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egration of Multi-Relational Graph Oriented Fault Diagnosis
thod for Nuclear Power Circulating Water Pumps⋆
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A B S T R A C T
Circulating water pumps (CWPs), essential to the cooling systems of nuclear power units (NPUs),
are crucial for maintaining the safety and reliability of nuclear power plants. However, diagnosing
faults in these pumps based on multi-source data fusion encounters three significant obstacles: the
scarcity of fault samples for high-reliability facilities; the intricate temporal dependencies over intra-
period and inter-period are neglected; the disruptive effects such as sensor characteristics on the
synchronisation of multi-source signals, which complicates the extraction of coupled relationships
among the data sources. To remedy them, an integration of a multi-relational graph-oriented fault
diagnosis method is proposed. First, a data generation block is designed to merge temporal and
spectral information to produce fault samples efficiently. Second, a multi-period block is designed to
multi-scale mine complex temporal dependencies across intra-period and inter-period. Subsequently, a
multi-mode block is designed to extract intricate coupled dependencies from the aligned multi-source
intrinsic mode signals. Finally, an integration of a multi-relational graph model is designed to capture
complex spatial-temporal information representations that are multi-mode, multi-scale, and multi-
period. Experiment results on CWPs demonstrate a substantial improvement in diagnostic accuracy.

ntroduction
uclear power is currently the sole green baseload en-
source, which can replace fossil fuels on a large scale.
the global climate and environment changes and the
tment of energy structures, the expansion of nuclear
r is anticipated. It is, therefore, essential to enhance
conomy of nuclear power plants (NPPs) while ensuring
y [1]. The circulating water pump (CWP), a crucial
onent of the nuclear power plant’s cooling system,
a pivotal role. The NPPs and its CWP are shown in

1. A malfunction in CWP can halt operations, leading
onomic losses of 10 million yuan per day and potentially
rdising public safety and property [2, 3]. The gearbox

guide bearings of CWP, subjected to prolonged heavy
and harsh conditions, are prone to failures. Accurate

diagnosis is vital to maintain the seamless operation
clear power units and to boost their economic perfor-
e.

ure 1: Nuclear power unit and circulating water pump
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With the ongoing advancement of sensor technology,
high-end equipment, including nuclear power units (NPUs),
wind turbine units, high-speed rail, and so on, are now
equipped with various sensors to gather multi-source data.
These sensors, such as accelerometers, displacement sen-
sors, temperature sensors, and sound pressure sensors, are
critical for real-time monitoring and fault diagnosis of op-
erational statuses to ensure safety [4]. Concurrently, the
need to utilise this data better has intensified the focus on
employing deep learning methods to integrate these multi-
source heterogeneous data [5, 6, 7], which is particularly
effective in uncovering hidden fault features embedded in
complex temporal and spatial dependencies, with graph
neural networks (GNNs) playing an essential role in fusing
multi-channel time series data [8, 9, 10].

However, the multi-source signals of NPUs’ CWP con-
tain substantial inherent noise. This noise compromises the
accurate extraction of complex dependency relationships
between signals, even resulting in dependencies that merely
reflect the noise between different signals rather than true
interrelations. This significantly diminishes the accuracy of
diagnostic outcomes. Furthermore, the issue of asynchronic-
ity among multi-source signals is overlooked [11]. This
asynchronicity can be attributed to various factors, including
the unique physical characteristics of different sensor types,
such as pressure and temperature sensors, and the differing
specifications of their collection lines. These factors can
introduce millisecond-level delays between signals that are
collected simultaneously from different sensors. Such delays
can significantly impede the accurate analysis of dependency
relationships among multi-source signals.

In addition, most current data fusion methods focus
primarily or even solely on inter-signal dependencies, over-
looking the complexity within individual signals. In fact, it
is essential to explore further not only the complex intra-
signal dependencies but also the multi-scale inter-signal

: Preprint submitted to Elsevier Page 1 of 12
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dependencies [12]. In recent years, techniques such as
dimensional convolutional neural networks (1D-CNN),
rent neural networks (RNN), temporal convolutional
orks (TCN), and attention mechanisms within Trans-
ers have demonstrated significant potential for cap-
g features within single sequences [13, 14, 15, 16].
e methods excel at extracting features by analysing
lex intra-signal relationships. Although these methods
yielded good successes, they still neglect the depen-

e of signals across different periods [17]. It is essential
cognise that frequency amplitude and its multiplier-
itude relationships, critical for identifying fault symp-
, are often reflected in the inter-period dependencies of
-domain signals.
t should not be overlooked that high-end equipment
as NPUs generally operates under conditions that en-
long-term reliability, leading to infrequent failures [18,
0]. This reliability complicates the collection of a
and high-quality set of fault samples in real-world

arios [21, 22, 23]. Additionally, the components of such
ment are typically custom-made, extremely costly, and
lex to assemble, making it impractical to generate sub-

ial fault samples through artificial failure experiments
ucted in advance [24]. Insufficient data can lead to
el overfitting and poor generalisation to new datasets,
h affects the accuracy and reliability of traditional big
based deep learning models in practical applications
26, 27].
ortunately, to address the aforementioned data scarcity
s, recent innovations such as counterfactual-augmented
hot contrastive learning have emerged [20]. It proposes
telligent fault diagnosis method for limited samples,
ing a feature weight network to exploit sparse optimal
res, and customizing the model through counterfactual
entation and few-shot contrastive learning to signifi-

y enhance the model’s decision-making capabilities on
ault mechanisms of mechanical components. Further-
, dynamic normalization supervised contrastive net-
s optimize feature weight adjustment through a multi-
compound attention mechanism, thereby more effec-
mining signal features to enhance the accuracy and

dence of fault identification [24]. In conclusion, ad-
ements such as numerical simulation [28, 29], gen-
ve data augmentation [19, 30], transfer learning [22],
-learning [25], self-supervised learning [23], and semi-
rvised learning [30] have significantly enhanced the effi-
and applicability of fault diagnosis models in scenarios
limited samples.
umerical simulation technology plays a pivotal role
nerating simulated operational data for equipment by
tructing simplified dynamical models based on physical
anisms [28]. In recent years, datasets such as Tennessee
an in the energy and chemical sector have become

asingly popular [31]. Similarly, in the nuclear power do-
, researchers have gradually begun using the PCTRAN
lator to generate simulated operational data for NPPs
primarily used for operational monitoring and system

fault diagnosis studies [33]. This technology is particularly
vital for describing the behavior of equipment under various
operational conditions, especially in scenarios where fault
samples are scarce. However, the simulation data is typically
generated under idealized conditions. For high-end equip-
ment operating under complex and demanding conditions,
such as NCWPs, vibration and acoustic pressure signals are
significantly affected by environmental noise. Integrating
approaches such as transfer learning can further enhance the
authenticity and applicability of the simulated data, making
it more relevant for practical applications [29]. Yet, these
complexities of equipment pose substantial challenges in
constructing accurate dynamical models, which often arises
from the multiple interacting components and intricate phys-
ical processes involved. Especially for devices with intricate
structures and functionalities like those of NWPs.

