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A B S T R A C T

Data-driven approaches demonstrate significant potential in accurately diagnosing faults in wind turbines. To
enhance diagnostic performance and reduce communication costs in federated learning with data heterogeneity
among different clients, we introduce a clustered federated learning framework to wind turbine fault diagnosis.
Initially, a lightweight multiscale separable residual network (LMSRN) model is proposed for each local client.
The LMSRN model integrates a multiscale spatial feature derivation unit and a depthwise separable feature
extraction unit. Subsequently, to tackle data heterogeneity among clients, canonical correlation coefficients
of representations are extracted from the intermediate layers of local LMSRN models, and a representational
canonical correlation clustering (RCCC) method is proposed to assess the similarity of local LMSRN models
and group them into clusters. Finally, a global model is trained for each cluster. Real-world wind turbine data
experiments showcase the superior performance of the proposed clustered federated learning framework over
traditional methods in terms of diagnostic accuracy and computational speed. Additionally, the optimal choice
of the number of clusters is also discussed.
1. Introduction

Wind energy, known for being pollution-free, eco-friendly, and self-
renewable, is considered a clean and sustainable natural resource.
When combined with solar and hydropower, it has the potential to
economically and technologically improve global energy supply. The
wind energy market has shown consistent year-on-year growth in total
installed capacity. As of the end of 2022, the global total installed
capacity has reached 906 GW, with projections to rise to 1221 GW
by the end of 2030, making wind energy the fastest-growing sector
in renewable energy generation capacity [1]. The International En-
ergy Agency’s (IEA) 2023 report indicates a steady increase in global
wind energy production, with a record-breaking 265 TWh increase in
2022 [2].

Despite being one of the most promising renewable energy sources,
wind power faces numerous challenges. The high cost of operation
and maintenance already accounts for 30% or more of the total life-
cycle cost [3]. The uncertainty of turbine health in complex environ-
ments and maintenance challenges are pushing operators towards more
predictive and proactive decision-making. Large turbines are always
equipped with SCADA systems that record immense operation data,
environmental conditions, fault alarms, and event logs every 10 min.
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SCADA data can improve operators’ remote performance monitoring
and fault diagnosis [4,5].

In the field of fault diagnosis, deep learning, as a branch of ma-
chine learning, is widely applied in both academia and industry due
to its remarkable feature learning capabilities and capacity for han-
dling large-sample high-dimensional data [6,7]. Jia et al. (2016) [8]
developed a deep neural network (DNN) capable of extracting non-
linear functions for diagnosing rolling bearings. Bach-Andersen et al.
(2019) [9] proposed a deep learning model using convolutional neural
networks for monitoring large-scale wind turbine drivetrain systems,
validated on 251 wind turbine bearings. Liu et al. (2018) [10] utilized
recurrent neural networks (RNN) to capture temporal correlation in
signals. To ensure model performance for these techniques, sufficient
labeled data is crucial. However, wind turbines often have low failure
rates annually, resulting in a scarcity of failure data and an imbalance
in positive and negative labels. Furthermore, newer wind farms have
less data compared to older ones due to shorter operational periods.

Transfer learning, a machine learning technique enabling the trans-
fer of diagnostic knowledge across different domains, can address these
issues by sharing data among turbines and wind farms to mitigate
class imbalance and sample size challenges. Tong et al. (2019) [11]
observed significant differences between training and testing data in
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various working conditions, impacting model performance. As a result,
they proposed a feature transfer learning method to address disparities
in the conditional and marginal distributions of the source domain data.
Yang et al. (2019) [12] conducted simulations on bearing faults to gain
diagnostic knowledge of laboratory-used motor bearings. They utilized
a convolutional neural network (CNN) to extract transferable features
for diagnosing real-case bearings. Chen et al. (2021) [13] used trans-
fer learning algorithms to calibrate data labels and evaluated model
performance by analyzing gear cog belt fractures. Li et al. (2021) [14]
integrated a convolutional autoencoder into a small-scale model and
combined it with a parameter-based transfer learning framework to
incorporate operational data from other wind turbines. Addressing the
challenge of limited labeled data in new wind farms, Zhang et al.
(2022) [15] introduced a balanced joint adaptive network (BJAN)
to transfer data from other wind farms to the target one. They also
developed a pseudo-label prediction method to balance labeled and
unlabeled data. Overall, intelligent learning methods that leverage data
sharing can achieve satisfactory diagnostic performance, especially in
scenarios with insufficient labeled data in the target wind farm. Addi-
tionally, these methods can effectively tackle issues like class imbalance
and distribution disparities.

However, transfer learning based on data sharing may not ensure
the confidentiality of wind farms’ proprietary information. Owners of
various wind farms are hesitant to share operation data of their turbines
with other wind farm owners or store it on a centralized cloud server
due to privacy concerns. This reluctance is particularly evident when
it comes to sharing labeled fault data, as wind farm managers must
safeguard against the disclosure of sensitive details during operations
to prevent competitors from accessing valuable technical information
and engaging in unfair practices.

