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Abstract— Anomaly detection is the cornerstone for the health
management of rolling element bearings. The unsupervised
learning model for anomaly detection driven only by normal
data has received increasing attention in recent years. In this
article, an innovative deep-learning-based model, namely, mem-
ory residual regression autoencoder (MRRAE), is developed to
improve the accuracy of anomaly detection in bearing condition
monitoring. The memory module and autoregressive estimator
are applied to calculate the probability density distribution of the
latent memory residual representation. The reconstruction errors
and surprisal values of the proposed model are used to detect
the abnormal condition of bearing. To verify the superiority of
the proposed method in anomaly detection, two sets of run-to-
failure experimental data set gathered from the laboratories are
studied and analyzed. The result demonstrates that the proposed
MRRAE model achieves superior performance compared with
several conventional and deep-learning-based anomaly detection
methods. Furthermore, the proposed method pays close attention
to the special structure of bearing vibration signal and provides
a new way for explaining the decision-making processes of deep
neural networks.

Index Terms— Anomaly detection, condition monitoring,
frequency-domain analysis, machine learning, rolling bearings.

I. INTRODUCTION

AS ONE of the most important components in rotating
machinery, rolling element bearings are fragile due to

their severe working environment, such as high rotating speed,
alternating load, and randomly changing conditions [1]–[3].
These harsh working environment may cause micro defects
on the component of bearing, which can gradually develop
into failures and cause unexpected accidents. Consequently,
real-time monitoring of bearing condition, detection, and iso-
lation of early developing faults as well as prediction of fault
propagation are very important research topics [4], [5]. As an
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effective technology to ensure the safety operation of bear-
ings, Prognostic and Health Management (PHM) is beneficial
to avoiding major accidents and reducing the maintenance
costs [6].

Anomaly detection is the cornerstone of bearing health
management, which can be used to determine whether the
bearing is working at a normal condition [7]. Once the early
appearance of the abnormal state is detected, some subsequent
works will be conducted based on the result of anomaly
detection. For instance, the sampling frequency of vibration
signal can be increased to analyze the cause of abnormal
(fault diagnosis). Moreover, the cut-off point between normal
class and abnormal class determined by the anomaly detection
method can be used as the first predicting time (FPT) [8] in the
field of remaining useful life prediction (RUL prediction) [9].

With the development of information technology and sensor
technology, the quantity of data in the industrial field has been
increased greatly, but the quality has not been correspondingly
increased. For instance, bearings usually work in healthy state
for a long time, and a large number of normal data can be col-
lected, but sufficient abnormal data are often unavailable [10].
Even if occasional faults emerge, the lack of corresponding
failure tags will limit the application of these data. Therefore,
it is impractical to train the machine learning models with
multiple classes’ data, which restricts the application of PHM
in industrial fields.

Therefore, the unsupervised learning model for anom-
aly detection driven only by normal data has received
increasing attention in recent years, which is essentially a
one-class classification task. The main solution to this task
is mapping the normal data distribution to high-dimensional
hyperplane constructed by rule-based approach or neural
network.

Classification-based approaches aim to construct represen-
tative one-class decision boundaries such as hyperplanes or
hyperspheres [11] around the normal distribution to detect
abnormal samples [12]. Liu and Gryllias [13] used cyclic
spectral indicators to build the feature space, and the Euclidean
distance in hypersphere was applied to isolate the healthy and
faulty data; the experimental results show that the support vec-
tor data description model with cyclic spectral coherence indi-
cators can precisely detect the bearing faults. Zhu et al. [14]
proposed a novel one-class classifier, namely, rough support
vector data description, to assess the performance degradation
of bearing, which can solve the over-fitting problem that
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exists in support vector data description. A robust one-class
support vector machine for bearing fault detection is proposed
in [15], which designed penalty factors to depress the influence
of outliers. The simulation example shows that this method
is superior to the general one-class support vector machine,
especially when the training data set is corrupted by outliers.
Saari et al. [16] used one-class support vector machine to
detect and identify wind turbine bearing faults with the assis-
tant of fault-specific features extracted from vibration signals.
In [17], a novel method, namely, one-class classification-based
convex hull, was proposed for bearing fault detection, which
calculated the nearest point to the origin from the reduced
convex hull of training samples. The experimental results
demonstrate that this method performs more efficiently than
one-class SVM (OCSVM).

However, the anomaly detection performance of
classification-based method can be affected when the
data points lay in a high-dimensional space, as modeling the
high-dimensional data is notoriously challenging [18], [19].