Generative data augmentation techniques primarily lever
age generative frameworks such as generative adversarial
networks, variational autoencoder and so on to learn the
latent distribution of data, creating new samples to expand
datasets [27]. However, the quality of these generated sam-
ples may vary significantly depending on the underlying data
distribution. Transfer learning utilizes knowledge from other
tasks to mitigate small sample challenges in new scenarios,
though it risks negative transfer that can reduce model per-
formance. Meta-learning strategies that enable rapid model
adaptation to new tasks, yet face substantial challenges
in training processes and task selection. Moreover, self-
supervised and semi-supervised methods [23, 30], including
contrastive learning, employ unlabeled data or integrate
prior knowledge to bolster learning capabilities. Still, these
techniques often require extensive computational resources
and add to model complexity. Therefore, especially in multi-
sensor scenarios, it is urgent to solve how to generate higher
quality data by using methods with lower complexity, lower
demand for computing resources, and lower difficulty.

To address the outlined challenges, we propose the In-
tegration of a Multi-Relational Graph-Oriented Fault Di-
agnosis Method (IMRG) for NPPs CWPs. First, a time-
frequency data generation block is designed, featuring a
time-frequency bootstrapping mechanism to efficiently and
quickly generate fault samples. Second, a multi-period block
that adaptively identifies sensitive frequencies and periods
based on the amplitude wave-peaks of each signal, utilizing
a multi-scale perceptual network to capture both intra-period
and inter-period complex dependencies accurately. Subse-
quently, a multi-mode block is designed, employing the
Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) method for intrinsic mode
signal extraction and noise reduction. This block also in-
corporates a Dynamic Time Alignment based on Euclidean
Distance (DTA-ED) algorithm to synchronize time and ex-
cavate complex spatial dependencies in multi-source het-
erogeneous signals. Finally, we propose an integration of a
multi-relational graph model that exploits a graph perception
network to mine and fuse multi-mode and multi-period
spatio-temporal information, enhancing fault classification.

: Preprint submitted to Elsevier Page 2 of 12
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Figure 2: Integration of Multi-Relational Graph Oriented Fault Diagnosis Method

rimental results in CWPs have demonstrated significant
ovements in diagnostic accuracy. The innovations and
ibutions of this paper are as follows:
ulti-Period Block for Complex Dependency Capture.

designed to capture multi-scale inter-period and intra-
d complex dependency adaptively, which means the
ency-domain information is incorporated. It enhances

tional methods that focus only on mining intra-period
ndencies in signal temporal relationships.
TA-ED Algorithm for Time Desynchronization. It is

osed to align multi-source heterogeneous signals, effec-
overcoming time desynchronization challenges. Com-
with the CEEMDAN, it significantly mitigates the

ct of noise, improving spatial dependency mining.
MRG Method for Enhanced Fault Diagnosis. It is de-
d a time-frequency data generation block to efficiently
uickly generate fault samples utilizing typical time and
ency domain features. And it is proposed that complex

i-scale, multi-mode and multi-period dependencies of
i-source data be mined under denoised multi-mode sig-
It demonstrates practical effectiveness in NPPs CWPs
m-level fault diagnosis.

ethods
his section begins with the problem definition, followed
tailed discussions on the data generation block, multi-
d block, multi-mode block, and the multi-relational

h model. The overall architecture of the proposed method
picted in Fig. 2.
oncretely, for the system-level fault diagnosis, we de-
𝑚 =

[
𝐗𝑚
1 ,𝐗

𝑚
2 ,… ,𝐗𝑚

𝑁
], 𝑚 ∈ [0,𝑀], 𝑚 ∈ ℝ, where M

sents the number of samples, N represents the number
ls or sensors; 𝐗𝑚

𝑛 =
[
𝑥𝑚𝑛,1, 𝑥

𝑚
𝑛,2,… , 𝑥𝑚𝑛,𝐿

]
, where L

fies the number of features for each sample.
The Data Generation Block
s widely acknowledged, various types of signals such

bration, displacement, and pressure can be described by
. Inspired by fault mechanism analysis literature, such

ference [34], and considering physical factors including

assembly errors, and the degree and location of faults, we
observe that the fault frequency remains consistent across
similar types of fault signals; however, their amplitudes vary.
Given these influences, it is likely that the coefficients of
these signals change non-linearly and differ among various
coefficients. Thus, we propose a bootstrap mechanism for
integrating time-frequency information, as shown in Fig. 3.

𝑥(𝑡) = 𝑓 (𝑡) + 𝑒(𝑡) (1)
where, 𝑡 denotes the time, 𝑥(𝑡) is the true value of the signal,
𝑓 (𝑡) is the theoretical value, and 𝑒(𝑡) is the noise.

Figure 3: The time-frequency bootstrap mechanism

Specifically, consider a scenario where there are P sam-
ples of a fault type in the training set. Initially, p samples
are randomly selected, which are used to generate samples,
1
3P ≤ 𝑝 ≤ 2

3P. It is noteworthy that in practical engineer-
ing, each fault sample corresponds to multi-source signals
collected from an actual faulty component. The severity of
the faults may vary among samples, and even factors like
assembly p signals, it is possible to simulate varying degrees
of fault severity and other characteristics, thereby enhancing
the engineering value of the method. Taking one signal as
an example, two new signals 𝑥new1 and 𝑥new2 are generated
based p sample signals according to Eq. 2. This process up-
dates the time-domain information of the signal and random
noise. Subsequently, these two signals undergo separate Fast
Fourier Transformations (FFT) to 𝑥𝑓new1 and 𝑥𝑓new2. Next, the
top-K peak amplitudes of the signal 𝑥𝑓new1 are identified, and
the amplitudes at the corresponding frequencies in 𝑥𝑓new2 are
located. A new amplitude is then generated based on Eq. 3.