To address data privacy concerns and overcome data isolation, Fed-
erated Learning (FL) has been introduced as a collaborative distributed
machine learning approach in fault diagnosis [16]. The federated learn-
ing framework is shown in Fig. 1. Consider a scenario where a central
server collaborates with 𝑁 clients, each representing a wind farm.
ach client has its own local dataset, which is not shared with other
lients or the server. The server has access only to the local model
arameters from clients and utilizes these parameters through multi-
le communication rounds to develop an effective global diagnostic
odel. Assuming the server schedules  communication rounds for the

ederated learning task, let 𝜽 denote the trainable parameters of the
iagnostic model. At the beginning of 𝑡th communication round, the
entral server broadcasts the global model parameters 𝜽(𝑡) to 𝑁 clients
o initialize the local models for that round’s iteration. Subsequently,
lients independently train their local models using preprocessed local
ata. When local epoch reaches the upper limit or the local model
onverges, each client uploads local model parameters to the server.
pon receiving parameters

{

𝜽(𝑡)1 ,𝜽(𝑡)2 ,… ,𝜽(𝑡)𝑁
}

the server applies a spe-
cific model aggregation algorithm  (⋅) to process the parameters and
obtain the global parameters 𝜽(𝑡+1) for next communication round. The
wind turbine fault diagnosis models based on federated learning have
achieved good performance while protecting the privacy and security
of data from various regional wind farms. Jiang et al. [17] designed
a residual convolutional network with self-attention mechanism, and
completed the client-side model aggregation under the framework of
deep federated learning (DeepFedWT). Cheng et al. [18] proposed to
solve the imbalance of wind turbine icing data according to client
characteristics, and built a global weighted federated learning model.

The most commonly used model aggregation algorithm is FedAvg.
Global model parameters are the weighted average of the clients’
parameters [19]. FedAvg does not consider the heterogeneity across
clients, resulting in a global model with parameter distribution and
performance that may not align with the data distribution character-
istics of different clients. Karimireddy et al. [20] proved that applying
FedAvg for parameter updates causes ‘‘drift’’ in client models, where

some client models deviate from the global optimum.

2 
To tackle this challenge, researchers have explored various model
aggregation algorithms to reduce the effects of data heterogeneity and
improve overall robustness. In [20], stochastic controlled averaging
algorithm (SCAFFOLD) is proposed to correct this drift by estimating
the differences in update directions between the global model and
local models. Li et al. [21] added a proximal term in the client’s
objective function, and the proposed FedProx applied regularization to
improve stable convergence in non-IID scenarios. Some scholars have
considered the similarity of data and models between different clients
and introduced clustering in the federated learning framework when
dealing with non-IID data. Briggs et al. [22] introduced hierarchical
clustering after training a global model, and partitioned clients into
different groups according to the similarities between local models
and the global model. Clients trained their group models locally in
parallel. Palihawadana et al. [23] reduced the dimensions of collected
local model parameters for distance clustering to adapt the aggregation
weights of updating global parameters.

However, they still have the following drawbacks: First, the deep
fault diagnosis models used by clients have excessive capacity and
numerous parameters, reducing training efficiency. This is particularly
challenging for edge devices like wind turbines, as overly complex
models require operators to invest more in updating equipment per-
formance. Furthermore, in each communication round, all clients are
required to download the model from the central server and upload
model parameters or gradients, incurring significant communication
costs due to the large parameter size. Secondly, the statistical het-
erogeneity in wind turbine operation data across different regions
and seasons leads to varying parameter distribution and diagnostic
mechanisms among clients’ local models. Although many aggregation
strategies have been proposed, accommodating this heterogeneity with
a single global model remains a difficult task.

To tackle the challenges in wind turbine fault diagnosis using fed-
erated learning, this paper proposes a lightweight clustered federated
learning framework. The framework leverages the lightweight multi-
scale separable residual network (LMSRN) to extract spatial features
for fault diagnosis. In this framework, the server initiates LMSRN model
training tasks for clients, who perform local training and upload model
parameters while ensuring data privacy. The server then clusters clients
using a model clustering algorithm based on representational canonical
correlation analysis. Within each cluster, clients complete local training
tasks and upload parameters to support model aggregation. The output
of the server includes clusters based on client model characteristics
and their corresponding cluster models. This approach addresses the
heterogeneity in wind turbine operation data, leading to improved
client similarity inference and fault diagnosis performance through
efficient communication and targeted clustering algorithms. We make
contributions in the following ways:

• Lightweight multiscale separable residual network (LMSRN): We
propose a novel LMSRN model to extract multiscale features from
SCADA data, which can effectively capture the complex fault pat-
terns of wind turbines. In federated learning, frequent exchanges
of model parameters between clients and servers, including up-
dates, uploads, and downloads, lead to substantial communica-
tion costs. Given the limitations of edge devices, lightweight
and efficient diagnostic models are more promising. This paper
employs depthwise separable blocks in place of traditional CNN
blocks, significantly reducing the model’s parameter size and
enhancing the efficiency of parameter transmission in resource-
constrained environments.

• Clustered federated learning (CFL) framework for collaborative
fault diagnosis: Wind farms often compete, making cross-farm
data sharing challenging, while single wind farms may face data
shortages and silos. Federated learning addresses these issues by
integrating the diagnostic models of all wind farms through the

sharing of local model parameters, resulting in a global optimal
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Fig. 1. The framework of federated learning with a server and multiple clients.
model while maintaining data privacy for each wind farm. The
operational data of wind turbines from different wind farms
is highly heterogeneous due to varying operational conditions,
sensor configurations, and environmental factors. The data het-
erogeneity poses a significant challenge for traditional federated
learning framework, which supports only a single global model
on the server to perform diagnostic tasks for all wind farm clients.
This global model, typically derived from the weighted averaging
of local model parameters, often loses the unique data charac-
teristics of individual wind farms, resulting in weaker detection
capabilities for rare fault types. We propose a novel clustered fed-
erated learning framework designed to handle data heterogeneity
effectively. By clustering clients based on model characteristics,
it is ensured that similar clients are grouped together, leading to
more homogeneous data within each cluster and improving the
overall diagnostic performance.