Reconstruction-based methods are another basic approach
currently being adopted in anomaly detection, which usually
learn a parametric projection and reconstruction model of
normal data [20]. As one of the representative models of
deep learning, deep autoencoder (AE) [21] is a powerful
tool to process the high-dimensional data in the unsupervised
setting. A novel framework integrating adaptive sparse con-
tractive autoencoder algorithm and optimized unsupervised
extreme learning machine is presented in [22], which can
achieve effective sparse and sensitive feature information
extraction to avoid over-fitting. A semisupervised deep sparse
autoencoder with local and nonlocal information is proposed
in [23] to extract the fault feature. The weighted cross-entropy
techniques are applied to improve the generalization per-
formance of this model for labeled data. In [24], a three-
layer sparse autoencoder is constructed to extract the features
of vibration signal, and the prediction accuracy is better
than the results of other comparison algorithms. A novel
framework named data-enhanced stacked autoencoders is pro-
posed in [25], in which stacked autoencoders can generate
simulated signals to augment the insufficient training data.
In the field of anomaly detection, AE is usually trained by
minimizing the reconstruction errors on normal data [18].
Thus, the distribution of normal data can be recorded in the
structure and parameters of AE. In the testing stage, the recon-
struction error of abnormal sample will increase definitely.
A new approach integrating AE and on-line sequential extreme
learning machine is proposed in [26] for on-line condition
monitoring of bearing. The simple design of this method
is promising for easy hardware implementation in industrial
applications. Chen et al. [27] used stacked denoising AEs to
detect the abnormal condition of wind turbines based on
the reconstruction of condition parameters. Demonstration on
real SCADA data shows that this method is effective for
anomaly detection and early warning of an actual wind turbine.
Xu et al. [28] proposed a moving window-based stacked
autoencoder with an exponential function, which incorporates
a slope local minimum point to extract the degradation trends
of roller bearing.

However, limited by the simple structure of AE, the recon-
struction error of some abnormal inputs is not changed,
especially when the abnormal samples are not much different
from the normal samples.

The running state of the bearing is a continuous process.
When failures occur in the component of bearing, there is
no significant change in the time domain and frequency
domain of the vibration signal compared with the normal state.
The autoencoder may misjudge an early abnormal state as a
normal state, which limits its application in bearing anomaly
detection. VAEs are directed probabilistic graphical models
whose posterior is approximated by a neural network, forming
an AE-like architecture [29], [30]. They use a variational
approach for latent representation learning, which results in
an additional loss component and a specific estimator for the
training algorithm called the Stochastic Gradient Variational
Bayes estimator [31]. VAEs have been applied for anomaly
detection in many research fields [32]–[34]. However, in the
context of anomaly detection, VAE also has the problem of
being insensitive to subtle changes.

To mitigate the drawback of AE (VAE), a recent research
trend considers using generative adversarial networks (GANs)
for anomaly detection [35]–[39]. During the training stage,
the optimization algorithm is used to make the discriminator
unable to distinguish between normal samples and recon-
structed samples. During the testing stage, the reconstruc-
tion error and the output features of the discriminator are
used as the indicator for anomaly detection. Wu et al. [10]
proposed a fault-attention generative probabilistic adversarial
AE (FGPAA) and constructed the fault-attention abnormal
state indictor to achieve high accuracy in machine anomaly
detection. A novel anomaly detection approach based on
GANs is proposed in [40] to distinguish abnormal samples
from normal samples. However, the simultaneous training of
generator and discriminator models in GANs is inherently
unstable. A lot of trial and error is required regarding the
network structure and training strategy.

On the other hand, it is crucial to understand the reasons
behind the decision made by neural networks. In recent
years, attention mechanism has been widely studied and
applied in the field of prognostic and health management.
Li et al. [41] provided a new perspective in understanding the
hidden mechanism of intelligent fault diagnosis by introducing
attention mechanism into the deep neural network. A new
attention module considering the characteristics of rolling
bearing faults is designed in [42] to enhance fault-related
features and to ignore irrelevant features. Multiattention 1-D
convolutional neural network is further proposed to diagnose
wheelset bearing faults, which outperforms eight state-of-the-
art networks. Wang et al. [43] proposed a new deep framework
named multiscale convolutional attention network, in which
self-attention modules are constructed to fuse the input mul-
tisensor data. The experimental results demonstrate that this
framework achieve superior performance in fusing multisensor
information and improving RUL prediction accuracy [43].
An attention-based deep learning framework for machine RUL
prediction is proposed in [44], which can assign larger weights
to more important features and time steps automatically.
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Qin et al. [45] proposed gated dual attention unit to estimate
the RUL of the rolling bearing, which achieved higher predic-
tion accuracy and convergence speed than several conventional
RUL prediction methods. An attention-based LSTM network
is proposed in [46] for machine RUL prediction, in which
the attention mechanism can solve the problem of information
loss in the long-distance signal transmission of LSTM effec-
tively. Liu et al. [47] proposed a novel feature-attention-based
RUL prediction approach. The feature-attention mechanism
gives greater weights to more important features dynamically
which make the prediction model pay more attention to key
inputs [47]. However, the current anomaly detection methods
of bearing condition monitoring only give the final results.
Few writers have been drawn on any systematic research
to interpret the decision-making processes of these models.
Moreover, there has been little consideration about the special
structure and characteristic of bearing vibration signal in
anomaly detection. When an abnormal sample is detected,
the sensitive frequency band needs to be further analyzed
in which the fault symptoms are enhanced by structural
resonances.