: Preprint submitted to Elsevier Page 3 of 12
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Figure 4: The Multi-Periods Block

process updates the frequency-domain features. Finally,
erse Fourier transformation is applied to 𝑥𝑓new to obtain
les with updated time-frequency information.

𝑥new(𝑡) = 𝑘1𝑥1(𝑡) + 𝑘2𝑥2(𝑡) +⋯ + 𝑘𝑝𝑥𝑝(𝑡) (2)
e 𝑥1(𝑡), 𝑥2(𝑡),⋯ , 𝑥𝑝(𝑡) represent the sample signals for
urrent fault type, while 𝑘1, 𝑘2,⋯ , 𝑘𝑝 correspondingly
te the weighting coefficients for each of these fault
ls, and 𝑘1 + 𝑘2 +⋯ + 𝑘𝑝 = 1.
𝑎𝑘new = 𝑐𝑘1𝑎

𝑘
new1 + 𝑐𝑘2𝑎

𝑘
new2 (3)

e 𝑎𝑘new represent the amplitude corresponding to the k-
quency position of the generation signal 𝑥new(𝑡), which
use to train the fault diagnosis model, 𝑎𝑘new1 and 𝑎𝑘new2sent the amplitude corresponding to the k-th frequency
ion of the generation signal 𝑥new1(𝑡) and 𝑥new2(𝑡), while
d 𝑐𝑘2 correspondingly denote the weighting coefficients

ach of these amplitudes, 𝑐𝑘1 + 𝑐𝑘2 = 1.
The Multi-Period Block
raditional deep learning approaches for single signal
cteristic representation process signals from a 1D per-

tive or by simply reshaping them into a 2D square
ix, thereby potentially overlooking essential frequency-
itude information. Inspired by [17], we realize that
-period dependencies can capture this frequency am-
de relationship along with other essential information.
e, a Multi-Period Block is developed, which can ex-

tly present the complex time-frequency characteristics
e signal by showing complex variations inter and intra-
d. The Multi-Period Block is shown in Fig. 4.
o accurately represent inter-period variations, it is cru-
to first identify distinct periods within each signal.
rdingly, a Fast Fourier Transform (FFT) is applied to
signal in the sample. Peaks are then identified using the
peaks function from the scipy.signal package in Python.
equently, the frequencies corresponding to these peaks
orted by amplitude from largest to smallest. The period
ach frequency is calculated (rounded upwards). The first
riods, identified as typical periods, are shown in Eq. 4.
s illustrated in Fig. 5, unlike the direct employment of

k values as suggested in [17], this method is particularly
d for complex system-level feature frequency scenarios.

The direct selection of Top-k amplitudes may overlook short
inter-period dependencies associated with high-frequency
information. In contrast, a peak-based selection method of-
fers a more comprehensive capture of the signal’s frequency
information, ensuring no critical information is missed.

𝐹𝑛, 𝐴𝑛 = RFFT(𝑋𝑛)[
(𝑓𝑛,1, 𝑎𝑛,1),… , (𝑓𝑛,𝑝, 𝑎𝑛,𝑝)

]
= FindPeak(𝐴𝑛)[

𝑓𝑛,𝑠1,… , 𝑓𝑛,𝑠𝑝
]
= sorted (𝑎𝑛,1,… , 𝑎𝑛,𝑠𝑝

)
[
𝑝𝑛,1,… , 𝑝𝑛,𝐾

]
= unique

[⌈
𝐿

𝑓𝑛,𝑠1

⌉
,… ,

⌈
𝐿

𝑓𝑛,𝑠𝑝

⌉]
[∶ 𝐾]

(4)
where RFFT(⋅) denotes one-sided FFT, FindPeak(⋅) repre-
sents the find_peaks function from the scipy.signal package
in python, sorted(⋅) is used to resort the frequencies by
the value of magnitude, unique(⋅) represents round up the
element, ⌈⋅⌉ is used to find the unique elements, and [⋅] [∶ 𝑘]
denotes select the first k elements. In general, set K equal to
categories number.

Figure 5: Comparison of Top-K Amp. and Amp. peak [35]

Based on the selected sequence of periods, 1-D signals
after standardized are padded on demand and reshaped into
multiple 2-D tensors by the following equations:

𝑋𝑛,𝑘
𝑚,2𝐷 = Reshape𝑝𝑘×𝑓𝑘

(Padding (Normal (𝑋𝑛
𝑚
))) (5)

where 𝑘 ∈ [0, 𝐾], the Normal(⋅) represents maximum-
minimum normalization; and the Padding(⋅) denotes fill the
end of the 1-D signal with zeros to allow it reshaped into a
𝑝𝑘 × 𝑓𝑘 matrix by Reshape𝑝𝑘×𝑓𝑘 (⋅).As illustrated in Fig. 2, a multi-scale perception network
is proposed to effectively mine multi-scale intra-period and
inter-period variations. Rectangles of different colors and
sizes represent different sizes of convolution kernels, and
the different-colored trapeziums represent different convo-
lution layers of different convolution kernels. Concretely,
each signal in a sample is reshaped as K matrices 𝑋𝑛,𝑘

𝑚,2𝐷,
: Preprint submitted to Elsevier Page 4 of 12
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h is seen as 𝑋𝑛,𝑘,2𝐷
𝑚,0,𝑗 to be input in perception layer. each

ption layer consists of J layers Conv-2D. Each layer of
erception network performs operations as

𝑋𝑛,𝑘,2𝐷
𝑚,𝑙,𝑗 = BN

(
Conv2D

(
𝑋𝑛,𝑘,2𝐷

𝑚,𝑙−1,𝑗

)
+𝑋𝑛,𝑘,2𝐷

𝑚,𝑙−1,𝑗

)
(6)

e 𝑗-th Conv-2D layer in the 𝑙-th perception layer em-
a convolution kernel, whose size is 2𝑗 + 1, to extract

ficant multi-scale information. To maintain a constant
ut size, the padding is set to 𝑗. Because in mechanical
ment fault diagnosis and signal processing, the impor-
of fault frequency is not only determined by the magni-
the Batch normalization is used to improve the stability,

d and performance of the model [7]. The output 𝑋𝑛,2𝐷,𝑘
m, outvarious scales is fused by torch.stack(⋅)dim=1,mean=0.