• Representational canonical correlation clustering (RCCC): The
core of the clustered federated learning framework proposed in
this paper is using local model parameters to assess client simi-
larity and thereby form clusters. Due to the large scale and strong
sparsity of deep learning model parameters, traditional clustering
methods fail to effectively represent model characteristics, lead-
ing to erroneous client clustering. Canonical correlation analysis
(CCA) is a powerful method for measuring similarity between
neural network models. Additionally, the intermediate layer rep-
resentations of models serve as crucial indicators of model func-
tionality. This paper introduces representational canonical corre-
lation clustering (RCCC), which computes the canonical correla-
tion coefficients of local model representations to determine client
similarities, followed by spectral clustering to form the clusters.

The subsequent structure of this paper includes the introduction of
real-world wind turbine datasets of various wind farms in Section 2,
followed by an explanation of the data preprocessing process. Section 3
presents a clustered federated learning framework to wind turbine fault
diagnosis, utilizing the lightweight multiscale separable residual net-
work (LMSRN). The performance of the proposed method is evaluated
on datasets from real wind farms in Section 4, and the test results
are thoroughly analyzed. Section 5 concludes with a summary of the
advantages and scope of application of the proposed method, along
with future research directions.
3 
2. Data description and preprocessing

2.1. Data description

The SCADA dataset analyzed in this study comprises operational
data from wind turbines across 13 wind farms in various regions of
China. Information for each wind farm is presented in Table 1. The
data was collected from January 2019 to December 2019, capturing 68
variables at 10-minute intervals. These SCADA samples include: wind
variables like wind speed, average wind speed in 30 s, wind direction
angle, average wind direction angle in 60 s; temperature variables like
ambient temperature and inside temperature of different components;
electrical variables such as active and reactive power; and operating
variables like cabin position, wind turbine speed, and pitch angle.

Fault logs provide information on the occurrence of different types
of faults during specific time periods. The wind turbine faults are
recorded using fault codes in logs, which capture the time from activa-
tion to reset. Most faults typically last around 10 min. Due to turbines
mostly operating in a normal state, the amount of specific fault data
available is limited. We categorize all specific faults into eight classes:
gearbox fault, engine room fault, converter fault, pitch system fault,
vibration sensor fault, generator fault, hydraulic system fault, and yaw
system fault. Table 2 displays the fault categories and some specific
faults. There is a notable imbalance in data quantity across different
faults. In Fig. 2, the gray star-filled bars represent the amount of
downsampled normal data points while the colored bars represent the
original amount of fault data points collected from 13 wind farms. The
fault data demonstrate strong heterogeneity since turbines of different
wind farms show varying fault types and corresponding quantities of
fault data.

• The prevalence of gearbox fault, converter fault, pitch system
fault, vibration sensor fault, and generator fault varies across
wind farms. Notably, WF8, WF10, and WF13 are free of gearbox
fault, while WF2, WF6, WF7, WF8, and WF13 do not have con-
verter fault. Generator fault is absent in WF1, WF4, WF6, WF7,
WF8, and WF10. Pitch system fault and vibration sensor fault are
less common, with WF3, and WF4 showing higher instances of
pitch system fault, and WF1, and WF5 exhibiting more vibration
sensor faults.

• Certain wind farms are characterized by specific fault types.
For instance, WF1 has a small amount of engine room faults,
converter faults, vibration sensor faults, and hydraulic system
faults, while the number of gearbox faults and yaw system faults is
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Table 1
Details of the selected wind farms.

Wind farm Location No. Turbines Rated power Collection time

WF1 Jiangsu, China 25 2.0 MW from 01/01/2019 to 25/12/2019
WF2 Yunnan, China 24 2.0 MW from 01/01/2019 to 25/12/2019
WF3 Tianjin, China 19 2.0 MW from 01/01/2019 to 25/12/2019
WF4 Tianjin, China 19 2.0 MW from 01/01/2019 to 25/12/2019
WF5 Shanghai, China 25 3.6 MW from 01/01/2019 to 25/12/2019
WF6 Shanghai, China 25 3.6 MW from 01/01/2019 to 25/12/2019
WF7 Jiangsu, China 25 3.6 MW from 01/01/2019 to 25/12/2019
WF8 Jiangsu, China 28 3.6 MW from 01/01/2019 to 27/12/2019
WF9 Shanghai, China 26 3.6 MW from 01/01/2019 to 27/12/2019
WF10 Shanghai, China 26 3.6 MW from 01/01/2019 to 25/12/2019
WF11 Zhejiang, China 25 3.6 MW from 01/01/2019 to 25/12/2019
WF12 Hubei, China 26 2.0 MW from 01/01/2019 to 25/12/2019
WF13 Hubei, China 19 2.0 MW from 01/01/2019 to 25/12/2019
Table 2
Fault categories and some specific faults.