To address these problems, an innovative deep-learning-
based model, namely, memory residual regression AE
(MRRAE), is proposed in this article. The 1-D convolutional
layer is constructed as the main component of the encoder
and decoder part, the memory module is used to calculate
a sparse approximation of the latent representation, and the
difference between the input and the output of the memory
module is input into the autoregressive estimator. The recon-
struction errors and surprisal values of the proposed model
are used to detect the abnormal condition of bearing, which
achieves superior performance than the comparison methods.
The contribution of this letter can be summarized as follows.

1) An MRRAE is proposed in this article, and memory
module and parametric density estimator are integrated
to pinpoint bearing failure at an early stage. Compared
with the conventional and deep-learning-based anomaly
detection methods, the proposed model shows a better
recognition performance.

2) The sensitivity and interpretability of the features in
latent space are considered simultaneously via paramet-
ric density estimator. In this way, the decision-making
processes of the proposed method can be monitored and
analyzed.

3) The proposed method takes the characteristics of convo-
lution and the distribution of bearing vibration signals
in the frequency domain into account. The abnormal
part in the frequency domain can be localized with the
assistance of probability density distribution.

The rest of this article is organized as follows. The technical
preliminaries are introduced in Section II. The architecture and
detailed procedures of the proposed model are presented in
Section III. The proposed method is verified on two run-to-
failure experimental data sets in Section IV, where the common
evaluation metrics is used to describe the performance of dif-
ferent methods quantitatively. Finally, conclusions are drawn
in Section V.

II. TECHNICAL PRELIMINARIES

A. Autoencoder

AE is one of the classic unsupervised machine learning
algorithms. The aim of AE is to generate target values as
close as possible to its original input by training the network
through gradient backpropagation. The number of units in
the hidden layer is less than that in the input and output
layers. Therefore, the input samples of AE are compressed
into a low-dimensional latent space which is also recognized
as information bottleneck.

The AE network is composed of two basic components:
the encode and the decoder. As presented in the following
equation, an encoder is a neural network fe that compresses
the input signal X into a low-dimensional representation Z,
where θe represents the parameters of encoder:

Z = fe(X; θe). (1)

The decoder fd is a neural network (usually the same
network structure as the encoder) which maps the latent space
representation Z to the reconstruction sample X̂ of the same
dimension as the original input X

X̂ = fd(Z; θd). (2)

The AE can be trained by minimizing the reconstruction
error, which measures the mean squared error between the
input sample X and the reconstruction sample X̂

L(θe, θd) = ��X − X̂
��2

2. (3)

B. Memory-Augmented AE

To improve the robustness of AE in anomaly detection,
machine learning strategies with a memory component are
applied in the proposed memory-augmented deep autoencoder
(MemAE). The latent space representation is decomposed
into the product of coefficients and memory atoms, which
is determined by normal data in the training stage. Thus,
the reconstruction of the decoder tends to be close to the
normal distribution which can make the reconstruction errors
on abnormal data samples strengthened [18]. This advantage
of MemAE offers a strong guarantee for anomaly detection.

The MemAE model includes the following three parts:
encoder, memory module, and decoder. The encoder com-
presses the input samples into latent space representation Z
which performs as a query to retrieve relevant atoms in the
memory M [18]. The decoder is used to reconstruct the
samples from the latent space representation Ẑ, which is the
sparse approximation of the latent representation.

The memory module is defined as a matrix M ∈ R
N×C

which includes N real-valued vectors of dimension C . The
row vector mi denotes the i th row of M , and each of
them is recognized as a memory atom. The memory module
is a recording component which aims at finding a sparse
approximation Ẑ of the latent representation Z in the form of
a linear combination of memory atoms mi . The principle of
this attention-based addressing strategy is shown in (4), where
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the attention weight A is a row vector with nonnegative entries
that sum to one and ai denotes the i th entry of A

Z = AM =
i=1�
N

ai mi . (4)

The cosine similarity is used to evaluate the similarity
between the latent space presentation Z and each memory
atom mi in the memory module

d(z, mi ) = zm�
i

�z��mi� . (5)

Thus, each attention weight ai in (4) is obtained via a
softmax operation on similarity measurement

ai = exp(d(z, mi))� j=1
N exp

�
d
�
z, m j

�� . (6)

The hard shrinkage operation is applied to promote the
sparsity of A, which encourages fewer but more relevant
memory atoms used to approximate the latent representation

âi = s(ai; ι) =
�

ai , ai > ι

0, otherwise.
(7)

âi denotes the i th entry of the memory addressing weight
vector Â after shrinkage and ι denotes the shrinkage thresh-
old [18]. After the shrinkage operation, the sparse approxima-
tion Ẑ can be obtained by Ẑ = ÂM .