nlike the method suggested in [17], after reshaping
𝐷,𝑘
ut into 𝑋𝑛,1𝐷,𝑘

m, out , this method used a conv1D to in-
te k layers’ multi-scale information as a node feature
oted as 𝑋𝑚

𝑛,feature). This technique allows for different
hts to be assigned to the output features based on their
itude, acknowledging that higher amplitudes typically
ate more pronounced fault features. This adjustment
res that the output accurately reflects the varying im-
nce of different features.
The Multi-mode Block
n one hand, sensor time desynchronization represents a

ficant, yet underexplored, challenge. Millisecond-level
epancies in data from multiple sensors can arise due
riations in design, differing transmission line lengths,
l processing delays, and so on. These discrepancies may
to dependencies and interrelationships that are neither
ltaneous nor accurate. On the other hand, noise present
ulti-source signals from CWPs can obscure inter-signal
ndencies, sometimes reflecting correlations that are
ly noise rather than true signal interactions. Conse-
tly, a Multi-Modes Block is designed to extract de-
d intrinsic mode signals, ensuring temporal alignment
the accurate capture of spatial dependencies among
i-source signals synchronized to the same timeframe.
pecifically, the CEEMDAN decomposes each signal

in a sample, extracting the intrinsic mode functions
s) after noise reduction [36]. Then, a DTA-ED algo-

is proposed to precisely quantify dependencies be-
n pairs of signals across each intrinsic mode function
) order. This algorithm is specifically tailored to mit-
the effects of time desynchronization. It holds one

l fixed while moving the other across a range of time
The Euclidean Distance between the two signals is
uted at each time lag. The translation resulting in the

lest Euclidean Distance indicates the point of maximum
lation, representing the temporal alignment. It can more
rately quantify the inter-signal dependencies, correcting
ny time discrepancies between the sensor collecting.
ating these steps for all signals in each sample yields
djacency matrix of the signals across different modes.
above process is formulated as follows:

CEEMDAN(𝑋𝑚
𝑛 ) =

[
𝑋𝑚

𝑛,imf1 ,… , 𝑋𝑚
𝑛,imf𝑇

]
(7)

𝑋𝑚
𝑛,imf𝑡 =

[
𝑥𝑚𝑛,imf𝑡,1,… , 𝑥𝑛,imf𝑡,𝐿

]
(8)

𝑆𝑚,imf𝑡
𝑛1,𝑛2,𝑢 =

1
1 +

√ED𝑢
(9)

√ED𝑢 =
(
𝑥𝑚,imf𝑡
𝑛1,1

− 𝑥𝑚,imf𝑡
𝑛2,1+𝑢

)2
+…

+
(
𝑥𝑚,imf𝑡
𝑛1,𝑈

− 𝑥𝑚,imf𝑡
𝑛2,2𝑢

)2 (10)

𝐴𝑚,imf𝑡 =
⎡⎢⎢⎢⎣

1 … 𝑆𝑚,imf𝑡
1,𝑁

⋮ ⋱ ⋮
𝑆𝑚,imf𝑡
𝑁,1 … 1

⎤⎥⎥⎥⎦
(11)

𝑆𝑚,imf𝑡
𝑖,𝑗 = max

[
𝑆𝑚,imf𝑡
𝑛1,𝑛2,1

,… , 𝑆𝑚,imf𝑡
𝑛1,𝑛2,𝑈

]
(12)

where 𝑋𝑚
𝑛,imf𝑡 represents the time series of imf𝑡 of signal𝑛2

within𝑆𝑚 ,𝑆𝑚,imf𝑡
𝑛1,𝑛2,𝑢 represents the similarity between signal𝑛1and signal𝑛2 at 𝑢 number of time lags, and 𝐴𝑚,imf𝑡 is the

adjacency matrix, which represents the similarity matrix
of 𝑆𝑚. Obviously, the delay 𝑢 is not necessarily the same
between different signals.

Considering that the number of IMFs may vary among
different signals, CEEMDAN is performed for each signal
to determine and record the number of IMFs. Subsequently,
the minimum value V is identified. The first V − 1 IMFs of
each signal are utilized, while the remaining intrinsic mode
signals can be considered low-frequency noise. Additionally,
given the sparsity, symmetry and normalization of the ad-
jacency matrix, the post-processer is applied to 𝐴𝑚,imf𝑡 as
described in [37]:

𝑆̃(𝑠𝑝)
𝑖𝑗 =

{
𝑆̃𝑖𝑗 , 𝑆̃𝑖𝑗 ∈ top-k(𝑆̃𝑖)
0, 𝑆̃𝑖𝑗 ∉ top-k(𝑆̃𝑖)

(13)

𝑆̃(𝑠𝑦𝑚) =
ReLU (

𝑆̃(𝑠𝑝)) + ReLU (
𝑆̃(𝑠𝑝))⊤

2
(14)

𝐴̃𝑚,imf𝑡 =
(
𝐷̃(𝑠𝑦𝑚))− 1

2 𝑆̃(𝑠𝑦𝑚) (𝐷̃(𝑠𝑦𝑚))− 1
2 (15)

where 𝑆̃=𝐴𝑚,imf𝑡 , top-k 𝑆̃𝑖 is the set of top-k values of row
vector 𝑆̃𝑖, 𝐷̃(sym) is the degree matrix of 𝑆̃(sym).
2.4. The Integration of Multi-Relational Graph

Model
Section 2.2 elucidates the derivation of node features,

which capture multi-scale complex inter-period and intra-
period dependencies. And section 2.3 focuses on formulat-
ing adjacency matrices, illustrating the spatial dependen-
cies across various signals in multi-mode by leveraging
time synchronization and noise filtration. This section uses