Class Fault categories Examples of specific faults

1 Gearbox fault Gearbox cooling water pressure failure
Gearbox lubricating oil pump motor protection

2 Engine room fault Engine room cooling fan protection
Engine room specific module failure

3 Converter fault Converter fails and shuts down
Converter ups alarms

4 Pitch system fault Pitch system communication failure
Pitch system shaft drive failure

5 Vibration sensor fault Vibration sensor communication failure
Vibration sensor missing

6 Generator fault Generator cooling water temperature exceeds limit
Generator cooling water pressure failure

7 Hydraulic system fault Hydraulic oil pump motor protection
Hydraulic oil pump heater protection

8 Yaw system fault Yaw system motor protection
Yaw system soft starter slope error

higher. WF3 shows a higher quantity of gearbox faults, converter
faults, and pitch system faults. WF4 has a significant number
of faults in the engine room, converter, and pitch system. WF6
and WF7 have notable gearbox faults, engine room faults, and
yaw system faults, while WF8 has merely experienced engine
room faults and yaw system faults. WF10 has faults related to the
engine room, converter, and yaw system. WF12 has limited pitch
system faults and hydraulic system faults.

• There is a significant disparity in the amount of data across
different fault categories. For example, WF12 has recorded over
1000 engine room faults, but the number of pitch system and
hydraulic system faults is less than 100. WF2 has only 37 gearbox
faults compared to 865 engine room faults. WF5 has data for all
fault types except pitch system faults, with the highest volume
of yaw system fault data being 1518, while the lowest volume of
vibration sensor fault data is just 34.

There are notable variations in the distribution of SCADA variables
cross different wind turbines during faults. Internal temperature of the
enerator, generator speed, and active power are three critical variables
or fault diagnosis. After aggregating all the SCADA data of wind
urbines from the same wind farm, Fig. 3 demonstrates considerable
eterogeneity in the distribution of these variables across different wind
arms.

The variability in the distribution of variables may indicate dif-
erences in the internal mechanisms of different wind turbines when
ncountering the same fault. Fig. 4 illustrates the power curves of tur-
ines in various wind farms under three faults. In the event of gearbox
aults, most turbines in WF12 consistently exhibit low power output.
onversely, most turbines in WF6 continue to function at moderate to
4 
high-power levels, while some turbines in WF4 operate at high power.
For converter faults, turbines in WF5 are in low power operating mode,
while a limited amount of turbines in WF3 and WF4 operate at medium
power levels. Regarding hydraulic system faults, turbines in WF9 tend
to operate across different power levels, whereas turbines in WF1 are
in a low power output state, and turbines in WF2 are predominantly
operating at medium power output levels.

Data heterogeneity is commonly found in federated fault diagnosis
tasks involving multiple turbines and wind farms. Failing to account
for this heterogeneity when aggregating client models can lead to
decreased diagnostic performance and slower convergence of the global
model.

2.2. Data preprocessing

The preprocessing workflow, illustrated in Fig. 5, includes variable
screening, data partitioning, data balancing, and data normalization.

In order to effectively perform fault diagnosis, certain variables with
constant values, such as capacitor voltage, generator slip ring tempera-
ture, and cooling fan outlet temperature, are removed as they may not
significantly contribute to the iteration and training of local models.
Variables like monthly power generation, which are not relevant to
real-time operation processes, are also excluded. Table 3 summarizes
39 selected variables as input of local models.

Stratified data partition is essential to ensure consistent data dis-
tribution and to maintain the separation between model training and
evaluation processes. The process initially entails downsampling the
normal data within time windows, followed by partitioning the re-
sultant time-series data encapsulated in these windows into a 70:30
ratio for training and testing, ensuring the preservation of temporal
dynamics throughout the division. Subsequent data balancing on the
training dataset increases the quantity ratio to around 75:25. It is
important to note that the data is partitioned first to keep the test
dataset authentic and free from any influence during the model training
phase.

After stratified sampling to split the training and test data, the
proportion of fault to normal data in the training dataset is skewed.
Directly inputting such dataset into the deep network for model training
may result in severe overfitting, making data balancing crucial. To
address this issue, we adjusted the proportion by utilizing the Synthetic
Minority Oversampling Technique (SMOTE) [24] to oversample the
fault data in the training dataset. In Table 4, a comparison is conducted
on the data quantity of positive and negative timestamped samples in
the datasets before and after balancing, encompassing all eight types of
faults. It is clear that after balancing, the class distribution of the data
is more balanced, allowing client-trained local models to accurately
predict the minority class.

In order to remove differences in numerical values and the influence
of units among different variables, we need to apply a normalization
function to scale each variable in the input dataset. The normalized
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Fig. 2. Class distribution of each wind turbine. Left 𝑦-axis: the amount of fault data points. Right 𝑦-axis: the amount of downsampled normal data points.

Fig. 3. Distribution of inside temp (◦C), generator speed (rpm), and active power (kW) across all the wind farms at faults.

Fig. 4. The disparities in power curves among different wind farms encountering different faults. Gearbox faults (WF4, WF6, and WF12), converter faults (WF3, WF5, and WF10),
hydraulic system faults (WF1, WF2, and WF9).
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Fig. 5. Workflow of local SCADA data preprocessing.
Table 3
Variables of operation data used as model input.