Similar to the dictionary update strategy of sparse dictionary
learning, given the normal data, the memory contents are
trained to be close to the normal distribution. In the test stage,
the learned memory will be fixed, and the reconstruction is
calculated from a few selected memory atoms, which can
make the reconstruction errors on abnormal data samples
strengthened [18]. In this way, the performance of MemAE
in anomaly detection can be improved.

C. Latent Space Autoregression

A new generative unsupervised model is proposed in [20]
to detect the anomaly by minimizing the reconstruction errors
and surprisal values of normal samples. A parametric density
estimator is designed to calculate the surprisal values of latent
representation via an autoregressive procedure [20].

The probability distribution p(Z) of latent representation
Z can be factorized as a joint distribution of conditional
probability density (CPD) p(zi |Z<i )

p(Z) =
d�

i=1

p(zi |Z<i ) (8)

where the symbol < implies an order over random variables.
The probabilistic model h(Z; θh) is designed to estimate

the probability distribution p(Z) via the autoregressive pro-
cedure, in which each output depends on previous observa-
tions [48], [49].

To achieve this aim, the masked fully connection is con-
structed based on the classic fully connected layer. Given the
input h ∈ R

d×ci (assuming ci = 1 at the input layer), the
output feature map o ∈ R

d×co of the masked fully connection

Fig. 1. Schematic of masked fully connection.

is obtained by multiplying the input with a masked weight
matrix, which has the same calculation way with the fully
connected layer.

The masked weight matrix M is computed by setting the
corresponding element of the weight matrix W to 0

mk,l
i, j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ωk,l
i, j , if i < j�
ωk,l

i, j , if type = B

0, if type = A,
if i = j

0, if i > j.

(9)

Type A forces a strict dependence on previous elements
(and is used only as the first estimator layer), whereas type B
masks only succeeding elements [20].

As shown in Fig. 1, the red dotted line in the neural
network diagram and the right triangular portion of the weight
matrix indicate mask operation, which makes the output of
MFC in different positions only connected to the specific
unmasked neurons. Similar to the concept of the receptive
fields in convolutional neural networks, each output of MFC
depends on previous observations through this order-stepped
mask strategy.

The autoregressive estimator is constructed by stacking
multiple MFCs, where the output of the last autoregressive
layer provides an approximate estimate of the CPD p(zi |Z<i ).

Lowering the surprisal values of the autoregressive estimator
for a normal configuration is the same as maximizing the
probability of latent representations, which is defined as the
negative log-density of the latent space distribution [20]

L(θh) = − 1

K

K�
k=1

log(h(z; θh)) (10)

where K is the channel number of latent representation and
θh is the parameters of autoregressive estimator.
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Fig. 2. Architecture of the MRRAE.

III. METHODS

A. Architecture of Proposed Model

As presented in Fig. 2, the proposed MRRAE model
consists of three parts—the convolutional AE, the memory
module, and the latent residual autoregression estimator. First,
the input signal is compressed into a low-dimensional repre-
sentation in the same way as the traditional AE-based anomaly
detection method. The memory module is then used to calcu-
late a sparse approximation of the latent representation, which
promotes the robustness of the proposed method in anomaly
detection. After that, the residual of the memory module is
input into the autoregressive estimator, which can compute the
surprisal values of different samples. The manifold distribution
of the normal samples is recorded in the parameters of the pro-
posed model. The variation in the anomaly indicator implies
the appearance of anomalies out of the normal distribution.

B. 1-D Convolutional AE

The 1-D convolutional layer is constructed as the main com-
ponent of the encoder and decoder part, which can preserve
the integrity and the physical meaning of the vibration signals.
On the other hand, forward propagation and backpropagation
in the 1-D convolutional layer require simple array operations,
which means this method is well-suited for real-time and
low-cost applications. As shown in Fig. 2, in the convolutional
encoder network, the input data pass through two convolu-
tional layers with 7 × 1 kernels. Sixteen individual 1-D kernels
are used in the first layer to compress the input samples
into feature maps. Similarly, the feature maps of the second
convolutional layer are obtained via 32 1-D kernels. In the
proposed model, the rectified linear units (ReLUs) activation
function is applied in the convolutional layers. A maximum
pooling layer with filters of size 8 × 1 is constructed after
each convolutional layer to reduce the dimensions of feature

maps. The padding value of each convolutional layer is set as
3, so the bottleneck has size 32 × 32 where the first 32 and
the second 32 denote the channel numbers and the dimensions
of the latent representation, respectively.