: Preprint submitted to Elsevier Page 5 of 12
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node features and multi-mode adjacency matrices to
truct multi-relational graph structures. Subsequently, a
i-relation graph perception network is used to encapsu-
the features of a multi-relational graph across various
es via multi-layer Chebyshev convolution. Then, the
se graph features are integrated by a Conv1D with
nvolution kernel size of 1. Finally, these integrated
res are augmented by an MLP to achieve accurate
classification. It is shown in the Integration of Multi-

tional Graph module on the right side of Fig. 2.
pecifically, we first denote the graph structure in dif-
t modes as 𝐺𝑚

imf𝑡 = (𝑆𝑚, 𝐴̃𝑚,imf𝑡 ) . Second, the multi-
e graph-perception network aggregates node features.
ointed out in [7], EdgePool enhances the performance of
h feature representation, which is added after the layer of
yshev. Subsequently, a Global Average Pooling (GAP)
is added at the end. Finally, a Conv-1D is employed

tegrate the multi-mode graph features, and a two-layer
r connect layer is used as a classifier to achieve fault
osis. To enhance the stability, speed, and performance

e model, batch normalization is applied after the first
r layer, as detailed below:

𝑆𝑚
𝑙 = Chbyshev(𝐺𝑚

imf𝑡,𝑙−1) (16)
𝐺𝑚

imf𝑡,𝑙 = EdgePool(𝑆𝑚
𝑙 , 𝐴

𝑚
imf𝑡,𝑙−1) (17)

𝑋𝑚,imf𝑡
feature = GAP(𝐺𝑚

imf𝑡,𝑙) (18)
𝑋𝑚

feature = Conv1D
(
𝑋𝑚,imf1

feature ,… , 𝑋𝑚,imf𝑇
feature

)
(19)

𝑦̂ = softmax (MLP (dropout (BN(𝑋𝑚
feature)

))) (20)
e 𝐺𝑚

imf𝑡,𝑙−1 is the input of 𝑙−th Chebyshev layer, and
, 𝐴𝑚

imf𝑡,𝑙−1
)

is the input of 𝑙−th EdgePool layer, 𝑋𝑚,imf𝑡
feature

graph feature representation of the mode𝑡 aggregated
AP after all convolutional layers, and 𝑦̂ denotes the

ability that S𝑚 is which fault type.

ase study
o support in-depth failure studies of critical compo-
, a high-fidelity nuclear-circulating water pump (NCWP)
ench is constructed. This is the first system-level, high-

ity test bed specifically designed for NCWP failure
es. As illustrated in Fig. 6, the test bench primarily
ists of a closed test circuit, pump sets, a gearbox, and a
motor. The gearbox and guide bearing are identified as

rimary failure regions, with bearings prone to loosening
ial tiles, pitting, spalling, scoring, and gears susceptible
oken teeth, cracks, spalling, pitting, and abrasion. As
n in Tab. 1, we prefabricated faulty parts to simulate
fault, and seven of these faults produced faulty parts for
of the three fault levels based on industrial requirements
practical considerations from our industry partner.
monitoring setup for the guide bearing includes three-
vibration acceleration sensors, two acoustic pressure

sensors, and two displacement sensors. The monitoring
setup for the gearbox arrangement is similar.

Figure 6: The high-fidelity NCWP test bench

Table 1
Data sets and their corresponding fault types

Dataset Type Degree

No. 1 Health state /
No. 2 Gear root crack /
No. 3 Bearing looseness /

30% area, d=0.1mm
No. 4 Gear pitting 50% area, d=0.1mm

70% area, d=0.1mm
50% area, d=0.5mm

No. 5 Gear spalling 70% area, d=0.5mm
90% area, d=0.5mm

50% area, d=1mm
No. 6 Gear wear 70% area, d=1mm

90% area, d=1mm
Half tooth

No. 7 tooth breakage One tooth
One and a half tooths

25% area of all tiles
No. 8 Bearing scratch 33% area of all tiles

50% area of all tiles
16 points in 1 tile, d=1.3mm

No. 9 Bearing pitting 16 points in 3 tiles, d=1.3mm
16 points in 6 tiles, d=2.6mm
40% area of 1 tile, d=2.6mm

No. 10 Bearing spalling 40% area of 3 tiles, d=2.6mm
80% area of 4 tiles, d=2.6mm

where ‘d’ represents depth.

3.1. Experiment Setup
3.1.1. Data Preparation

Nine distinct types of faults are fabricated, each gen-
erating a dataset. Together with a dataset representing the
healthy state, ten datasets are created, labeled from No.1 to
No.10. Data sampling is conducted at 10240 Hz, capturing
1-second samples every 3 seconds, resulting in datasets of
10240 data points each. As detailed in Tab. 1, For datasets
No.1 to No. 3, we collected 300 samples. For seven fault
types datasets No.4 to No.10, each fault type is further

: Preprint submitted to Elsevier Page 6 of 12
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ified into three severity levels: mild, moderate, and
e. We collected 100 samples for each fault severity
. This data collection and dataset partitioning strategy
ficantly enhances the model’s ability to identify faults
rying degrees accurately.
. Performance metrics
o evaluate the performance of the above models and the

osed model, the following metrics are utilized, which
insights into various aspects of the model’s perfor-
e:
ccuracy: The ratio of correctly predicted observations

tal observations.
recision: The ratio of correctly predicted positive ob-
tions to total predicted positives, highlighting the qual-

f positive class predictions.
ecall: The ratio of correctly predicted positive observa-
to all observations in the actual class, representing the

rage of the positive class.
1 Score: The weighted average of precision and recall,

unting for both false positives and false negatives.
. Parameter setting
he experiment is conducted on a computer with an
500H and a GeForce RTX 3060. We set the batch
to 32, epochs to 100, and the learning rate to 0.01.
the IMRG, within the multi-period block across the
atasets, the hyperparameter K is set to 10 to mine the
0 largest waveforms in amplitude for intra-period and

