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A B S T R A C T

In the field of fault transfer diagnosis, many approaches only focus on the distribution alignment and knowledge
transfer between the source domain and target domain. However, most of these approaches ignore the
precondition of whether this transfer task is transferable. Current mainstream transferability discrimination
methods heavily depend on expert knowledge and are extremely vulnerable to the noise interference and var-
iations in feature scale. This limits their applicability due to the intelligent requirements and complex industrial
environment. To address the challenges mentioned previously, this paper introduces a novel cross-domain
similarity measure called maximum subspace transferability discriminant analysis (MSTDA) with zero-label
prior knowledge. MSTDA is comprised of a maximum subspace representation and a similarity measurement
criterion. During the phase of maximum subspace representation, a new kernel-induced Hilbert space is designed
to map the low-dimensional original samples into the high-dimensional space to maximize the separability of
different faults and then solve the separable intrinsic fault features. Following that, a novel similarity mea-
surement criterion that is resistant to variations in feature scale is developed. This criterion is based on the
orthogonal bases of intrinsic feature subspaces. The mini-batch sampling strategy is used to ensure the timeliness
of MSTDA. Finally, the experimental results on three cases, particularly in the actual wind turbine dataset,
confirm that the proposed MSTDA outperforms other well-known similarity measure methods in terms of
transferability evaluation. The related code can be downloaded from https://qinyi-team.github.io/2024/09/
Maximum-subspace-transferability-discriminant-analysis.

1. Introduction

Owing to the rapid development of deep learning technology, there
has been a significant focus on data driven intelligent fault diagnosis of
mechanical equipment (Anvar and Mohammadi, 2023; Yu et al., 2023;
Du et al., 2023; Qin et al., 2024). However, the assumption that the
training dataset and testing dataset need to be independent and identi-
cally distributed hinders its practical application. To achieve this,
transfer learning-based diagnosis methods provide a feasible solution.
These methods can leverage the diagnosis knowledge from a
source-domain to tackle the diagnosis task in a related but different
target domain under distribution shift (Qian et al., 2023; Yang et al.,
2023; He et al., 2023). Therefore, the diagnosis model, only containing
the prior label knowledge of source-domain samples, can be directly
applied to the unlabeled target domain.

Transfer learning technology has gained significant attention in

recent years for its ability to diagnose distribution discrepancies,
including the task of cross-load transfer diagnosis. Besides, the strong
diagnosis performance also substantiates the superiority of transfer
learning (Lei et al., 2023; Lian et al., 2024; Qian et al., 2024). The crucial
aspect of deep transfer learning is to address the distribution discrep-
ancy between two domains in order to extract domain-invariant and
discriminative fault features. Methods for distribution alignment can be
categorized into adversarial mechanism-based methods (Ganin et al.,
2017) and distribution distance-based methods (Qian et al., 2023). In
practice, the labeled fault samples in the collected historical database
are extremely rare due to the following three reasons: First, actual me-
chanical equipment is not allowed to operate in a failure state to ensure
security. Second, many industrial enterprises have been slow to adopt
digital transformation, making it challenging to track label information
for historical fault samples. Third, the process of annotating label in-
formation requires a significant amount of time and financial resources
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due to the need for disassembly inspection and the involvement of ex-
perts with specialized knowledge. To address this dilemma, transfer
learning directly utilizes the entire historical dataset from different
working conditions or mechanical equipment as the source domain to
construct the diagnosis model. This includes approaches like
multi-source transfer learning (Feng et al., 2023), partial-set transfer
learning (Zhang et al., 2023), and open-set transfer learning (Yu et al.,
2023). Nevertheless, most existing transfer diagnosis methods fail to
consider whether the transfer tasks are transferable, i.e., without
transferability analysis. If the selected source domain has a significant
difference in distribution from the testing target domain, it can lead to a
negative transfer phenomenon, resulting in poor diagnosis accuracy.
Therefore, it is crucial to have a similarity measure that can evaluate the
transferability of diagnosis knowledge between the source domain and
the target domain. This measure can also assist in selecting the optimal
source domain for a given target domain, ensuring the feasibility of the
transfer diagnosis task.

Compared with distribution alignment, there is limited research
dedicated to transferability. Existing similarity measures for cross-
domain transferability discriminant analysis can be summarized into
three types: feature visualization analysis, post-hoc diagnosis perfor-
mance analysis, and distance metric analysis. The first approach is to
map the original samples into a two-dimensional or three-dimensional
feature space using dimensionality reduction technology such as auto-
encoder neural networks, principal component analysis, or other
typical methods. Then, the overlapping ratio of feature points between
two domains will be observed as the transferability criteria via human
decision making. The huge dimension scaling (Rn→R2/R3) may give rise

to the loss of fault information, and the subjective decision-making
process cannot ensure the reliability and normativity of discriminant
results. Based on the agreement that a higher similarity score indicates
improved diagnostic performance, the second approach determines the
transferability of various transfer tasks by using the post-hoc diagnosis
accuracy of basic classifiers such as support vector machines, convolu-
tional neural networks, and others. While the second method removes
the influence of human factors compared to the first one, it does require
a significant amount of computational resources and time. Additionally,
selecting the base classifier introduces another challenge. Unlike the
previous two approaches, the third one is a method that measures
similarity in advance and does not require auxiliary discrimination
based on expert knowledge. It can be categorized as either an implicit
distance metric or an explicit distance metric. The mainstream implicit
distance metric mainly includes the single classifier-based A-distance
(Ben-David et al., 2006), and dual classifiers “XOR” operation-based
HΔH-distance (Ben-David et al., 2010), which also exist the selection
issue of base classifier similar with the post-hoc diagnosis performance
analysis and have a poor stability. The explicit distance metric is the
most popular method to weigh the transferability between the given
source domain and a specific target domain. Various methods, such as
Euclidean distance, cosine distance, maximum mean discrepancy
(MMD) (Gretton et al., 2012), correlation alignment (CORAL) (Sun
et al., 2016), entropy-based (Belghazi et al., 2018; Jiao et al., in press),
and optimal transport theory-based (Yang et al., 2021; Kolouri et al.,
2019; Piccoli and Rossi, 2014), have been developed for this purpose.
However, the following two disadvantages limit their application value.