The decoder mirrors this architecture with transposed con-
volutional layers. The feature maps of each convolutional layer
are up-sampled by the unpooling layers which can compute a
partial inverse of the pooling layers. To recover the vibration
signal more accurately, the indices of the maximal values in
the encoder pooling layer are recorded and picked as the input
of the unpooling layers.

C. Memory Module

To promote the robustness of the proposed method in
anomaly detection, the memory module described in Section II
is equipped between the encoder and the decoder.

The size of the memory block is set as 100 × 1024, where
100 and 1024 are the atom number and the dimensions of the
memory representation, respectively. The atoms of the memory
block are initialized randomly, which will be determined at
the training stage. The latent representation matrix with size
32 × 32 is converted to a vector by flatten operation. The
approximation of the latent representation vector was obtained
by the memory addressing strategy described in (4) and (5).
The approximation vector is converted back into 32 × 32
matrix and then as input to the decoder, which can generate
target values as close as possible to the original input vibration
signal. The shrinkage threshold ι in (7) is an important
hyperparameter when the sparse representation is calculated
at the memory module. The shrinkage threshold ι is set as
0.002 in all experiments of this article.

To avoid the well reconstruction of weakly abnormal sig-
nals, the entropy of the addressing weight is minimized at the
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training stage [18]

�


Â
�

=
M�

m=1

−âm · log(âm). (11)

Another major advantage of the memory module in the
proposed method is that the error between the input and the
output of the memory block can be analyzed further, which
could generate an additional sensitive indicator to detect the
abnormal samples.

D. Memory Residual Regression

As shown in Fig. 2, 32 convolutional kernels are used
to transform the feature into latent space in the second
convolutional layer of the encoder, and the element in the
latent feature vector of each channel represents a nonlinear
projection from different region of the frequency band. Thus,
the multikernel convolution operation indicates different views
of energy distribution in the spectrum.

A concentration vector is obtained by averaging the mul-
tichannel latent representations. This averaging strategy can
highlight the dominant components between multiple channels
and eliminate the influence of random variables introduced
by the convolution, which has been applied widely in signal
processing [50]–[52] and machine learning [53]. Moreover,
the same average operation is conducted on the approximation
of the latent representation determined by the memory module.

From the perspective of the reconstruction-based anomaly
detection methods, the reconstruction error of the input and
the output is applied as the anomaly indicator. Inspired by
this idea, the difference between the input and the output
of the memory module is considered and studied in this
letter. The difference V res between the concentration vector
V e and the memory approximation concentration vector V d

is input into the parametric density estimator which learns
the probability distribution underlying latent representations
through an autoregressive procedure

V res = V e − V d . (12)

Given such modules, the anomaly samples can be detected
by monitoring the surprisal values of the latent memory
residual representation V res in the test stage. This operation
is conducive to understanding the decision-making processes
of the proposed framework. The difference between the input
and the output of the memory module in different channels
can be monitored and analyzed with the help of the residual
part. The same operation on any other layer may weaken the
interpretability.

In the proposed architecture, the layer number of the autore-
gressive estimator is set as one, which means there is only one
masked fully connection included in the estimator module. The
output channel number of the estimator is set as 50, and the
input channel number of the estimator is set as 32, the same
as the dimension of the latent representation.

Besides, the element in the latent feature vector V res rep-
resents a nonlinear mapping from different region of the
frequency band. Therefore, the probability density distribution
h(V res; θh) of the latent memory residual representation can

be used to indicate the energy variations in the spectrum by
inverse mapping. In this way, the abnormal part of the spec-
trum can be detected and localized. Furthermore, the abnormal
spectrum band can be applied for envelope demodulation and
bearing fault diagnosis. In the past years, envelop analysis
has been considered as the benchmark technique for fault
diagnosis of rolling element bearings. The vibration signal is
processed by a band-pass filter with a selected frequency band
in which the fault symptoms are enhanced by structural reso-
nances. The procedures of the envelope spectrum calculation
according to the sensitive band in this letter are as follows.

1) The frequency band corresponding to the sensitive chan-
nel is detected through back mapping operation.

2) (Band-pass filter with the sensitive frequency band is
constructed to process the vibration signal.

3) The filtered signal is demodulated through Hilbert trans-
form which is widely used in signal demodulation.

4) Envelope spectrum is finally calculated by FFT of enve-
lope signals.