-period correlations. The multi-scale graph-perception
ork includes 2 perception layers; each layer comprises
nv-2D layers, detailed in Section 2.2. The number of
t and output channels for each layer is 1, with kernel

of 1, 3, and 5 and matching padding of 0, 1, and
spectively. The final Conv-1D layer compresses the
nels using a kernel size of 1, with 10 input channels

output channel. Additionally, as described in Section
a Conv1D layer with a kernel size of 1 aggregates the
i-mode information based on the V−1 IMFs mentioned
ction 2.3. The MLP consists of two linear layers: the

with 1024 input channels and 256 output channels, and
econd with 256 input channels and 10 output channels,
sponding to the number of categories.
The performance of data generation
o rigorously evaluate the fault diagnosis capabilities of
us methods under different training conditions in small-
le scenarios, a framework is established. This frame-
incorporates a sample dataset with Nsmall real samples,

h are used to generate Ntrain simulation samples for
ing fault diagnosis model. Additionally, a test dataset
isting of Ntest sample is utilized to assess model perfor-
e, which is evaluated primarily based on accuracy.
he optimal ratio of Nsmall and Ntrain remains largely
fined in the literature for small sample fault diagnosis.
larly, the optimal ratio of Nsmall and Ntest for model
ing and testing in small sample fault diagnosis model are
xplicitly defined in current research. This ambiguity led

us to fix 𝜆 and 𝛽 separately and then explore the effect of the
two parameters on the performance of the data generation
block. Hence, Nsmall is set as a proportion of Ntest with
values in the range of ∈ [0.02, 0.04, 0.07, 0.1, 0.2, 0.3]. To
gauge the influence of the number of simulation samples
on performance and determine the optimal balance between
the number of simulation and test data, Ntrain is set at 𝛽 ×
Ntest, where 𝛽 ∈ [0.5, 1, 1.5, 2, 2.5, 3]. The performance
is visualized in 3-D color mapping surfaces, showing how
performance varies with both lambda and beta, as shown in
Fig. 7 (a). Performance curves are also plotted as a function
of 𝛽, with 𝜆 = 0.07, and as a function of 𝜆, with 𝛽 = 1.5 , as
shown in Fig. 8 (a) and (b), respectively.

At 𝜆 = 0.07, the model performs best at 𝛽 = 2 and 𝛽 = 3,
and initially the model performance rises sharply as beta
rises until the rising trend flattens out after 𝛽 = 2. It suggests
that lower 𝛽 values are insufficient for fault diagnosis model
to learn adequate features, affecting model accuracy. A fur-
ther increase in Beta leads to feature repetition and potential
model overfitting, as excessively generated samples from
limited real data does not improve performance beyond a
certain threshold. At 𝛽 = 1.5, optimal model performance is
observed at 𝜆 = 0.07 and the accuracy is 0.9541, indicating
that increasing 𝜆 enhances the capability of fault feature
capture by the data generation block at first. However, as 𝜆
rises further, the generalization of the data generation block
will subsequently decrease, and therefore the accuracy of the
model gradually decreases.

In subsequent analyses, two state-of-the-art sample gen-
eration methods are compared: Deep Residual Convolu-
tional Wasserstein Generative Adversarial Networks (DR-
CWGAN) [38, 39] and Auto-Encoding Variational embed-
ded Long and Short-Term Memory Networks (VAE-LSTM)
[40, 41, 42]. To ensure fairness and to explore the impact
of both original and generated sample quantities on model
performance, the same ranges for 𝜆 and 𝛽 are used, and
the performance is also visualized in 3-D color mapping
surfaces, as depicted in Fig. 7 (b) and (c). For DRCWGAN,
the optimal model performance is observed at 𝛽 = 2 and 𝜆 =
0.3, and for VAE-LSTM, the optimal model performance is
observed at 𝛽 = 1.5 and 𝜆 = 0.3. From a general perspective,
both methods struggle to achieve high accuracy rates when 𝛽
and 𝜆 are low. Yet as 𝜆 increases, enabling more samples for
the sample generation model to learn from, more effective
features are captured, improving the accuracy of the fault
diagnosis. Notably, DRCWGAN shows multiple instances
of significantly outperforming the proposed data generation
block. However, these results occur at 𝜆 = 0.3. But the
data generation block achieves satisfactory results even at
𝜆 = 0.02 and 𝜆 = 0.04, while the results of DRCWGAN
and VAE-LSTM do not even exceed 0.6. Consequently, the
proposed data generation block is more suited to the fault
diagnosis of NPPs CWPs in small-sample scenarios.

Then, to further analyze the ability of the proposed meth-
ods to generate samples and to compare the superior perfor-
mance between the three methods, the Kullback-Leibler Di-
vergence (KLD) and Maximum Mean Discrepancy (MMD)

: Preprint submitted to Elsevier Page 7 of 12
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Figure 7: Performance trend 3-D color mapping with 𝜆 and 𝛽

Figure 8: Performance trend with 𝜆 and 𝛽

elected as key metrics [27, 43, 44], the smaller KLD
MB are, the more similar the generated samples are

e real samples. KLD measures the divergence between
robability distributions of generated and real data,

tifying how well the generative model captures the un-
ing data distribution. This metric effectively highlights
epancies in terms of expected log differences, offering
ht into the distributional accuracy of the model. MMD
ses the mean difference between sample sets of the
rated and real datasets, focusing on the average of the
les’ statistical properties. MMD provides a measure of

egate distance between sample means in a feature space,
complementing KLD by examining the data from a
tical perspective.
he curves of MMB and KLD with 𝜆 are first plotted

rately, as shown in Fig. 9. As 𝜆 increases, its KLD grad-
increases while MMB gradually decreases. However,

known from the previous studies that the classification
racy of the proposed method gets better as 𝜆 increases.
hypothesized that this is because as 𝜆 increases, the
amples used to generate the simulation samples in Eq.

ncrease, and the samples that can be generated under
rent degrees of fault levels increase, and the probability
ibutions of the samples with different degrees of faults
differ from the probability distributions of the original
les, resulting in the increase of the KLD scatter. The
hat the MMB still decreases subsequently may be due
e fact that despite the differences in the probability dis-
tions of the failure samples at different degrees of failure
lated, the key of the proposed method is statistically
ant, and therefore the statistical distributions change
Then, the KLD and MMB of the three methods are

ed for 𝜆 = 0.1 , as shown in Fig. 10. Obviously, the
osed method has the lowest KLD and MMB, indicating

that the samples generated by the proposed method are more
similar to the real samples.