Fig. 1. Motivation demonstration: (a) intrinsic discrepancy representation; (b) similarity measure related to the feature scale. In each subfigure, the left side of the
arrow indicates the disadvantages of current mainstream distance metrics in such case, and the right side represents the ideal state.
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1) The prerequisite for accurate measurement of transferability is to
ensure that different fault categories have good separability shown in
the right side of Fig. 1(a). The better separability is conducive to
measuring the intrinsic distribution discrepancy across domains
more accurately. However, due to the impact of noise and other
factors (Qian et al., 2023), the data samples of different fault cate-
gories are often mixed together with a poor separability, as shown in
the left side of Fig. 1(a). Consequently, the current distance metrics
cannot accurately assess the intrinsic discrepancy between the
source domain and target domain and enhance in the left side of
Fig. 1(a).

2) On the other hand, most distance metrics are sensitive to the fault
feature scale. In fact, the use of nonlinear feature extractors in fault
transfer diagnosis can lead to the unpredictable changes of feature
scale in both source and target domains. In addition, various pre-
processing methods and feature transforms can also increase the
range of scale variation, as demonstrated by the federated transfer
learning paradigm (Zhao et al., 2023). As shown in the left side of
Fig. 1(b), if we assume that the feature scales of “Fault A” and “Fault
B” in the target domain are increased, the current distance metrics
will lead to the distortions of discrepancy evaluation, affecting the
transferability discrimination results. Hence, a robust similarity
measure is urgently needed, as illustrated in the right of Fig. 1(b).

Based on the previous discussion and analysis, it is evident that the
crucial factor in obtaining the intrinsic discrepancy representation is to
improve the separability between categories and establish a trans-
ferability criterion that is not dependent on the feature scale. To address
these issues, this study proposes a novel similarity measure called
maximum subspace transferability discriminant analysis (MSTDA). It is
worth mentioning that MSTDA does not require any prior knowledge of
the target-domain label, nor does it require knowledge of the source-

domain label. MSTDA consists of two phases: maximum subspace rep-
resentation and the similarity measurement criterion. In the first phase,
a novel kernel-induced Hilbert space is developed to map the low-
dimensional original samples into a high-dimensional space. This is
done to maximize the separability between different faults. Then, the
intrinsic low-dimensional embeddings of the high-dimensional features
are resolved to achieve the most effective subspace representation.
Following that, inspired by the Grassmann manifold in Ref. (Gopalan
et al., 2011), the orthogonal bases of the source-domain and
target-domain intrinsic feature subspaces are obtained using the singu-
lar value decomposition (SVD). Ultimately, a novel similarity mea-
surement criterion that is resistant to variations in feature scale is
developed. In addition, the mini-batch sampling strategy is employed to
optimize computational efficiency and ensure timely results. The pro-
posed MSTDA is successfully applied to actual wind turbines. The main
contributions and innovations are outlined as follows:

1) A new kernel-induced high-dimensional Hilbert space is constructed
for extracting the separable class features. It can ensure the final
obtained maximum subspace representation possesses the intrinsic
fault features.

2) A novel similarity measurement criterion is developed to eliminate
the impact of feature scales. It is based on the orthogonal bases of
intrinsic feature subspaces.

3) The proposed maximum subspace representation and similarity
measurement criterion introduces a new similarity measure called
MSTDA, which allows for transferability discriminant analysis in
wind-turbine transfer tasks without any prior knowledge restrictions.

2. MSTDA similarity measure

As shown in Fig. 2, the proposed MSTDA similarity measure consists

Fig. 2. Principle diagram of proposed MSTDA similarity measure.
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of maximum subspace representation and a criterion for measuring
similarity. The former is devoted to extract the separable intrinsic fault
features, and the latter is the ultimate procedure to achieve trans-
ferability discrimination, which is robust to the feature scale. In the
following subsections, we will provide a detailed introduction to these
points.

2.1. Maximum subspace representation

The vibration monitoring signals, as the most common information
carrier, are widely applied to the mechanical fault transfer diagnosis.
The noise among them often hinders the mining of fault features,
resulting in a significant decrease in the ability to distinguish between
different types of faults. Therefore, ensuring the diagnosis performance
and the effectiveness of transferability discrimination always depends
on extracting the separable intrinsic fault features. To address the above
issue, a potential solution is to consider the concept of nonlinear space
mapping. This approach is supported by the pattern recognition theory
(Cortes and Vapnik, 1995), which suggests that increasing the dimen-
sionality of the space can improve the separability of features. As direct
nonlinear high-dimensional space mapping will bring an explosion of
computational complexity, thus the kernel-based ones attract lots of
attention (Schölkopf et al., 1997).