E. Loss Function and Anomaly Indicator

In the training stage, the loss function of the proposed
model is formulated by combining the reconstruction loss,
the sparse regular loss, and the negative log-density of the
memory residual. Each item in the loss function is responsible
for different parts mentioned above, as shown in the following
equation:

L(θe, θd, θm, θh) = ��X − X̂
��2

2 − 1

K

K�
k=1

log(h(V res))

− α

M�
m=1

âm · log(âm) (13)

where α represents the weight of the memory entropy and is
set as 0.02 in all experiments of this letter.

According to the definition of surprisal value described in
Section II-C and the loss function of the proposed framework,
the normal samples tend to yield a small surprisal value in
the training stage. Once the early abnormal state of bearing
occurs, the surprisal value would increase accordingly. Thus,
the surprisal value can be used to indicate the occurrence
of anomalies. The reconstruction error and surprisal value
are defined as the anomaly indicator to detect the abnormal
condition of bearing

P = ��X − X̂
��2

2 − 1

K

K�
k=1

log(h(V res)) (14)

Pn = P − min(P)

max(P) − min(P)
. (15)

The normalized operation is applied to transform the anom-
aly indicator to range [0, 1]. The proposed anomaly indicator
can promote the ability of the MRRAE in anomaly detection,
which will be demonstrated by the experimental results.

IV. EXPERIMENTAL VERIFICATION

To verify the effectiveness of the proposed method in
anomaly detection, two sets of run-to-failure experimental
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Fig. 3. IMS bearing test rig.

Fig. 4. XJTU-SY bearing test rig.

data set are studied using the proposed anomaly detection
architecture.

A. Data Description

1) IMS Bearing Data Sets: This data set is supported by
the NSF I/UCR Center for Intelligent Maintenance Systems,
University of Cincinnati [54], which has been widely used in
the research for machinery condition monitoring. The exper-
imental system is shown in Fig. 3, where Rexnord ZA-2115
double-row bearings are installed on the shaft. The rotation
speed is kept constant at 2000 RPM by an ac motor coupled
to the shaft via rub belts. A radial load of 6000 lbs is applied
onto the shaft and bearing by a spring mechanism [54]. The
sampling frequency is set as 20 000 Hz. Three data sets are
included in the data packet and only Set No. 2 is analyzed
in this letter. A vibration signal with a length of 20 480 data
points is collected with a recording interval of 10 min and a
total of 984 samples are stored during the bearing’s lifetime.
At the end of the test-to-failure experiment, outer race failure
occurred in bearing 1.
XJTU-SY

2) XJTU-SY Bearing Data Sets: bearing data sets are pro-
vided by the Institute of Design Science and Basic Component
at Xi’an Jiaotong University and the Changxing Sumyoung
Technology Co., Ltd. As shown in Fig. 4, the bearing testbed is
composed of an ac induction motor, a motor speed controller,
a support shaft, two support bearings, and a hydraulic loading
system. The radial force is generated by the hydraulic loading
system and applied to the housing of tested bearings, and the
rotating speed is set and kept by the speed controller of the
ac induction motor [55]. Two accelerometers of type PCB

TABLE I

PARAMETERS OF XJTU-SY TESTED BEARINGS

352 C33 are positioned at 90◦ on the housing of the tested
bearings, while only the data on the horizontal axis are used
in this letter. The type of tested bearings is LDK UER204,
and the detailed parameters are given in Table I.

The run-to-failure data of 15 rolling element bearings are
included in the data packet. Bearing 2_5 data set is analyzed
in this article. A vibration signal with a length of 32 768 data
points was collected with a recording interval of 1 min and a
total of 334 samples were stored during the bearing’s lifetime.

3) Data Preprocessing: Vibration signals from the IMS
bearing data set and XJTU-SY bearing data set are pre-
processed in the same way. The fast Fourier transform (FFT)
algorithm is applied to transform the vibration signals into
the frequency domain with the length of 2048, as it is widely
recognized that the signal in the frequency domain is more
fault-sensitive than in the time domain [10]. Based on the
procedure described in Section III, the preprocessed signals
are picked as the input of the MRRAE model.

The run-to-failure data are divided into the training set
and test set according to the following rules: the training set
includes only the first 400 normal samples (80 samples in the
XJTU-SY bearing data set) and all 984 samples (334 samples
in the XJTU-SY bearing data set) are set as the testing set.

B. Performance Evaluation

1) Evaluation Metrics: To evaluate the performance of the
proposed method and comparison methods, the commonly
used metrics including Precision score, Recall score, F1 score,
and Accuracy score are selected as evaluation metrics, which
is the standard metric for the anomaly detection task [56]. The
confusion matrix of anomaly detection is shown in Table II.
The definition of each indicator is presented in the following
equation:

Accuracy = TP + TN

TP + FN + FP + TN
(16)

Recall = TP

TP + FN
(17)

Precision = TP

TP + FP
(18)

F1 = 2 · Precision · Recall

Precision + Recall
. (19)

2) Comparison Methods: To validate the effectiveness of
the proposed MRRAE method, several conventional and
deep-learning-based anomaly detection methods including
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Fig. 5. Anomaly indicator of the IMS bearing data set.