ID Variable name ID Variable name ID Variable name

1 instantaneous wind speed 14 power factor 27 outside temp
2 average wind speed in 30s 15 set value of active power 28 inside temp
3 wind direction angle 16 set value of power factor 29 tower drum temp
4 average wind direction angle in 60s 17 low-speed bearing temp 30 bottom cabinet temp
5 grid A phase voltage 18 high-speed bearing temp 31 engine room cabinet temp
6 grid B phase voltage 19 free end bearing temp 32 cabin position
7 grid C phase voltage 20 drive end bearing temp 33 twisting cable position
8 grid A phase current 21 gearbox oil temp 34 wind turbine speed
9 grid B phase current 22 gearbox cooling water temp 35 generator speed
10 grid C phase current 23 generator cooling water temp 36 hydraulic system pressure
11 daily availability 24 generator stator U temp 37 pitch angle
12 active power 25 generator stator V temp 38 vibration value of cabin X
13 reactive power 26 generator stator W temp 39 vibration value of cabin Y
SCADA variable is shown as 𝑥−𝜇
𝜎 where 𝜇 and 𝜎 denote the mean and

standard error of 𝑥.
To ensure consistency and temporal ordering in model inputs, we

utilize sliding windows of identical duration to slice the sample seg-
ments. Given that the collecting interval of SCADA data is 10 min, it
is reasonable to avoid setting windows with excessively large spans.
In this paper, we therefore opt for a window size of 3, which strikes
a balance between capturing meaningful temporal dynamics without
overly diluting the temporal resolution inherent in the data. This ap-
proach maintains the sequential nature of the data, allowing the model
to learn from patterns that evolve over fixed time intervals.

3. Methodology

Assume that the number of clients is 𝑁 , and the 𝑖th client has its
own raw dataset 𝐷𝑖, which is not released to the public. The local
datasets of all clients define a set

{

𝐷 ,𝐷 ,… , 𝐷
}

. The 𝑖th client
1 2 𝑁

6 
simply uses local dataset 𝐷𝑖 with a sample size of 𝑛𝑖 to train the local
model 𝑖, and the objective is to minimize local loss function 𝓁𝑖 (𝜽),
where 𝜽 represents the model parameters that need to be optimized.

As shown in Fig. 6, we propose a clustered federated learning
framework to fault diagnosis of wind turbines. The framework in-
volves initial training of local lightweight multiscale separable residual
network models by each client, followed by partitioning clients into
clusters based on the similarity of the parameters of their local model.
Denote the collection of clusters as  = {𝐶1,… , 𝐶

||}. Thirdly, a hybrid
federated model 𝑖, 𝑗 = 1,… , ||, is build for cluster 𝑗 and assigned to
every client in cluster 𝑗. Lastly, In each communication round, the 𝑖th
client in cluster 𝑗 downloads the cluster model 𝑗 and locally train it
to get the model 𝑗

𝑖 . The optimization objective of clustered federated
learning is to minimize the objective function:

𝑗 (𝜽) =
∑ 𝑛𝑖

𝑛
𝓁𝑖 (𝜽) ,∀𝑗 ∈ {1, 2,… , ||} (1)
𝑖∈𝐶𝑗 𝑗
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Fig. 6. The framework of clustered federated learning.
Table 4
Quantity of original and balanced datasets (data points in timestamp format) for 13
wind farms in different states.

Original dataset Balanced dataset

Wind farm Fault
(positives)

Normal
(negatives)

Fault
(positives)

Normal
(negatives)

WF1 575 > 105 3677 3069
WF2 1576 > 105 5089 4146
WF3 4663 > 105 9408 4506
WF4 5136 > 105 7146 4941
WF5 4136 > 105 7916 4440
WF6 5757 > 105 7372 7245
WF7 5418 > 105 6863 6222
WF8 5689 > 105 7840 10 401
WF9 5703 > 105 11 352 8703
WF10 4225 > 105 6005 6231
WF11 5944 > 105 8186 4698
WF12 1846 > 105 6127 3597
WF13 2153 > 105 4001 4584

where 𝑛𝑗 =
∑

𝑖∈𝐶𝑗
𝑛𝑖 represents the entire sample sizes of cluster 𝑗. In

essence, all clusters train their own cluster models in parallel, with the
aim of optimizing their respective objective functions.

3.1. Lightweight multiscale separable residual network

A lightweight multiscale separable residual network (LMSRN) is
introduced in this section, as illustrated in Fig. 7. The network utilizes
a multiscale spatial feature derivation unit, incorporating multiple
7 
convolution kernels in the same layer to enhance spatial information
dimensions and generate compact feature maps. Additionally, it em-
ploys a depthwise separable feature extraction unit to separate spatial
and channel information of the feature maps, improving feature extrac-
tion and reducing network parameters. LMSRN demonstrates reduced
parameters and network complexity, effectively preventing overfitting
and maintaining diagnostic accuracy. When integrated into the feder-
ated learning framework as local and global models, it helps decrease
communication costs per round to some extent.

3.1.1. Multiscale spatial feature derivation unit
Zhang et al. [25] proposed a multiscale feature extraction unit to

reduce network depth while improving feature extraction capabilities,
which inspired us to develop the multiscale spatial feature derivation
unit.

The multiscale spatial feature derivation unit involves cloning input
samples 𝑛1 times and passing them through eight Conv2D blocks with
the same number of output channels to generate 𝑛1 sets of feature
maps. By using Conv2D with different kernel sizes, the unit can extract
spatial features of varying scales and enhance the distinguishability of
feature maps. In contrast to the multiscale feature extraction unit, the
multiscale spatial feature derivation unit performs concatenation in the
spatial dimension to achieve spatial feature derivation.

SCADA data 𝒙 ∈ R𝑉 ×𝑇 is fed into the network. Output of the
multiscale spatial feature derivation unit can be expressed as follows:

𝒉1 = 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐶𝑜𝑛𝑐𝑎𝑡
{

𝑅𝑒𝐿𝑈
(

𝑾 1
1𝒙 + 𝑩1

1
)

,… , 𝑅𝑒𝐿𝑈
(

𝑾 1
𝑛1
𝒙 + 𝑩1

𝑛1

)}

(2)



R. Zhou et al. Applied Energy 377 (2025) 124532 
Fig. 7. Overall structure of the LMSRN.
where the 𝑖th Conv2D with a multiscale kernel size of (2𝑖−1, 1) denotes
the weight matrix and bias as 𝑾 1

𝑖 and 𝑩1
𝑖 , 𝑖 = 1, 2,… , 𝑛1. 𝑅𝑒𝐿𝑈 (⋅)

is the rectified linear activation function [26]. 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐶𝑜𝑛𝑐𝑎𝑡 {⋅} sub-
sequently combines feature maps output by each Conv2D in the spatial
dimension.