First, the space mapping principle of kernel is introduced. Let H be a
Hilbert space and H ∗ be its conjugate space. For each bounded function
T ∈ H ∗, there is a unique yT ∈ H such that (Reed, 2012):

T(h) = 〈h, yT〉H
, s.t.||T|| = ||yT || (1)

It can be known that the bounded linear functional in Hilbert space
can be represented as the inner product of two vectors. Regarding yT as
the orthogonal bases of above Hilbert space, any functions in the space
can been viewed as a projection on the bases. Now, how to find such a set
of orthogonal bases becomes the key. Fortunately, the Mercer’s theorem
(Mercer, 1909) provides a feasible solution, whose formula is written as:

k

(

x, y

)

= 〈k(x, ⋅), k(⋅, y)〉 =
∑∞

i=1
λiψ i(x)ψ i(y) (2)

∫

k(x, y)ψ i(y)dy = λiψ i(x) (3)

where k(x, y) is a continuous symmetric but non-negative function, λi
denotes the non-negative eigenvalue, and ψ i(⋅)represents the orthogonal
eigenfunction. Via the kernel function κ(x, ⋅) =

{ ̅̅̅̅γi
√ φi(x)

}

i=1,2,⋅⋅⋅∞, the
low-dimensional data samples can be mapped to the high-dimensional
Hilbert space, thereby enhancing the separability between different
faults.

According to the mechanical vibration characteristics, the moni-
toring vibration signal is almost symmetric along the x-axis, it then
follows that a new kernel is designed based on energy index (mean
square value), i.e., k(x, )⊗ k(x, ), in which the tensor product form is
employed for simplifying the calculation amount through the following
theory:

〈ϕ1 ⊗ ϕ2,φ1 ⊗ φ2〉H = 〈ϕ1,φ1〉H 1
⋅〈ϕ2,φ2〉H 2

(4)

where H , H 1, and H 2 are three Hilbert spaces, ϕ1, φ1 ∈ H 1, and ϕ2,

φ2 ∈ H 2. It can be concluded from Eq. (4) that the tensor product of two
kernels (k(x,),k(x,)) still possesses the property of kernel function. Then,
using Ref. (Mercer, 1909), the kernel can be used to span Hilbert space
H :

H = span{k(x, ) ⊗ k(x, )|x ∈ X} (5)

where X = (x1,x2⋅⋅⋅,xn) ∈ ℝd×n is the sample set. The low-dimensional
samples can be projected to the infinite-dimensional space H for max-
imumly enhancing the separability. Unfortunately, the high-

dimensional representations pose a challenge due to the sparsity of
data samples, making it difficult to measure similarity. For instance,
assume that the sample number satisfying dense sampling is 100 in an
attribute dimension, the feature space, including n attribution di-
mensions, needs 100 n samples. Therefore, it is crucial to have a sub-
space that contains the separable feature representation from the high-
dimensional Hilbert space mentioned above, that is, solving an orthog-
onal feature transform matrixW = (w1,w2⋅⋅⋅,w3) ∈ ℝd́×d́ʹ, which is by:

f =WTk
(
x,
)
⊗ k
(
x,
)
=WTk(x, )⊗2 (6)

where the k(x, )⊗2 ∈ ℝd́×1 and f ∈ ℝdʹ́×1 represent the high-dimension
features and intrinsic fault features in Fig. 2, respectively. Using the
maximum reconfigurability, the optimization objective can be written as
follows:

min
W

∑n

i=1

⃦
⃦Wf i − k(xi, )⊗2

⃦
⃦2
2s.t.W

TW = I (7)

where I ∈ ℝd́ʹ×d́ʹ denotes the identity matrix. Then, the
∑n

i=1
⃦
⃦Wfi − k(xi, )⊗2

⃦
⃦2
2 is simplified by:

∑n

i=1

⃦
⃦Wf i − k(xi, )⊗2

⃦
⃦2
2

=
∑n

i=1

(
−
(
k(xi, )⊗2

)TWWTk(xi, )⊗2 +
(
k(xi, )⊗2

)Tk(xi, )⊗2
)

=
∑n

i=1
−
⃦
⃦WTk(xi, )⊗2

⃦
⃦2
2 +

(
k(xi, )⊗2

)Tk(xi, )⊗2

(8)

It can be seen from Eq. (7) that the optimization objective is related
only to the term containing W, Eq. (7) is rewritten as follows:

− min
W

tr
(
WTk(X, )⊗2

(
k(X, )⊗2

)TW
)

s.t.WTW = I
(9)

where the k(X, )⊗2 is centralized:

k(X, )⊗2←k(X, )⊗2
(

I −
1
n
11T

)

(10)

where 1 ∈ ℝn×1 is a column vector with all elements equal to 1.
Furthermore, Using Ref. (Anstreicher and Wolkowicz, 2000), the

Lagrange function of the final optimization objective can be represented:

L(W,Δ) =

− tr
(
WTk(X, )⊗2

(
k(X, )⊗2

)TW
)
+ tr

(
ΔT (WTW − I

)) (11)

The above parameter Δ = diag(η1, η2⋅⋅⋅, ηdʹ́ ) ∈ ℝdʹ́×dʹ́ denotes the
Lagrange multiplier matrix. Then, take the derivative with respect toW:

∂L(W,Δ)

∂W

=
∂

∂W

[
− tr

(
WTk(X, )⊗2

(
k(X, )⊗2

)TW
)
+ tr

(
ΔT (WTW − I

))]