OCSVM [57], isolation forest (IF) [58], kernel density esti-
mation (KDE) [59], AE, variational AE (VAE), and MemAE
are implemented for comparisons.

OCSVM and IF are standard and classic methods for anom-
aly detection. Specifically, 16 manually designed time-domain
features in [40] are extracted as input samples of OCSVM
and IF. As one of the most popular deep learning methods,
AE has been widely applied in dimension reduction and
anomaly detection. VAE uses a variational approach for latent
representation learning, which results in an additional loss
component and a specific estimator for the training algorithm.
Besides, it is logical to use MemAE as a comparison method
because it is the basis of our proposed method. For a fair
comparison with the proposed method, the AE, VAE, and
MemAE share similar convolutional encoder–decoder network
architecture and parameter setting with the proposed method.
Only the reconstruction error is defined as the anomaly indi-
cator in these deep-learning-based bearing abnormal condition
detection methods

Q = ��X − X̂
��2

2 (20)

Qn = Q − min(Q)

max(Q) − min(Q)
. (21)

C. Experimental Results

1) IMS Bearing Data Sets: The anomaly indicator of the
IMS bearing run-to-failure data calculated by AE, VAE,
MemAE and proposed method in the testing stage is shown
in Fig. 5, which can be used to reflect the bearing degradation
trend. The red line represents the anomaly indicator calculated
by the proposed MRRAE method, which is more sensitive than
other comparison methods.

It can be seen that the reconstruction error of MemAE is
barely larger than that of AE and VAE. The reason is that the
unique memory mechanism of MemAE limits and constrains
the changes in the latent space during the testing stage and
thus causes the reconstruction of the decoder to be close to the
normal distribution. When a failure occurs, the reconstruction
error tends to increase accordingly.

TABLE II

CONFUSION MATRIX OF ANOMALY DETECTION

TABLE III

DETECTION RESULTS OF THE IMS BEARING DATA SET

Although there has been some improvement from the per-
spective of reconstruction error, MemAE is still not sensitive
to the change point of the bearing state. The anomaly indicator
calculated by the proposed MRRAE method changes signifi-
cantly at 533 points, since a regression model in the residual
space is constructed from the perspective of Bayes surprise,
which is very sensitive to the change point.

To prove the superiority of the proposed method, the eval-
uation metrics described in (16)–(19) is used to evaluate
the performance of different methods. The class label is set
according to the degradation trend of bearing. The signals in
1–532 samples are set with positive class label and the signals
in 533–984 samples are set with negative class label, since the
533 is recognized as the FPT [8] of run-to-failure data sets.

In the process of classification, 0.05 is set as the threshold
to distinguish normal and anomaly class, which means the
samples with anomaly score greater than 0.05 are considered
as negative class and those less than 0.05 are considered as
positive class. Thus, the classification results of the compar-
ison and the proposed method can be obtained through this
classification strategy.

After that, the Accuracy Precision score, Recall score,
F1 score, and Accuracy score are calculated based on the
comparison of the classification results and labels, which can
be used to describe the performance of different methods
quantitatively.

The evaluation metrics mentioned above are shown
in Table III; the proposed MRRAE method shows good
performances on anomaly detection with an accuracy score
of 0.9797, which means very few samples were misclassi-
fied. The precision score of the proposed method is 1. The
comprehensive index F1 score of the proposed method can
reach 0.9773, which is the maximum value among all methods.
Notably, the recall score of the proposed method is slightly
smaller than that of OCSVM, IF, and KDE, which is for the
reason that the anomaly indicator calculated by the MRRAE
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TABLE IV

DETECTION RESULTS OF THE XJTU-SY BEARING DATA SET

Fig. 6. Probability density distribution of IMS latent memory residual
representation.

model has a short fluctuation around 533. However, compared
with these methods comprehensively, the proposed method
has a higher recognition accuracy, which means the regres-
sion model in the residual space shows a better recognition
performance.

To further analyze the degradation process of the bearing,
the probability density distribution of the latent memory resid-
ual representation [log(h(V res))] is collected during the testing
stage and presented in Fig. 6, where the FPT [8] is marked by
red dashed line. Information of memory residual distribution
is represented by different colors, which refers to the 2-D form
of the time–frequency spectrum. In this way, the latent channel
with a sudden change in probability density distribution can
be detected visibly. As shown in Fig. 6, 14–16 channels
in latent memory residual space change obviously, which
means these channels lead to the change in the probability
density distribution. The frequency band corresponding to
14–16 channels can be determined through back mapping
operation based on the shared-weights architecture and trans-
lation invariance characteristics of convolutional network. The
sampling frequency of the IMS bearing data set is 20 000 Hz,
and the latent dimension of the proposed model is set as 32.
Thus, the Fourier support 4062–5000 Hz is considered as the
sensitive band.