3.1.2. Depthwise separable feature extraction unit
Inspired by MobileNetV2 [27,28], and Xception [29], which imple-

mented a separable dense block to eliminate redundant information
from the feature maps, we proposed two depthwise separable blocks
with different convolutional kernel sizes for feature extraction to reduce
the number of parameters.

The proposed depthwise separable block reinterprets conventional
convolution as a combination of pointwise convolution and depthwise
convolution. The depthwise convolution focuses on capturing spatial
relevance, while the pointwise convolution is responsible for captur-
ing cross-feature map (channel-level) relevance. In the first depthwise
separable block illustrated in Fig. 8, a smaller depthwise convolution
kernel (3 × 3) is used to extract features from a smaller spatial range
and simultaneously reduce the output feature maps’ channel dimen-
sions. This process effectively reduces the number of parameters and
computational complexity.

As the input of this block, 𝒉1 denotes the feature maps with 𝑚
channels, and is operated by a pointwise convolution with 1 × 1
kernelsize to reconstruct 𝑚1-channel feature maps, denoted by 𝒉2 =
𝑅𝑒𝐿𝑈

(

𝑾 2𝒉1 + 𝑩2). Afterwards, 𝒉2 is split into 𝑚1 independent chan-
nels

{

𝒉2𝜑
}𝑚1

𝜑=1
, and the spatial relevance of each feature map is sep-

arately captured via depthwise convolution with 𝑚1 filters. The 𝜑-th
channel of feature map is operated by 𝜑-th depthwise filter to output:

𝒉3𝜑 = 𝑅𝑒𝐿𝑈
(

𝑾 3
𝜑𝒉

2
𝜑 + 𝑩3

𝜑

)

(3)

where 𝑾 3
𝜑 and 𝑩3

𝜑 represent the weight matrix and bias of the 𝜑-th
filter respectively.

Subsequently, all the output feature maps
{

𝒉3𝜑
}𝑚1

𝜑=1
are combined as

input 𝒉3 of the second depthwise separable block with a larger depth-
wise convolution kernel (5 × 5), thereby enlarging the receptive field
to prevent the omission of long-range spatial features. In specific, 𝒉3 is
operated by a pointwise convolution to reconstruct 𝑚2-channel feature
maps, denoted by 𝒉4 = 𝑅𝑒𝐿𝑈

(

𝑾 4𝒉3 + 𝑩4). The second depthwise
convolution with 𝑚2 filters is then applied to operate

{

𝒉4𝜑
}𝑚2

𝜑=1
split

from 𝒉4. With the weight matrix 𝑾 5
𝜑 and bias 𝑩5

𝜑, the 𝜑-th depthwise
filter outputs 𝒉5 = 𝑅𝑒𝐿𝑈

(

𝑾 5 𝒉4 + 𝑩5
)

. The combined feature maps
𝜑 𝜑 𝜑 𝜑
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{

𝒉5𝜑
}𝑚2

𝜑=1
are then inputted into a 1 × 1 convolution to fuse the features

and output 𝒉6.
Depthwise separable block has fewer parameters compared to con-

ventional convolution with the same kernel size. The number of param-
eters of conventional convolution with kernel size 𝐾𝑐𝑜𝑛𝑣 are:

𝑃𝑎𝑟𝑎𝑚𝑠𝑐𝑜𝑛𝑣 = 𝐾𝑐𝑜𝑛𝑣 ×𝑁𝑖𝑛 ×𝑁𝑜𝑢𝑡 (4)

where 𝑁𝑖𝑛 is the channel dimension of input feature map and 𝑁𝑜𝑢𝑡 is
the channels of output. The number of depthwise separable blocks can
be calculated as the sum of the parameters from pointwise convolution
and depthwise convolution.

𝑃𝑎𝑟𝑎𝑚𝑠 = 𝑁𝑖𝑛 ×𝑁𝑜𝑢𝑡 +𝑁𝑜𝑢𝑡 ×𝐾𝑐𝑜𝑛𝑣 =
(

𝐾𝑐𝑜𝑛𝑣 +𝑁𝑖𝑛
)

×𝑁𝑜𝑢𝑡 (5)

The pointwise convolution with 1 × 1 kernel controls the output
channels. Its parameters are 𝑃𝑎𝑟𝑎𝑚𝑠𝑝𝑜𝑖𝑛𝑡 = 1×𝑁𝑖𝑛×𝑁𝑜𝑢𝑡. The depthwise
convolution with 𝐾𝑐𝑜𝑛𝑣 kernel maintains the channel dimension while
extracting spatial features with 𝑁𝑜𝑢𝑡 filters. Parameters of the depthwise
convolution are calculated as 𝑃𝑎𝑟𝑎𝑚𝑠𝑑𝑒𝑝𝑡ℎ = 𝑁𝑜𝑢𝑡×𝐾𝑐𝑜𝑛𝑣. As the number
of feature maps increases, the parameters of depthwise separable blocks
decrease geometrically.

