections (mycosis), where fungi (mainly
dermatophytes) invade the skin or other tissues of humans
and animals, causing tissue damage and specific fungal dis-
eases. Fungi are known to produce mycotoxins, particularly
under stress conditions, and the current climate changes,
with extreme weather conditions, have increased the risk
of feed materials becoming contaminated by various myco-
toxins, as documented in regular global overviews of the oc-
currence of mycotoxins in feed materials [1]. Animals are
exposed to these mycotoxins predominantly via their feed;
however, next to dietary exposure, respiratory (inhalation
of toxin-containing fungal conidia) and dermal (feed dust)
exposures must be considered in some cases. Mycotoxi-
cosis is an example of poisoning by natural substances, and
the clinical signs induced by individual mycotoxins are very

diverse and depend on the chemical structure of the toxin,
the associated mechanisms of action, the actual amount of
the ingested toxin, and the duration of exposure, in addi-
tion to, the animal species and age category, the production
stage, and the physiopathological condition of the exposed
individual. As many fungal species produce more than one
mycotoxin, interactions between these toxins and complex
exposure scenarios in mixed rations or due to other contam-
inants or pollutants must be considered in the overall health
risk assessments [2].

Toxinogenic fungi are ubiquitous, and their preva-
lence depends on their favorite growth conditions regard-
ing moisture, pH, temperature, and nutrients. Several hun-
dred fungal secondary metabolites have been identified, but
only a few experimental or epidemiological data allow haz-
ard identification and characterization for domestic animals
[3]. As mycotoxins enter the food chain, the potential risk
of residual amounts of mycotoxins in editable tissues, milk,
and eggs has been investigated and is part of the overall risk
characterization [4].

Contaminated feed remains the major source of my-
cotoxin intoxication in farm animals. While the majority of
exposure assessments focus on the presence of mycotoxins
in concentrates, generally composed of grains, maize, soya,
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and other protein-rich plans and oil seeds, the contribution
of roughages and modified mycotoxins to animal exposure
is often neglected [5]. Two main classes of mycotoxins,
which play a special role in the contamination of straw, hay,
and pasture grass, are discussed here, with examples from
common Fusarium toxins and toxins from endophytes oc-
curring in pasture grasses.

2. Fusarium Toxins

Fusarium species are known worldwide as the typi-
cal molds that invade grain and maize plants and are recog-
nized as phytopathogens, reducing crop yield and quality.
Fusarium spp., after infecting the crops, including small
grains such as wheat, will be able to produce mycotoxins
before the plants are harvested. Additionally, Fusarium in-
fection will result in low quality and safety of grains and
a lowered crop growth rate, suggesting the beneficial im-
pact of pre-harvest measures in controlling Fusarium spp.
infections in plants [6]. From an economic perspective,
many Fusarium species are not only pathogenic fungi for
strategic crops globally, but they can also produce many
mycotoxins that affect food and feed safety; more impor-
tantly, the mycotoxin-contaminated foods and feed cause
several acute and chronic diseases in humans and animals
[7]. At present, more than 100 Fusarium toxins have been
identified, of which three chemically related groups, the
trichothecenes, the fumonisins, and the lactone-derivative
zearalenone have been detected as significant contaminants
of animal feed [8—10]. It is worth noting that an increasing
number of reports indicate that one of the influencing fac-
tors affecting mycotoxins’ toxicity is their chemical struc-
ture. It was recently discovered that Fusarium spp.-related
mycotoxins contain their metabolites (modified mycotox-
ins) and traditional parent mycotoxins. Previous studies
have reported that most modified mycotoxins show higher
toxicity due to the high number of functional groups in their
chemical structure. For example, a-zearalenol, a hydroxy-
lated metabolite, is a several times more potent estrogenic
compound than its parent Zearalenone (ZEN) [11]. The
chemical structures of some important Fusarium toxins are
depicted in Fig. 1.

2.1 Trichothecenes

Trichothecenes, produced predominantly by F
graminearum, comprise a group of toxins that share a
trichothecene structure with a characteristic 12,13-epoxide
moiety, which seems to account for their immediate
toxicity [12—14]. Trichothecenes in group A, such as T-2
toxin and deacetoxyscirpenol (DAS), are dermatotoxins
and cause necrotic lesions after dermal or mucosal contact.
Skin lesions due to feed dust containing the T-2 toxin
have been described in pigs, and necrotic lesions in the
upper gastrointestinal tract have been observed in poultry
chicks following the consumption of T-2 toxin- or DAS-
contaminated feed [15,16]. Subsequently, weight gain and

feed conversion are reduced, which may reduce perfor-
mance and fertility [17]. Gastrointestinal lesions, growth
retardation, and increased susceptibility to infectious
diseases are the major insults observed after trichothecene
exposure [18].