The vibration signal of 533 samples is processed by a
band-pass filter with the sensitive band determined by back
mapping operation. After that, the envelope spectrum of the
filtered signal is calculated and the result is depicted in Fig. 7,
in which the outer race fault characteristic frequency and its
harmonics can be obviously observed.

Fig. 7. Envelope spectrum of the sensitive band.

Fig. 8. Anomaly indicator of the XJTU-SY bearing data set.

2) XJTU-SY Bearing Data Sets: The anomaly indicator
of the XJTU-SY bearing data sets obtained by AE, VAE,
MemAE, and the proposed method is depicted in Fig. 8. The
red line represents the anomaly indicator calculated by the
proposed MRRAE method, which changes obviously at around
sample 122. On the contrary, the AE, VAE, and MemAE
method are not sensitive to the change point of the bearing
state.

The evaluation metrics is also used to evaluate the perfor-
mance of different methods on the XJTU-SY bearing data set.
The signals in 1–121 samples are set with positive class label
and the signals in 122–334 samples are set with negative class
label, since 122 is recognized as the FPT of this data set.
Same as the process of classification on the IMS data set,
0.05 is set as the threshold to distinguish between normal and
anomaly class and the classification results of comparison and
the proposed method can be obtained.

The result of the XJTU-SY bearing data set is shown
in Table IV, the proposed MRRAE method also shows
good anomaly detection performance with an accuracy score
of 0.9351. The Recall score of the proposed method is 1.
The comprehensive index F1 score of the proposed method
is 0.9520, which is the maximum value among all methods.
Notably, the precision score of the proposed method is slightly
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Fig. 9. Probability density distribution of XJTU-SY latent memory residual
representation.

Fig. 10. Envelope spectrum of sensitive band I.

smaller than that of AE, VAE, and MEMAE, which is for the
reason that the anomaly indicator calculated by the MRRAE
model fluctuates at the beginning of the data set and several
values are slightly greater than 0.05. However, compared with
these methods comprehensively, the proposed method also
shows a better recognition performance than other comparison
methods on the XJTU-SY bearing data set.

As shown in Fig. 9, 12–18 channels and 23–32 channels
in the probability density distribution of latent memory resid-
ual space change obviously. The sampling frequency of the
XJTU-SY bearing data set is 25 600 Hz, and thus the Fourier
supports 4400–7200 Hz and 8800–12 800 Hz are considered
as sensitive bands for further analysis. The vibration signal
of 122 samples in the XJTU-SY data set is processed by
band-pass filters with the sensitive bands.

Then, the envelope spectrum of the filtered signals is
calculated and the results are depicted in Figs. 10 and 11,
respectively, while the outer race fault characteristic frequency
and its harmonics can be observed, especially in the envelope
spectrum of the filtered signal corresponding to the sensitive
band I. Besides detecting anomaly, the proposed method
can further analyze the anomaly in combination with the
probability density distribution of the latent memory residual
representation.

Fig. 11. Envelope spectrum of sensitive band II.

In general, MRRAE achieves superior performance com-
pared with the conventional and deep-learning-based anomaly
detection methods, which proves the effectiveness of the
proposed module in bearing condition monitoring. Further-
more, the proposed method pays close attention to the special
structure of bearing vibration signal and provides a new way
for explaining the decision-making processes of deep neural
networks.

V. CONCLUSION

An innovative deep learning model, namely, MRRAE,
is developed for the health management of rolling element
bearings, which improves the performance of the AE-based
unsupervised anomaly detection algorithms. The proposed
MRRAE is an unsupervised learning model driven only by
normal data, which means the parameter of the proposed
model is only determined by normal data in the training stage.
The convolutional AE and memory module are used to obtain
latent representation of the vibration signals. The memory
module is trained to record the prototypical elements of normal
patterns. The output of the memory part thus tends to be close
to a normal sample. A parametric density estimator is designed
to calculate the probability density distribution of the memory
residual via an autoregressive procedure. The reconstruction
errors and surprisal values are used to indicate the abnormal
condition of bearing. The validity and feasibility of the pro-
posed method are verified on two run-to-failure experimental
data sets. The proposed MRRAE model shows better anomaly
detection performances than other comparison methods.

Furthermore, this research interprets the decision-making
processes from the perspective of autoregressive density esti-
mation. The probability density distribution calculated by
autoregressive estimator is able to locate the sensitive band
which leads to the change in anomaly indicators. Besides
anomaly detection of bearing condition, the proposed method
can diagnose the incipient fault directly with the help of
envelop demodulation.
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