3.1.3. Dropout-based classifier
The fused feature map 𝒉6 is concatenated with the residual 𝒙

through the channel dimension, maintaining the original input’s feature
information at the channel level to prevent essential characteristics
from being lost in the deep network. The flattened vector 𝜻 is then
inputted into a dropout-based classifier for fault detection prediction.
This classifier comprises fully-connected layers with dropout regu-
larization, aimed at addressing overfitting problems in small-sample
training situations and enhancing the model’s generalization ability.
Specifically, We define the predicted probability of 𝜉 label as 𝑦𝜉 , where
𝜉 ranges from 0 to 𝐾, with 0 representing the label for the normal state,
while labels 1 to 𝐾 denote the total types of faults. Additionally, 𝑦𝜉 fits
the following softmax function expression:

𝑦𝜉 =
exp

(

𝒘𝜉𝜻
)

∑𝐾
𝜉=0 exp

(

𝒘𝜉𝜻
)

(6)

where 𝒘𝜉𝜻 denotes the 𝜉-th output factor of the fully connected layer.
Consequently, the learning objective of each client is to minimize the
local loss function 𝓁 (𝜽), which is defined as the cross-entropy loss:

𝓁 (𝜽) = 1
𝑛

𝑛
∑

𝐾
∑

𝑦𝜉𝑖 log
(

𝑦𝜉𝑖
)

(7)

𝑖=1 𝜉=0
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Fig. 8. Illustration of the depthwise block.
where 𝑛 is the sample size of the local dataset, 𝑦𝜉𝑖 is the true label of
the 𝑖th sample, and 𝑦𝜉𝑖 is the predicted probability of the 𝑖th sample for
the 𝜉-th label.

3.2. Clustered federated learning

Following the development of local lightweight multiscale separable
residual networks for each client, we proposed the representational
canonical correlation clustering (RCCC) method to group these local
models into distinct clusters. Initially, a representational similarity
matrix is constructed through canonical correlation analysis (CCA) to
measure the similarity between different local models. This matrix
is then used to create a similarity graph that visually represents the
relationships among the local models. By employing spectral clustering,
the graph is partitioned to effectively divide the clients into separate
clusters. Subsequently, the central server allocates cluster models to
the clients within each cluster. During the subsequent communication
rounds, clients retrieve the relevant cluster model parameters and carry
out local training tasks. At the conclusion of each communication
round, the server performs cluster-internal model aggregation.

The algorithm for clustered federated learning, as depicted in Al-
gorithm 1, comprises three main modules: (1) local LMSRN model
training, (2) representational canonical correlation clustering, and (3)
cluster model training and model aggregation. The overall flowchart of
the proposed clustered federated learning framework is illustrated in
Fig. 9.

3.2.1. Local LMSRN model training
Prior to clustering clients into specific groups, each client conducts

local LMSRN model training for a specified number of epochs,  . And
the initial local model parameters

{

𝜽𝑖
}𝑁
𝑖=1 are obtained. Subsequently,

the server gathers the parameters from all local LMSRN models.

3.2.2. Representational canonical correlation clustering
It is essential to obtain the representational similarity matrix de-

rived from the local LMSRN models. The convolutional layers and fully
connected layers within the model play significant roles in feature
9 
extraction and classification. Therefore, it is reasonable to compute the
representations by utilizing the weights of both convolutional and fully
connected layers.

An informative representation of a well-trained deep neural network
𝝓 measures the similarity among activations of a pre-defined input
𝝌 ∈ R𝜂×𝑉 ×𝑇 at certain layers 𝝓𝑙. The pre-defined input can be obtained
from publicly accessible datasets and do not necessitate a substantial
sample size 𝜂. We define the representations of model 𝝓 at 𝑙th layer on
given 𝝌 as follows:

𝑹𝑙 ≐

⎛

⎜

⎜

⎜

⎜

⎝

(

𝝓𝑙 ◦𝝓𝑙−1 ◦ ⋯ ◦𝝓1) (𝝌1
)

(

𝝓𝑙 ◦𝝓𝑙−1 ◦ ⋯ ◦𝝓1) (𝝌2
)

⋮
(

𝝓𝑙 ◦𝝓𝑙−1 ◦ ⋯ ◦𝝓1) (𝝌𝜂
)

⎞

⎟

⎟

⎟

⎟

⎠

∈ R𝜂×𝑑 (8)

where 𝑑 ≐ 𝑑𝑙 represents the quantity of neurons in layer 𝑙, and each
sample point of 𝝌 is activated by layers

(

𝝓𝑙 ◦𝝓𝑙−1 ◦ ⋯◦𝝓1) (⋅).
For each client 𝑖, the weights of convolutional layers and fully con-

nected layers are selected from 𝜽𝑖 and map the given 𝝌 into represen-
tations

{

𝑹1
𝑖 ,𝑹

2
𝑖 ,… ,𝑹𝐿

𝑖
}

, where 𝐿 is the total number of convolutional
and fully connected layers. For the sake of simplicity, we note the
representations of local model 𝑖 at layer 𝑙 as 𝑹𝑖 ≐ 𝑹𝑙

𝑖 ∈ R𝜂×𝑑 ,
where 𝑙 = 1, 2,… , 𝐿 and 𝑑 ≐ 𝑑𝑙. Our goal is to quantify the similarity
measurement 𝑚

(

𝑖,𝑗
)

between the local models of any pair of
clients, denoted as client 𝑖 and client 𝑗, by extracting the correlations
across their representations.