= −
∂

∂W tr
(
WTk(X, )⊗2

(
k(X, )⊗2

)TW
)
+

∂
∂W tr

(
ΔTWTW

)

= − 2k(X, )⊗2
(
k(X, )⊗2

)TW+ 2WΔ

(12)

Making ∂L(W,Δ)

∂W = 0, the following equation can be obtained:

k(X, )⊗2
(
k(X, )⊗2

)TW =WΔ
⇒k(X, )⊗2

(
k(X, )⊗2

)Twi = ηiwi, i ∈ {1,2, ⋅⋅⋅d́ }́
(13)

It is obvious from Eq. (13) thatwi ∈W and ηi ∈ Δ are the eigenvector
and eigenvalue of feature covariance matrix k(X, )⊗2

(
k(X, )⊗2

)T,
respectively. Unfortunately, the feature covariance matrix cannot be
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obtained explicitly. In order to solve k(X, )⊗2
(
k(X, )⊗2

)T, Eq. (13) is
transformed:
(
k(X, )⊗2

)Tk(X, )⊗2βi = ηiβi (14)

where the βj = (βi1, β
i
2⋅⋅⋅βin) ∈ ℝn×1 with βij = 1

ηi

(
k(xj, )⊗2

)Twi. According
to Eq. (1) and the kernel tricks, Eq.(14) can be rewritten as:

K⊗2βi = ηiβi (15)

where K⊗2 represents the kernel matrix with respect to k2(⋅, ⋅), that is
(
K⊗2)

ij = k2(xi,xj), i,j ∈ {1,2,⋅⋅⋅n}. Finally, βiand ηi can be easily solved
through the eigenvalue decomposition. The intrinsic fault features on
the maximum subspace derived from W are obtained:

{fi}i=1,2⋅⋅⋅dʹ́ = wT
i k(x, )

⊗2
=
∑n

j=1
βij
(
k(xi, )⊗2

)Tk(x, )⊗2

=
∑n

j=1
βijk

2
(
xi,x

)
(16)

It can be seen that the dimension d́ʹ of the obtained subspace will
significantly affect the feature attributes, which indicates that too low or
too high dimension will cause the loss of fault information or the curse of
dimensionality. As ηi represents the information importance, the 80%
threshold ratio is set to seek the optimal subspace dimension.

d́ʹ= min
d∗

{
d∗
⃒
⃒
⃒
∑d∗

i=1
ηi
/∑n

i=1
ηi ≥ 80%

}
(17)

2.2. Similarity measurement criterion

Given the sourced-domain and target-domain samples, XS ∈ ℝd×k

and XT ∈ ℝd×m, the intrinsic fault features can be extracted using the
above maximum subspace representation, i.e., FS = MSR(XS) ∈ ℝdʹ́×k

and FT =MSR(XT) ∈ ℝd́ʹ×m, where kandm denote the sample number of
source domain and target domain, respectively. Then, the orthogonal
bases of intrinsic feature subspaces can be solved using the SVD algo-
rithm:

FS = USΣS(VS)
T
,FT = UTΣT(VT)

T (18)

where U = (u1,u2⋅⋅⋅) and V = (v1, v2⋅⋅⋅)are the orthogonal bases of
feature matrix space, and Σ = diag(σ1, σ2⋅⋅⋅) denotes the singular value.
It should be noted that the dimension of these source-domain compo-
nents is related to the d́ʹ and k:

US ∈ ℝdʹ́×d́ʹ,ΣS ∈ ℝdʹ́×dʹ́ ,VS ∈ ℝk×dʹ́ ; d́ʹ< k
US ∈ ℝdʹ́×k,ΣS ∈ ℝk×k,VS ∈ ℝk×k; d́ʹ≥ k (19)

The dimension calculation of the target domain is the same as the
above Eq. (19). The Frobenius norm is used to represent the scale of the
feature matrix. Taking the source domain as an example, the following
equation can be obtained with UTU = I, VTV = I and d́ʹ≥ k:

‖FS‖2F = tr
(
FS(FS)T

)
= tr

(
USΣS(VS)

TVS(ΣS)
T
(US)

T)

= tr
(
USΣS(ΣS)

T
(US)

T)
= tr

(
(ΣS)

TΣS
)
=
∑k

i=1
σ2i

(20)

It can be observed from Eq. (20) that the feature scale is only influ-
enced by a singular value. Thus, an intuitional similarity measurement
criterion, aiming to weigh the discrepancy between orthogonal bases of
two domains, is designed, i.e., angle measure. Taking the VS ↔VT as an
example with d́ʹ< k, the cosine vector cos ΦVS ↔VT = (cos ϕ1, cos ϕ2⋅⋅⋅
cos ϕk) on each dimension of source-target feature subspace pair
(VS ↔VT), can be defined as:

cos ϕ1 = max
vS1 ∈VS ,vT1∈VT

(
vS1 (vT1 )

T)/
(‖vS1‖‖vT1‖)

cos ϕ2 = max
vS2 ∈VS ,vT2∈VT
vS2∕=vS1 ,vT2∕=vT1

(
vS2 (vT2 )

T)/
(‖vS2‖‖vT2‖)

.

.