Trichothecenes are rapidly absorbed from the gas-
trointestinal tract and are intensively metabolized in the
liver, which results in partial de-epoxidation [19]. How-
ever, epoxides escaping liver metabolism, particularly at
higher toxin concentrations, can affect other basic cellular
functions, such as protein and DNA synthesis and, thus, cell
replication. The general inflammatory response exerted, for
example, by T-2 toxin, is accompanied by pancytopenia as
cell maturation of progenitor cells is hampered. Clinical in-
vestigations confirm severe anemia with hemorrhages due
to the simultaneously occurring thrombocytopenia, as well
as leukopenia [20].

Tolerance to T-2 toxin in feeds varies considerably be-
tween animal species, as pigs are more sensitive than poul-
try, followed by ruminants. Meanwhile, the mean exposure
concentration of T-2-toxin varied: 0.03—0.08 pg/kg bw per
day in beef cattle and 1.13—1.47 pg/kg bw per day in milk-
ing goats [21]. Recent evidence suggested that domestic
cats are even more susceptible to T-2 toxin, and severe in-
toxication and lethality can occur in cats due to their inabil-
ity to exert T-2 toxin and its metabolites via glucuronide
conjugation [22].

Deoxynivalenol (DON, vomitoxin) primarily repre-
sents group B trichothecene, including DON, nivalenol, and
fusaric acid. Itis less aggressive than T-2 toxin and does not
provoke skin lesions but affects intestinal integrity by dis-
rupting the tight junction network, followed by local and
systemic inflammatory response [23]. In addition, after
distribution by systemic circulation, DON reaches the area
postrema, where it appears to trigger dopaminergic recep-
tors, resulting in emesis; hence, the name vomitoxin has
often been used in clinical literature for severe clinical in-
toxications. Vomiting and feeding refusal occur only at
high concentrations, exceeding 2000 pg/kg in mixed diets
[24,25]. Together with vomiting, transient feed refusal and
weight loss have also been observed in pigs. DON reduces
weight gain in all monogastric animal species investigated
at in-feed concentrations >1000 ug/kg [26]. The initial
feed refusal can partly explain this reduction in weight gain
but seems to be mainly determined by impaired nutrient
transport through the inflamed mucosa of the gut [27,28].
The definition of threshold toxicity levels for individual
trichothecenes such as DON is hampered by the fact that
more than one toxin is normally present in feed commodi-
ties. The first example of the outcome of the co-occurrence
of Fusarium toxins was the description of the combination
of fusaric acid and DON in corn grain (59.1%) and silage
(82.7%) reported in the United States between 2013 and
2019 [29]. Meanwhile, co-exposure to individual toxins
and their modified forms are well documented for DON,
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Fig. 1. Chemical structures of important Fusarium toxins. (A): T-2 toxin, (B): Diacetoxyscripenol, (C): Deoxynivalenol, (D): Zear-

alenone and (E): Fumonisin B1.

T-2 toxin, and ZEN, and mixtures of Fusarium toxins are in-
cluded in the clinical interpretation of analytical data from
mixed animal rations. These analytical controls are often
limited to the analysis of concentrates (grains, mixed feeds).
However, recent studies have shown that in plants, such
as small grains, including wheat, not only do the kernels
(grains) contain DON, but the entire plant is also contam-
inated. Subsequently, straw and other by-products must
be included in the exposure assessment. Within the plant,
DON is glycosylated, and these glucose conjugates of the
toxin (previously denoted as masked mycotoxins) also con-
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tribute to overall exposure [30]. This alternative route of
exposure is indeed often neglected but remains a common
risk factor for animals, predominantly pigs and poultry, as
well as (small) ruminants, cattle, and even horses, as they
certainly contribute to the detrimental effects on gut health.

2.2 Fumonisins

Fumonisins (polyhydroxy alkylamines) represent a
group of at least six distinct Fusarium toxins produced
by FE verticillioides (previously denoted F. moniliforme).
The chemical structure of fumonisins resembles the sphin-
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golipids of mammalian cell membranes [31,32]. The basic
mechanism of action of fumonisins, of which fumonisin B1
(FB1) is the most toxic, is their ability to inhibit the enzyme
ceramide synthetase, an N-acetyl-transferase catalyzing the
synthesis of complex sphingolipids. Subsequently, the in-
tracellular concentration of free sphinganine and sphingo-
sine increases to toxic levels [33]. In turn, the ratio of uri-
nary sphinganine sphingosine is increased, which serves as
a diagnostic marker of fumonisin exposure [34,35]. Despite
recognizing the principal biochemical effects exerted by fu-
monisins, the diversity in clinical intoxications induced in
different animal species remains to be elucidated.