Figure 9: The curves of MMB and KLD with 𝜆 increases

Figure 10: The MMB and KLD of three methods

Moreover, it is important to note that the model con-
struction and parameter tuning processes for DRCWGAN
and VAE-LSTM are both complex and time-consuming. In
contrast, our method does not require additional tuning of
the model structure or hyperparameters and does not need to
be trained to generate the model, thus making it significantly
more efficient in execution.
3.3. The performance of IMRG

To justify the advantages of proposed method, several
state-of-the-art fault diagnosis methods are compared as
follows:

TimesNet: Models temporal 2D variations [17]; MS-
GNet: Analyzes multi-scale inter-series correlations [12];
EGNN: Utilizes emerging graph neural networks [7]. Times-
Net and MSGNet are the best-performing open-source ap-
proaches in recent years for multi-source multi-modal signal
fusion and time-series classification datasets. EGNN has
shown exemplary performance in the fault diagnosis field.

: Preprint submitted to Elsevier Page 8 of 12
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o ensure a fair comparison, we meticulously adapted
arameters of these models to optimize performance

in our testing environment while aligning them closely
the original designs. Specific adjustments include:
nput Feature Configuration: The number of input fea-
per channel is 10,240 across all models to accommo-

the length of signals in our dataset.
op-K Peaks: The parameter for Top-K peaks is set to
r both TimesNet and MSGNet, mirroring the setup in
ethod.
hebyshev Kernels in EGNN: The Chebyshev convo-

n kernels are adjusted to sizes of 3 and 1 for the first
second layers, respectively, to align with our model’s
guration.
LP Layers: The MLP in EGNN is restructured to two

s, consistent with our method’s setup.
hese modifications are essential not only for adapting
odels to our scenario but also for maximizing their

rmance potential, thus ensuring a robust comparative
sis. The structure and remaining parameter settings are

ned as the origin model, as detailed in [7, 12, 17] . These
ul considerations allow us to present a reliable and fair
ation of our proposed method against well-established

hmarks.
t is worth noting that the data generation block also
es the FFT and Top-K peaks of amplitude to update
ency-domain information, and the multi-block block
utilizes the FFT and Top-K peaks of amplitude to
re features, and this similar design may further enhance
erformance of the model. For a balanced comparison,
ata generation block is not used. Hence, the original
et is split into train and test datasets in a 7:3 ratio to train
est models. Each comparison method and the proposed
od are independently evaluated through ten iterations,
the average values of key metrics—accuracy, precision,
l, and F1 score—serving as the definitive performance
ators. Fig. 11 graphically presents these classification
ts, demonstrating that the IMRG method achieves opti-
erformance, indicating its suitability for fault diagnosis
r varying failure levels of NCWPs. Fig. 12 illustrates the
ut features of the four evaluated methods, showing that

RG method achieves superior intra-class compactness
inter-class separability. In the following, the results
ned from the study are contrasted. It aims to elucidate
elative performance of different methods, highlighting
ndings and their implications for the field.
hy Does MSGNet Outperform TimesNet? MSGNet

erforms TimesNet primarily because it addresses gaps
imesNet’s approach to inter-sequence dependencies.
ifically, MSGNet introduces an adaptive mix-hop graph
olution layer that autonomously learns diverse inter-
s correlations at each time scale [12, 17]. Addition-
MSGNet incorporates a self-attention mechanism to
nce the capture of intra-period and inter-period complex
res within sequences. Consequently, MSGNet’s ability
nsider intra-signal complex features and inter-signal
lations results in superior performance.

Figure 11: Classification performance

Figure 12: t-SNE feature visualization

Why Does IMRG Achieve Optimal Performance? IMRG
achieved optimal performance by addressing specific short-
comings observed in TimesNet and MSGNet regarding pe-
riod extraction. IMRG focuses on extracting periods cor-
responding to the most significant k wave peaks, effec-
tively utilizing frequency information to mine comprehen-
sive complex features within and between periods. Fur-
thermore, IMRG acknowledges and addresses the impact
of noise and multi-sensor temporal misalignment on inter-
signal dependencies. The proposed method enhances the
accuracy of the integration of multi-sensor spatial depen-
dencies. Thus, IMRG combines multi-mode spatial depen-
dencies with intra-period and inter-period dependencies,
reflecting time-frequency features more comprehensively.
This holistic approach results in a more robust and detailed
feature representation.
3.4. Ablation experiment

A series of ablation experiments is conducted to system-
atically assess the impact and necessity of each component
within the IMRG framework, as shown in Tab. 2. These
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riments are designed to explore the specific contribu-
of individual components to the overall model per-

ance. The performance is also evaluated using the F1
. This approach ensures that each component signifi-
y enhances the accuracy of fault diagnosis. The results
light key findings and delineate their implications for the
. Given that the efficacy of the Data Generation Block is
dy established in Section 3.2, it will not be re-verified
is section.
ble 2

omparison of Experimental Results Across Different
blation Methods

Method F1 score Deviation

MPB+MMB+MRG 0.9017 0
1D+MMB+MRG 0.7947 0.1070

S-matrix+MMB+MRG 0.8592 0.0425
A-matrix+MMB+MRG 0.8641 0.0376

MPB+Mode-GCN* 0.8328 0.0689
MPB+Mode-GCN 0.8365 0.0652

MPB+MMB+MRG* 0.8827 0.0190
MPB+MMB+GAP 0.8879 0.0138

: MMB stands for Multi-Mode Block, S-matrix stands
uare matrix, A-matrix stands for matrix reshaped based
op-K amplitude, MRG stands for Multi-Relation Graph
ption model, MPB stands for Multi-Period Block, GAP
s for Global Average Pooling and * stands it no DTW-ED
ithm.

. Is the Multi-Periods Block effective?
he essence of MPB is to transform each 1-D signal into
matrices based on the periods of its Top-K frequency
s, embedding frequency domain features and capturing
ignal’s complex period dependencies. To validate the
cy of MPB, Exp. 1 to Exp. 3 in 2 are conducted.
xp. 1: The 1-D series is processed directly through

iple Conv-1D layers connected by residual connection,
h results in a significant performance drop of 0.1070.
xp. 2: The 1-D series is reshaped into a square matrix
ℝ10240 -> 𝑋2𝐷 ∈ ℝ101×101) and processed through

lti-scale perception layer, leading to a performance
ase of 0.0425.
xp. 3: The 1-D series is reshaped into 2-D matrices

d on the periods corresponding to its Top-K amplitudes,
then processed by multi-scale perception layer. The
rmance decreased by 0.0376.
xperimental analysis and conclusions: Exp. 1 high-

s the indispensable nature of the MPB by demonstrating
ficant performance deterioration upon its removal. Exp.
Exp. 3 further provide insight into the MPB’s superior
cy. Exp. 2 shows that converting 1-D series into 2-D

ices formats allows the model to capture an extensive
of features, including horizontal and vertical features.