.

cos ϕk = max
vSk ∈VS ,vTk∈VT

vSk∕=vS1 ⋅⋅⋅∕=vSk− 1
vTk∕=vT1 ⋅⋅∕=vTk− 1

(
vSk
(
vTk
)T)/( ⃦⃦vSk

⃦
⃦
⃦
⃦vTk

⃦
⃦
)

(21)

Similarly, the cosine vector cos ΦUS ↔UT on US ↔UT can be calcu-
lated. When cos ΦUS ↔UT and cos ΦVS ↔VT are all one, the similarity be-
tween source and target domains is the highest, which also indicates that
the current transfer task possesses a good transferability. It is obvious
that the (18) has a high computation complexity. Thus, the principal
angles ΘUS ↔UT (ΘVS ↔VT ) between US(VS) and UT(VT) is used to replace
ΦUS ↔UT (ΦVS ↔VT ), which can solved by SVD (Gong et al., 2012):

(US)
TUS = RSΓUS ↔UT (RT)

T (22)

where ΓUS ↔UT = diag(cos ΘUS ↔UT ), and the (US)
TriS denotes the prin-

cipal vector shown in Fig. 2. Finally, the similarity measurement crite-
rion to weigh the transferability under a specific transfer task is defined
as follows:

sim
(
D S,D T

)
= tr

(
ΓUS ↔UT +ΓVS ↔VT

)
(23)

where D S and D T represent the source domain and target domain,
respectively.

3. Algorithm overview

Returning to the initial issue, the task of selecting the most suitable
diagnosis knowledge from multiple source domains for a specific target
domain can be easily resolved using the similarity measure mentioned
above. For a given target domain D T and several source domains {D S1 ,

D S2 ⋅⋅⋅,D SP}, the optimal source domain D S
∗ can be defined as follows:

D S
∗ = max

D Si

{
D Si

⃒
⃒
{
sim
(
D Si ,D T

)}

i=1,2⋅⋅⋅,p

}
(24)

To guarantee the real-time capability of transferability discrimina-
tion, the mini-batch sampling strategy is utilized. The algorithm over-
view of the proposed MSTDA is presented in Table 1.

4. Experiment study

In this section, three transferability discrimination experimental
cases are conducted to test the universality of the proposed MSTDA.
These cases include simulated transfer tasks, testbed transfer tasks, and
actual wind turbine transfer tasks. In addition, MSTDA is evaluated
against various distance metrics, such as MMD (Gretton et al., 2012),
CORAL (Sun et al., 2016), A-distance (Ben-David et al., 2006), AHMM
(Feng et al., 2023), and cosine distance, to evaluate its effectiveness. As
some distances (MMD, CORAL, A-distance, and AHMM) have an oppo-
site trend with MSTDA in similarity measurement, this is, the larger
value means a smaller transferability, we use their reciprocals as the
measurement criterion. All similarity measure methods are normalized
into a range of [0,1] to ensure a consistent scale across multiple
source-target pairs.

sj =
sim
(
D Sj ,D T

)
− min

{
sim
(
D Si ,D T

)}

i=1,2⋅⋅⋅,p

max
{
sim
(
D Si ,D T

)}

i=1,2⋅⋅⋅,p − min
{
sim
(
D Si ,D T

)}

i=1,2⋅⋅⋅,p

(25)

Furthermore, three indexes, including correlation (CORR),
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Table 1
The Algorithm overview of proposed MSTDA.

Fig. 3. Three source domain simulated schemes: (a) cluster scaling; (b) cluster variance change; (c) cluster center shift.
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consistency (CONS), and monotonicity (MONO), are used to evaluate
the comprehensive performance of each similarity measure method,
where a larger value indicates a better transferability discriminant
result. Given the reference benchmark of transferability discrimination
for all source-target transfer tasks {τi}i=1,2⋅⋅⋅,p, τi < τi+1 or τi > τi+1 and the
corresponding similarity values of a specific method {si}i=1,2⋅⋅⋅,p, the
above indexed can be defined as follows:

COR(τ, s) =
∑p

i=1(τi − τ)(si − s)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑p

i=1(τi − τ)2
∑p

i=1(si − s)2
√ (26)

CON(τ, s) =
∑p

i=1(τi − τ)(si − s)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑p

i=1(τi − τ)2(si − s)2
√ (27)

MON(s) =
1

p − 1

(
∑p

i=1
δ(si+1 − si) −

∑p

i=1
δ(si − si+1)

)

(28)

where δ(⋅) denotes the simple unit step function. The reference bench-
mark is the preset variable parameter in a simulated experimental case,
while the remaining cases focus on the diagnosis accuracy.

4.1. Transferability discrimination on simulated transfer tasks

As shown in Fig. 3, for a given target domain including four fault
types, the two-dimension Gaussian distribution is employed to simulate
three source domain schemes, such as cluster scaling (Δu), cluster
variance change (Δσ), and cluster center shift (Δc). Five source domains
are simulated in each scheme. In each transfer task, the sample number
for both the source domain and target domain is set to 4 ×100, and the
dimension is 2. To ensure the credibility of transferability results, the
experiment on each transfer task is repeated five times. This helps to
address any potential instability caused by the mini-batch sampling
strategy. Additionally, all comparative methods maintain the same
experimental setting to ensure fairness.

The experimental results of the three simulated schemes are listed in
Tables 2–4, including the mean and standard deviation. It can be clearly
observed that our proposed MSTDA similarity measure comprehensively
outperforms other methods. In terms of cluster scaling and cluster center
shift schemes, MSTDA has shown the best experimental performance
among the three evaluation indexes. These comparative methods (MMD,
CORAL, A-distance, and AHMM) are sensitive to the feature scale and
lack the ability to extract separable intrinsic fault features. As a result,
their transferability results are inferior to those of the MSTDA. Consid-
ering that the Cosine distance is easily affected by the vector orientation

Table 2
Transferability results of cluster scaling.