In horses, an acute fumonisin intoxication is described
as equine leukoencephalomalacia (ELEM) and is charac-
terized by progressive necrosis of the neurons in the cen-
tral nervous system [36]. Such specific neurotoxic effects
have not been observed in other animal species. In pigs, fu-
monisin intoxication is characterized by pulmonary edema
(PPE—porcine pulmonary edema), which seems to be re-
lated to cardiac dysfunction rather than to a specific impair-
ment of pulmonary endothelial function and a pulmonary
inflammatory response [37]. In addition, following chronic
exposure, pigs develop hepatic hyperplasia with increased
liver enzyme concentration in serum and pancreatic acinar
cell degeneration [38,39]. In large ruminants, experimental
doses of fumonisins induced only mild hepatic symptoms
[40], and in cattle and small ruminants, the kidney was iden-
tified as the target organ [41].

Fumonisins are polar compounds, and the gastroin-
testinal tract absorption rate is very low (about 19%—2%),
even in monogastric species. The ruminal flora does not
degrade fumonisins and seems to be absorbed in the same
ratio in ruminants as in monogastric species, namely in
the small intestines [42]. After absorption, the toxins are
rapidly metabolized and excreted, which makes it virtually
impossible to measure plasma levels under field conditions.
Toxic threshold levels still need to be defined for individ-
ual species and range at present from 6 mg/kg in horse feed
to 8—10 mg/kg in pig feed and up to 400 mg/kg in cattle
rations, reflecting again the very low bioavailability of fu-
monisins in comparison to other Fusarium toxins [43].

In contrast to other Fusarium toxins, fumonisins had
been found predominantly in corn cops and cob mixes.
Given the increasing use of corn cob mixed silages in cattle
and the nutrition of horses and pigs, exposure levels may
be higher than expected. However, according to the previ-
ously published report, in Europe, the risk of adverse effects
of FB1-, FB2-, and FB3-containing feeds was considered
very low for ruminants, low for poultry, horses, and fish,
but as a potential health concern for pigs [44].

2.3 Zearalenone

Many Fusarium species, such as F. graminearum and
FE. culmorum, which can produce trichothecenes, also pro-
duce zearalenone (ZEN, previously also denoted ZEA or F-

2 toxin) [45]. ZEN is found worldwide, particularly in corn
(maize) and its by-products. ZEN is a resorcyclic acid lac-
tone and a ligand for estrogen receptors in various target tis-
sues [46]. The binding affinity to these receptors is consid-
erably lower than that for 17-3-estradiol but differs between
the parent mycotoxin and its metabolism-derived deriva-
tives [47]. Alpha-zearalenol, as a hydroxylated metabolite,
isup to 60 times more active than the parent compound [48].
Pigs, particularly prepubertal gilts, seem to be the most
sensitive animal species, and clinical presentations follow-
ing ingestion of ZEN-contaminated feeds include vulva
swelling and discoloration, enlargement of the uterus and
the mammary glands, as well as a prolapsed rectum, uterus,
and vagina in severe cases [49,50]. The onset of puberty
may also be delayed, and cycling gilts exposed to ZEN at
a prepubertal age may exhibit extended interestrus inter-
vals and reduced fertility with persistent corpora lutea [51].
Sows may farrow an unusually small or large litter, with
high perinatal death rates, inconsistent piglet development,
and weight gain [52]. Prepubertal boars show preputial en-
largement and young boars have a reduced libido and lower
plasma testosterone concentrations together with reduced
spermatogenesis following ZEN exposure [53].

Thus, clinical signs vary with age, sex, and exposure
period. In piglets and prepubertal pigs, levels exceeding
100 p/kg in feed have been associated with clinically visible
signs of hyperestrogenism, while in cyclic sows and fatten-
ing pigs, the tolerance is higher, with levels between only
250 and 500 pg/kg ZEN seemingly tolerated before major
clinical signs such as a prolonged cycle and anestrus occur
[48,54]. Poultry and ruminants are more resilient to ZEN
(in feed, concentrations ranging up to 500 p/kg are gen-
erally well-tolerated). These differences between species
seem to be associated with the species-specific fate of ZEN
in the body, where, for example, it is metabolized into the
more estrogenic a-ZEL in pigs [49] and the less potent (-
ZEL in the more tolerant species. The rate of metabolism
varies even between related species; poultry chicks are less
sensitive than turkeys, but it also depends on hormone sta-
tus (sexual cycle), breed, and feeding regimen [55].