3, utilizing periods corresponding to the Top-K ampli-
to reshape the 1-D series into 2-D matrices, demon-

s an even better performance, suggesting a capture of
-period horizontally and inter-period features vertically.

Clearly, this ignores some of the more important high-
frequency features, as we recount in Section 2.2. Proposed
method (Exp. 0) pays attention to this and utilizes periods
corresponding to the Top-K frequency peaks to reshape the
1-D series into 2-D matrices, suggesting an optimal capture
of intra-period and inter-period features, therefore achieves
optimal performance.
3.4.2. Is the Multi-Modes Block effective?

The essences of MMB are: (1) The extraction of intrinsic
mode signals via CEEMDAN: This process extracts the
IMFs from each signal, facilitating the uncovering of de-
pendency relationships among multiple signals under multi-
mode after noise reduction; (2) Signal Alignment Using
DTW-ED: the DTW-ED algorithm is developed to align
asynchronous signals, effectively overcoming the interfer-
ence posed by signal simultaneity in mining complex depen-
dencies.

To validate the efficacy of MMB, Exp. 4 to Exp. 6 in 2
are conducted.

Exp. 4: The CEEMDAN and DTW-ED processes are
omitted. Dependencies between different signals are calcu-
lated directly, and graph features are subsequently extracted
by multi-scale graph perception layers. The model’s perfor-
mance decreased by 0.0689, affirming the effectiveness of
the MMB module.

Exp. 5: The CEEMDAN process is removed. The DTW-
ED algorithm is employed to align the original signals, with
dependencies being derived directly. The multi-scale graph
perception layers are then utilized to extract graph features.
The performance decline of 0.0652, which demonstrates
that it is useful for complex dependency mining between
multi-source signals to use CEEMDAN to derive IMFs and
establish dependency relationships among different modes.

Exp. 6: The DTW-ED process is omitted. The multi-
mode dependencies are directly calculated after the IMFs ex-
tracted by CEEMDAN from each signal, and the multi-scale
graph perception layers are then utilized to extract graph
features. The performance dropped by 0.0190, indicating the
presence of delays among multi-source monitoring signals
of NCWPs, and time alignment is shown to enhance model
performance.

Experimental analysis and conclusions: The MMB in-
cludes two components: the extraction of intrinsic mode sig-
nals via CEEMDAN and signal alignment using the DTW-
ED algorithm. To prove the effectiveness of MMB, Exp. 4
omitted both the CEEMDAN and DTW-ED processes, and
the observed decline in model performance confirmed the
effectiveness of the MMB module. To further analyze the
effectiveness of each component separately, Exp. 5 retained
the signal alignment process using DTW-ED but omitted
CEEMDAN. The performance decline in this setup indicates
that noise within multi-source multimodal signals can affect
the efficacy of the DTW-ED algorithm in aligning original
signals and impact the mining of complex dependencies
among these signals. In Exp. 6, which preserved the pro-
cess of extracting intrinsic mode signals via CEEMDAN

: Preprint submitted to Elsevier Page 10 of 12
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e omitting signal alignment via DTW-ED, the drop in
rmance suggests that delays likely exist among multi-
e multi-modal signals, and that aligning these signals

me can enhance model performance. Furthermore, a
arison between Exp. 4 and Exp. 5 reveals that the

ovement in model performance due to signal alignment
out CEEMDAN decomposition is marginal (0.0037).
suggests that dependency relationships derived directly
out noise reduction and mode decomposition may be
romised by the noise and complexity of multi-mode

ndency relationships, failing to fully reflect the true
ndencies between signals.
. Is the Multi-Relation Graph Perception Model

effective?
he essence of MRG involves utilizing a Conv-1D layer
a kernel size of 1 to learn the weights of multi-mode

h structures. This method assigns specific weights to
lex features learned under various modes rather than

ly averaging, allowing for greater emphasis on signif-
features within crucial modes. Hence, in Exp. 7, the
-1D layer is substituted with a global average pool-
ayer, resulting in a decrease in model performance by
8, which indicates that weighting complex graph fea-
across different modes enhances the model’s efficacy.

onclusion
his paper presents an integration of multi-relational

hs-oriented fault diagnosis methods for NPPs CWPs.
ifically, (1) Proposing a fault sample bootstrap mecha-
that integrates time-domain characteristics with typical
ency-domain characteristics, facilitating rapid genera-
of fault data; (2) The intra-period features and inter-
d correlations corresponding to the amplitude peaks
r typical periods are mined, and the frequency-domain
res are skillfully implied in the time domain to ob-
more comprehensive information; (3) Aligning multi-
rs corresponding to intrinsic mode signals to con-

t multi-mode multi-scale multi-period graph structures
e suppressing the prominent noise interference and time
nchronization problems in nuclear power scenarios.
rucially, the IMRG is validated using high-fidelity
P test bench data. The results demonstrated that this

od effectively addresses the issues of small sample
by leveraging the bootstrap mechanism based on

-domain and frequency-domain. Besides, It mines the
o-temporal dependence between multiple sensors by
rating the multi-scale and multi-period graph structure
ulti-modes, and the inter-period correlation within each
r is noticed. Consequently, the approach facilitates
comprehensive feature extraction from multi-source

ogeneous data, achieves higher classification accuracy,
ensures accurate fault diagnosis in NPPs CWPs under
ed sample conditions.

However, despite these positive outcomes, it is important
to note that acquiring empirical mode signals using CEEM-
DAN is computationally intensive, significantly slowing the
model’s training speed.
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Highlights

(1) Aligning time-unsynchronized multi-source signals.

(2)  Generating  data  by  bootstrap  mechanism  based  on  time-frequency

information.

(3) Capturing multi-scale inter-period and intra period complex dependency

in each signal.

(4) Mining multi-mode complex dependencies among multi-source signals.
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