Variable
(Δu)

Methods

MMD CORAL A-distance L2-distance Cosine MSTDA

0.28 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.52 ± 0.37 1.00 ± 0.00
0.57 0.14 ± 0.04 0.43 ± 0.05 0.60 ± 0.15 0.54 ± 0.01 0.94 ± 0.08 0.85 ± 0.04
0.85 0.04 ± 0.00 0.18 ± 0.09 0.23 ± 0.10 0.22 ± 0.02 0.46 ± 0.39 0.61 ± 0.11
1.13 0.01 ± 0.00 0.11 ± 0.01 0.05 ± 0.02 0.07 ± 0.00 0.39 ± 0.42 0.31 ± 0.05
1.41 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.34 ± 0.46 0.00 ± 0.00
CORR 0.79 0.92 0.96 0.95 0.60 1.00
CONS 1.32 1.54 1.69 1.64 1.58 1.73
MONO 1.00 1.00 1.00 1.00 0.50 1.00

Table 3
Transferability results of cluster variance change.

Variable
(Δσ)

Methods

MMD CORAL A-distance L2-distance Cosine MSTDA

0.05 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.04 1.00 ± 0.00
0.15 0.05 ± 0.02 0.35 ± 0.07 0.44 ± 0.10 0.44 ± 0.04 0.85 ± 0.17 0.91 ± 0.02
0.35 0.03 ± 0.02 0.17 ± 0.02 0.14 ± 0.06 0.16 ± 0.03 0.55 ± 0.41 0.71 ± 0.03
0.55 0.00 ± 0.00 0.20 ± 0.02 0.07 ± 0.03 0.07 ± 0.04 0.46 ± 0.30 0.41 ± 0.02
0.75 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.34 ± 0.46 0.00 ± 0.00
CORR 0.66 0.82 0.87 0.87 0.98 0.99
CONS 1.23 1.47 1.60 1.61 1.80 1.69
MONO 0.50 0.50 1.00 1.00 1.00 1.00

Table 4
Transferability results of cluster center shift.

Variable
(Δc)

Methods

MMD CORAL A-distance L2-distance Cosine MSTDA

0.5 1.00 ± 0.00 0.43 ± 0.32 1.00 ± 0.00 1.00 ± 0.00 0.33 ± 0.47 1.00 ± 0.00
1.0 0.09 ± 0.02 0.57 ± 0.42 0.19 ± 0.07 0.44 ± 0.04 0.41 ± 0.30 0.85 ± 0.02
1.5 0.02 ± 0.00 0.20 ± 0.10 0.08 ± 0.03 0.16 ± 0.03 0.50 ± 0.07 0.59 ± 0.01
2.0 0.04 ± 0.02 0.21 ± 0.17 0.00 ± 0.00 0.07 ± 0.04 0.65 ± 0.23 0.30 ± 0.01
2.5 0.00 ± 0.00 0.69 ± 0.44 0.04 ± 0.01 0.00 ± 0.00 0.33 ± 0.47 0.00 ± 0.00
CORR 0.67 0.91 0.73 0.80 − 0.24 1.00
CONS 1.26 − 0.27 1.35 1.58 − 0.62 1.73
MONO 0.50 − 0.50 0.50 1.00 − 0.50 1.00
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and the data sample used is randomly generated, thus its stability is
significantly weaker than that of other measurement methods. As shown
in Table 3, while the MSTDA consistency is slightly lower than the
Cosine distance, its standard deviation is significantly higher. This in-
dicates that MSTDA has better stability.

4.2. Transferability discrimination on testbed transfer tasks

The data samples are collected by the DDS planetary gearbox test-
bed. The testbed structure is shown in Fig. 4(a), consisting of a motor, a

planetary gearbox, a parallel-axis gearbox, and a magnetic powder
brake. The acceleration sensor is positioned on the shell of the planetary
gearbox, with a sampling frequency of 5120 Hz. Five healthy types
(normal condition, chipped tooth, missing tooth, surface wear, and root
crack) are simulated in the second-stage sun gear of the planetary
gearbox. Four different load information can be obtained by controlling
the magnetic powder brake: 0 N⋅m (Load1), 1.4 N⋅m (Load2), 2.8 N⋅m
(Load3), and 25.2 N⋅m (Load4). The output speed of the motor is
1500 min/r, and the sample dimension and sample number of each load
are set to 3072 and 4 ×1000. Besides, the basic kernel function in

Fig. 4. DDS planetary gearbox testbed: (a) testbed structure; (b) data distribution of different load information.

Table 5
Transferability results of planetary gearbox testbed transfer tasks.

Transfer
tasks

Accuracy benchmark Methods

MMD CORAL A-distance L2-distance Cosine MSTDA

1↔2 0.77 0.93 ± 0.06 0.82 ± 0.25 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
2↔3 0.71 0.99 ± 0.02 0.57 ± 0.05 0.70 ± 0.08 0.62 ± 0.02 0.78 ± 0.02 0.91 ± 0.00
1↔3 0.61 0.49 ± 0.02 0.81 ± 0.13 0.76 ± 0.19 0.81 ± 0.08 0.86 ± 0.02 0.85 ± 0.01
3↔4 0.42 0.97 ± 0.02 0.00 ± 0.00 0.49 ± 0.08 0.01 ± 0.01 0.00 ± 0.00 0.14 ± 0.01
2↔4 0.37 0.58 ± 0.03 0.04 ± 0.02 0.06 ± 0.08 0.01 ± 0.01 0.13 ± 0.01 0.10 ± 0.02
1↔4 0.34 0.00 ± 0.00 0.05 ± 0.02 0.05 ± 0.04 0.11 ± 0.01 0.22 ± 0.01 0.00 ± 0.00
CORR 0.60 0.91 0.93 0.93 0.93 0.98
CONS 1.34 2.25 1.98 2.14 2.23 2.24
MONO 0.20 − 0.20 0.60 − 0.20 − 0.20 1.00

Fig. 5. Gearbox transmission structure of actual wind-turbine.
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Table 1 is set to the Gaussian kernel by expertise and data
characteristics.