3. Grass Staggers and Neothyphodium
Toxins

Neotyphodium species comprise a family of endo-
phytic fungi with a unique symbiotic co-existence with
various forage grasses. Recently, the entire group of en-
dophytes has been taxonomically reallocated as members
of the genus Epichloé. However, as the available clin-
ical and toxicological literature refers mainly to the old
taxonomy, both names are given here for easier readabil-
ity. Neotyphodium species typically invade grasses, and
their toxins can contaminate grass leaves. However, the
endophyte is transmitted by grass seeds, which also con-
tain high concentrations of fungal metabolites as a natural
insecticidal and nematocidal defense mechanism. Promi-
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Fig. 2. Chemical structures of (A) Lolitrem B and (B) Ergovaline, as typical examples of mycotoxins produced by endophytes in

pasture grass.

nent examples of endophyte-infected grasses with a risk to
animal health are Neotyphodium coenophialum (now de-
noted Epichloé coenophiala), the main producer of Ergo-
valine (an ergopeptine alkaloid) occurring in Festuca grass
species and associated with Fescue foot, a common in-
toxication in cattle in North America, as well as Neothy-
phodium lolii, now denoted Epichloé festucae var. lolii,
which produce various neurotoxin mycotoxins, including
the Lolitrems [56]. Another issue that must be considered
is facial eczema (pithomycotoxicosis) due to ryegrass stag-
gers and tall fescue, which affect grazing animals, includ-
ing cattle and sheep [57]. It is worth noting that previous
reports indicate that the reaction and metabolite produc-
tion of endophytic fungi could be affected by season, host
plant life cycle, and grass endophytic species. For exam-
ple, a great difference was found between infected and unin-
fected grass-Epichloé endophyte associations in the profile
of volatile organic compounds [58]. The chemical struc-
tures of Lolitrem B, the major toxin in the Lolitrem group
and Ergovaline, are shown in Fig. 2.

Ergovaline has been identified as the major toxic
agent in tall fescue toxicosis, a disease related to the inges-
tion of fescue grass. In horses, the primary toxic effect of
ergovaline is associated with its dopamine-like effects. As
an antagonist of prolactin, it causes agalactia and delayed
delivery in mares with dystonia of the foal [59]. In cat-
tle, ergovaline induces vasoconstriction (fescue food), hy-
perthermia, temperature intolerance, and general malaise in
cattle, accompanied by weight loss and poor carcass quality
[60]. More than two million cattle are estimated to suffer
annually from this mycotoxicosis in the USA, and numbers
are still increasing. Although life-threatening conditions
are rare, the economic losses caused by ergovaline myco-
toxicosis are considerable [61]. Ergovaline has been identi-
fied as the most prominent toxin involved in typical clinical
conditions. However, infected forage grasses may also be
contaminated with other clavines and smaller amounts of
lysergic acid, pyrrolizidine alkaloids, and pyrrolopyrazine
[62].
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Lolitrem B is the main representative of a group of
fungal indole terpenoids found in the perennial ryegrass
Lolium perenne in Europe, New Zealand, Australia, and
South America (Argentina) [63,64]. As perennial ryegrass
is widespread in Europe, historical cases of ryegrass stag-
gers have been documented. The increasing use of ryegrass
ornamental grass lawns and sports fields has resulted in
the selection (and import) of endophyte-contaminated grass
seeds due to the peramine content of the seeds, which con-
veys insect and nematode resistance. Subsequently, rye-
grass staggers have been observed in horses, cattle, and
sheep in Europe [65]. Typical clinical presentations in-
clude disorientation, with ataxic movements progressing
into convulsions if the animal is forced to move [66]. In
addition, slight parasympathomimetic symptoms occur in-
frequently [67]. The condition often remains undiagnosed
or misdiagnosed, as only the analysis of grass or hay for the
presence of lolitrems would support the clinical interpreta-
tion of the syndrome.