Using the above collected data samples, six transfer tasks shown in
Table 5 (1↔2, 2↔3, 1↔3, 3↔4, 2↔4 and 1↔4) are built. Unlike the
simulated transfer tasks mentioned previously, the transferability
discrimination of testbed transfer tasks poses greater difficulty due to
various factors such as noise environment, transmission path, machining
error, and assembly error. Since the vast majority of fault transfer
diagnosis methods employ convolutional neural networks (CNN) as the
basic classifier in the current fault diagnosis community, we also employ
CNN to obtain the benchmark accuracy in Tables 5 and 7, in which the
raw vibration signals are fed directly into the network without feature
preprocessing. The structure parameters of CNN are same as Ref. (Qian
et al., 2023). In order to better reflect the transferability, CNN is only
trained by source-domain data samples without any transfer learning
techniques, then the target-domain data samples are inputted into the
trained CNN for testing the diagnosis accuracy. Moreover, as the accu-
racies of different diagnosis tasks are different, the average diagnosis
accuracy of “1→2” and “2→1” diagnosis tasks is used as the final ac-
curacy benchmark. Taking the “1↔2” as an instance, the former “1” and
the latter “2” respectively denote the labeled source domain and unla-
beled target domain in the “1→2” and the same goes for the “2→1”.
Considering the random volatility of deep neural networks, each transfer
task is executed for ten times. From Fig. 4(b), it is evident that the data
distribution of Load4 is significantly different from the other three types
of loads. This suggests that the transferability of the transfer task
involving Load4 is lower compared to the other transfer tasks. This point
is verified by the accuracy benchmark listed in Table 5. The experi-
mental setting for all similarity measure methods is consistent with
Section 4.1. Finally, Table 5 clearly demonstrates that MSTDA out-
performs other methods in terms of transferability performance through
the three evaluation indexes.

4.3. Transferability discrimination on actual wind-turbine transfer tasks

The actual dataset is collected from several wind turbine gearboxes
in a wind farm. The gearbox structure is shown in Fig. 5, consisting of a
two-stage planetary transmission and a one-stage parallel-axis trans-
mission. Two gear faults are present on both the second gear ring (SGR)
and the high-speed shaft gear (HSG). The SGR is collected from twowind
turbines, F34 and F47, while the HSG is collected from two other wind
turbines, F14 and F38. The monitoring vibration signals derived from
two acceleration sensors placed on the shells of the second gear ring and
the high-speed shaft are used to carry out the transferability discrimi-
nation. The sampling frequencies of the two sensors are 12.8 kHz and
25.6 kHz, respectively. Since the minimum data points required to cover
a fault period on the low-speed end are higher than those on the high-
speed end, the minimum data points of the second gear ring are
selected as the sample dimension for all fault types. This helps to reduce
the calculation time significantly, with a set value of 20000. The sample
number for each fault type is 200.

Table 6 displays the construction of eight domains using the actual
wind turbine dataset. In this subsection, “A” is selected as the target
domain, while the other seven domains are considered source domains.
Table 7 provides a list of seven transfer tasks that can be derived from

this setup. The distribution discrepancy of transfer tasks in the group (A,
B, C, and D) is due to variations in speed ranges, while the remaining
transfer tasks are influenced by a combination of different speed ranges
and wind turbines. The accuracy benchmark setting is similar to Section
4.1. The comprehensive experimental result is presented in Table 7. It is
evident that our proposed MSTDA outperforms other methods in terms
of transferability discrimination performance in an actual wind turbine
scenario. Specifically, the MSTDA has a unique advantage in terms of
correlation and consistency. In contrast to the testbed dataset, the
working condition of the actual wind turbine dataset varies non-linearly
in real-time. This makes the actual wind turbine dataset more chal-
lenging compared to the testbed dataset.

From Table 7 it is evident that the performance of nearly all methods
in the three evaluation metrics is inferior to that of Table 5. And the A-
distance derived from the classifier tends to have a higher standard
deviation compared to other similarity measure methods in most
transfer tasks. Considering that MMD has become the most mainstream
distribution discrepancy metric in the field of fault transfer diagnosis,
therefore, three MMD-based similarity indexes (AHMM (Feng et al.,
2023), DDM (Qian et al., 2023), and KMMD (Lu et al., 2024)) are sup-
plemented as the comparative methods to further show the advantage of
the proposed MSTDA. The experimental results are illustrated in Fig. 6.
It can be obviously seen that the proposed MSTDA still possesses the best
transferability discrimination capability. Finally, the comprehensive
experimental results on the actual wind turbine dataset further
demonstrate the superiority and universality of MSTDA.