The mechanism of action of lolitrems and related tox-
ins is controversially discussed. Different results have been
reported in experimental trials with individual toxins and
natural cases of intoxication when animals are exposed to
multiple related indole derivatives produced by the endo-
phyte. Originally, clinical symptoms were associated with
toxin interactions and GABAergic pathways, with an in-
crease in excitatory amino acids in synaptosomes of the
central nervous system being proposed as the main mecha-
nism [68]. However, particularly in small ruminants such as
sheep, smooth muscle activity and motility in the intestines
were also regularly observed, and the interaction of these
indole diterpenes with BK channels was also discussed and
demonstrated through both in vitro and in vivo experiments
[69]. Despite the neurotoxic symptoms, typical neurologi-
cal lesions are absent, and animals may recover completely
when withdrawn from the infected grass. Particularly in
horses, the clinical diagnosis should thus be supported by
toxin analysis in the incremented grass or hay. In sheep and
cattle, the maximal tolerable toxin concentration is close
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to 2 mg/kg dry matter. In contrast, horses already exhib-
ited clinical symptoms in some cases following ingestion
of lolitrem at a concentration of 0.8 mg/kg dry matter, and
more severe symptoms were observed when the lolitrem
concentration exceeded 1.2 mg/kg [68]. It is worthwhile
to mention that lolitrem B is degraded by the natural mi-
croflora present in hay, and thus, the risk for intoxication
decreases during storage in the winter season [70].

4. Methods of Prevention

Since both Fusarium toxins and ergot alkaloids are
formed at the pre-harvest stage, only a change in agricul-
tural practice could avoid the risk of animal exposure. How-
ever, since this is not feasible in most farm operations and
under the current agricultural practice, only risk reduction
methods can be recommended. In pasture grasses, these
include the control of endophyte infestation, while in small
grains and maize, natural Fusarium control by crop rotation,
soil, good agriculture practices, harvest management, and
eventually, the use of fungicidal agents is common practice
[6]. Creating awareness by farmers alongside regular an-
alytical controls of harvested crops and roughages used in
animal diets and proper ensiling are recommended and cur-
rently very well supported by advanced multi-mycotoxin
analytical methods [71]. In addition, under the pressure of
increasing mycotoxin levels in animal diets, an array of feed
additives have been developed to mitigate the adverse effect
of mycotoxins in farm animals [72]. These so-called my-
cotoxin mitigation substances may include mineral clays,
which indeed successfully bind aflatoxins and, to some ex-
tent, other polar mycotoxins, as well as prebiotics (yeast
and algae cell walls) and probiotics (living yeast cells, Lac-
tobacilli, and others) [73]. More recently, degrading en-
zymes, such as lactonases (ZEN), epoxidase (DON, T-2
toxin), and hydroxylases (fumonisins), have become com-
mercially available as feed additives. Finally, phytogenics
(herbs or herbal blends) with antioxidant, hepatoprotective,
and anti-inflammatory properties are often recommended to
reduce the adverse effects of mycotoxins in animals [74].
While it is beyond the scope of this review to discuss indi-
vidual commercial products in more detail, many of them
are well supported by preclinical and clinical studies. To
prevent food contamination (animal-derived products), sil-
ica clays are generally recommended to reduce the risk of
contamination of daily milk by aflatoxin M1.

5. Public Health Aspects

Mycotoxins occur in agriculture products worldwide
and pose a risk to human and animal health. Consider-
ing the current global warming and the increasing preva-
lence of extreme weather conditions, the risk of mycotoxin
contamination is increasing. Human exposure is predomi-
nantly associated with ingesting contaminated grains, fruits,
nuts, and spices. The contribution of animal products, such
as milk, meat, and eggs, is generally low and estimated

to remain below 10% of the overall human exposure. An
exception is aflatoxin M1, excreted in milk by dairy ani-
mals after ingesting aflatoxin-contaminated feeds. As in-
fants consume relatively high amounts of milk and dairy
products related to their body weight, exposure to Aflatoxin
M1 (AFM1) should be monitored regularly, and preventive
measures such as adding mineral clay products to the ration
of dairy cows should be considered and recommended for
dairy farmers, as mentioned above [75]. Therefore, there
should be different mycotoxin management measures to en-
sure safe food and feed, including good agriculture prac-
tices, establishing global mycotoxin regulations, develop-
ing advanced and multi-mycotoxin analytical methods, and
using effective decontamination and mitigation methods.

6. Conclusion

In the last decade, increasing concerns about myco-
toxins as natural and apparently unavoidable contaminants
of animal feeds have stimulated intensive research activi-
ties about their mechanism of action and risk for human and
animal health. Most of these findings and reviews refer to
mycotoxins commonly found in grains, maize, soya beans,
oil seeds, and other commercial feed commodities. In con-
trast, mycotoxins in grassland, hay, and other roughages,
including straw, are less well documented and often un-
derestimated in exposure assessments of farm animals and
straw, and the associated clinical symptoms are often under-
reported. With the current availability of sensitive multi-
mycotoxin analytical methods, more data are expected to
become available soon, and farmers and nutritionists should
be encouraged to have the full diets of their animals ana-
lyzed, as mycotoxins have become one of the most promi-
nent differential diagnoses on animal farms.
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