To visually evaluate the effectiveness of MSTDA in extracting the
separable fault features, we employ t-distributed stochastic neighbor (t-
SNE) to project the original samples and the features obtained by
MSTDA into a three-dimensional space. The resulting t-SNE mappings
are shown in Fig. 7. It is evident that there are more overlapping data
points between SGR and HSG in Fig. 7(a) than there are in Fig. 7(b). This
indicates that MSTDA is effective in extracting separable features with
zero-label prior knowledge. The extracted separable intrinsic fault fea-
tures will contribute to dig the cross-domain intrinsic discrepancy in the
phase of constructing the similarity measurement criterion, thus
enhancing the transferability discrimination performance of MSTDA.

In addition, to demonstrate the feature scale robustness of different
transferability discriminative methods, we take the fault features
extracted from the cross-domain task “A↔C1” and the maximum sub-
space representation as the research objects. By varying the multiples of
the feature values in the source domain “C1”, we simulated different
feature scales. The relative transferability values of all transferability
discrimination methods are shown in Fig. 8. From the figure, it is clearly
observed that: except for theMSTDA and Cosine, the results of other four
methods fluctuate with the change of the preset multiples, and their
fluctuation degrees are different, among which the fluctuation of A-
distance is particularly severe. This indicates that MMD, CORAL, A-
distance, and L2-distance are sensitive to the changes of feature scales
and cannot accurately reflect the similarities between different cross-
domain tasks. Although Cosine distance exhibits a strong feature scale
robustness, its poor performance on transferability discrimination ex-
periments still limits its practical application value. In contrast, the
MSTDA ensures the excellent transferability discrimination performance
while maintaining the robustness to feature scales.

Table 6
Details of actual wind-turbine dataset.

Information Name

A B C D A1 B1 C1 D1

No. of wind turbine F34
F14

F34
F14

F34
F14

F34
F14

F47
F38

F47
F38

F47
F38

F47
F38

Fault type SGR
HSG

SGR
HSG

SGR
HSG

SGR
HSG

SGR
HSG

SGR
HSG

SGR
HSG

SGR
HSG

Speed range (r/min) 700–750 850–900 1000–1050 1200–1250 700–750 850–900 1000–1050 1200–1250
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4.4. Limitations and future works

It should be noted that the proposed MSTDA can only provide the
relative transferability of different transfer tasks and still cannot answer
the question of whether cross-domain diagnosis is possible for the

corresponding transfer tasks. Secondly, the success of MSTDA also
heavily relies on the existence of clear decision boundaries in different
fault monitoring data. However, in practical engineering, the inherent
separability may be weakened due to the complexity of working envi-
ronment, thereby reducing the discriminant performance of MSTDA. In

Table 7
Transferability results of actual wind-turbine transfer tasks.

Transfer
tasks

Accuracy benchmark Methods

MMD CORAL A-distance L2-distance Cosine MSTDA

A↔A1 0.96 0.22 ± 0.13 1.00 ± 0.00 0.91 ± 0.12 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
A↔B 0.92 0.14 ± 0.05 0.27 ± 0.02 0.83 ± 0.12 0.35 ± 0.09 0.13 ± 0.12 0.73 ± 0.02
A↔B1 0.89 0.55 ± 0.55 0.58 ± 0.12 0.41 ± 0.30 0.92 ± 0.06 0.54 ± 0.02 0.48 ± 0.01
A↔C 0.85 0.17 ± 0.06 0.00 ± 0.00 0.60 ± 0.20 0.00 ± 0.00 0.00 ± 0.00 0.68 ± 0.03
A↔C1 0.81 1.00 ± 0.00 0.72 ± 0.04 0.58 ± 0.20 0.79 ± 0.04 0.55 ± 0.03 0.34 ± 0.04
A↔D 0.62 0.00 ± 0.00 0.42 ± 0.16 0.49 ± 0.21 0.94 ± 0.04 0.96 ± 0.04 0.30 ± 0.05
A↔D1 0.47 0.92 ± 0.01 0.49 ± 0.08 0.14 ± 0.11 0.77 ± 0.04 0.59 ± 0.03 0.00 ± 0.00
CORR 0.35 0.16 0.83 0.19 0.24 0.89
CONS − 0.82 0.56 1.49 − 0.76 − 0.76 1.68
MONO 0.00 0.00 0.67 0.00 0.00 0.67

Fig. 6. The comparative experimental results between MSTDA and three MMD-based indexes.

Fig. 7. Three-dimensional t-SNE mapping: (a) original samples; (b) extracted fault features.
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future works, we will study the adaptive threshold decision rules that
can discern whether specific cross-domain diagnostic tasks are trans-
ferable, and effective denoising methods.

5. Conclusions

This study proposes a novel cross-domain similarity measure called
MSTDA, which aims to address transferability discrimination under
zero-label prior knowledge. The approach incorporates the maximum
subspace representation and similarity measurement criteria. In order to
improve the separability of different fault signals, a Hilbert space is first
constructed during the maximum subspace representation phase. This is
achieved by using a newly designed kernel derived from the mean
square statistic. The kernel maps the low-dimensional sample into a
high-dimensional space. Then, the separable intrinsic fault feature is
extracted to represent the distribution discrepancy between the source
and target domains. Furthermore, a novel similarity measurement cri-
terion is developed based on the orthogonal bases of the intrinsic feature
subspaces from both the source and target domains, which are obtained
through the SVD. Themathematical property that is robust to the feature
scale is strictly proven. Ultimately, the comprehensive experimental
results and discussions confirm that MSTDA has superior transferability
discrimination performance compared to other well-known similarity
measure methods.
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