Existing research about the similarity of neural networks mainly
emphasizes on the representational aspect of assessing how activations
of intermediate neural layers differ [30]. Canonical correlation analysis
(CCA) is a multivariate statistical method used to identify relation-
ships between two sets of random variables [31]. Various approaches
have been developed based on CCA to compare neural network rep-
resentations and assess the similarity among different deep learning
models [32–34]. This study presents a new method for determining the
similarity of local LMSRN models, requiring no additional inputs.

Define the canonical weights 𝜔𝑖 ∈ R𝑑 and 𝜔𝑗 ∈ R𝑑 for client 𝑖 and

client 𝑗. Use the representations 𝑹𝑖 and 𝑹𝑗 as linear transformations to
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Fig. 9. Flowchart of the clustered federated learning.
project 𝜔𝑖 and 𝜔𝑗 in the space R𝜂 such that the correlation 𝜌𝑙
(

𝑹𝑖,𝑹𝑗
)

between the projections is maximized:

𝜌𝑙
(

𝑹𝑖,𝑹𝑗
)

= max
𝜔𝑖 ,𝜔𝑗

⟨

𝑹𝑖𝜔𝑖,𝑹𝑗𝜔𝑗
⟩

‖

‖

𝑹𝑖𝜔𝑖
‖

‖

⋅ ‖
‖

𝑹𝑖𝜔𝑖
‖

‖

(9)

A mean-based aggregation of the canonical correlations across all layers
is used to compute the similarity measurement of local models:

𝑚𝑖𝑗 ≐ 𝑚
(

𝑖,𝑗
)

= 1
𝐿

𝐿
∑

𝑙=1
𝜌𝑙
(

𝑹𝑖,𝑹𝑗
)

(10)

where 𝑖, 𝑗 = 1, 2,… , 𝑁 and 𝑖 ≠ 𝑗. Obviously, 𝑚𝑖𝑗 is ranged from 0
to 1 and indicates greater similarity when near 1. Fig. 10 provides a
detailed depiction of the similarity calculation process using examples
of 𝑖th client and 𝑗th client. The procedure involves computing pairwise
similarity measures between each pair of clients while iterating over
all clients. As a result, a representational similarity matrix 𝛥 is built by
10 
capturing 𝑚𝑖𝑗 as its element, which is essential to partition clients into
various clusters via spectral clustering algorithm. To be more specific,
the similarity matrix 𝛥 is computed as follows:

𝛥 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑚11 𝑚12 ⋯ 𝑚1𝑁
𝑚21 𝑚22 ⋯ 𝑚2𝑁
⋮ ⋮ ⋱ ⋮

𝑚𝑁1 𝑚𝑁2 ⋯ 𝑚𝑁𝑁

⎞

⎟

⎟

⎟

⎟

⎠

(11)

while 𝑚𝑖𝑗 = 𝑚𝑗𝑖 and 𝑚𝑖𝑖 = 1. The detailed algorithm of similarity matrix
computation based on RCCC is presented in Algorithm 2.

After obtaining the similarity matrix, proceed with the clustering
process as follows. Using the similarity matrix 𝛥 =

(

𝛥𝑖,𝑗
)

𝑁×𝑁 as a
weighted adjacency matrix, construct an undirected weighted graph
with the local models

{

1,2,… ,𝑁
}

as the vertex set. Applied
the spectral clustering algorithm to group local models with similar
representational characteristics into the same cluster.
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Fig. 10. The schematic diagram illustrating the calculation of model similarity between 𝑖th client and 𝑗th client.
1. Calculate the degree 𝛿𝑖 =
∑𝑁

𝑗=1 𝛥𝑖,𝑗 for each local model ver-
tex 𝑖, and derive the degree matrix 𝛴 for the graph. The
unnormalized Laplacian matrix is computed as 𝛬 = 𝛴 − 𝛥.

2. Determine the first  eigenvectors 𝜈1, 𝜈2,… , 𝜈 of 𝛬, where 
is a hyperparameter representing the number of clusters. Form
a matrix 𝑈 ∈ R𝑁× with these eigenvectors as its columns. For
𝑖 = 1, 2,… , 𝑁 , let 𝜇𝑖 ∈ R be the 𝑖th row of 𝑈 .

3. Use the K-means algorithm to cluster 𝜇1, 𝜇2,… , 𝜇𝑁 , yielding the
clusters .

The number of clusters  is a hyperparameter that requires determi-
nation through experimentation. If the server has no prior knowledge
about the clients’ characteristics, such as general geographic locations,
production capacities, etc., experiment with various settings of  is
necessary to compare the fault detection rates of the cluster models
on the test set. The server selects the highest performing , in terms of
fault detection rate, for subsequent clustering. Once  is determined,
the composition of each cluster is also established. Thereafter, the fault
diagnosis process does not require re-determination of .

3.2.3. Cluster model training and model aggregation
Denote the collection of clusters as . Central server initializes

cluster models
{

1,2,… ,||} instead of single global model and
transmits parameters of 𝑗th cluster model 𝜽(0)⋅𝑗 to clients who belong to
𝑗th cluster. Within 𝑗th cluster for any 𝑗 = 1, 2,… , ||, clients perform
updates on their local models and subsequently upload the updated
parameters back

{

𝜽(0)1,𝑗 ,𝜽
(0)
2,𝑗 ,… ,𝜽(0)𝑁,𝑗

}

to the central server.
Cluster model aggregation is then conducted based on federated

aggregation algorithms to acquire new cluster model parameters 𝜽(1)⋅𝑗
for the next communication round. To be general, the aggregation of
𝑗th cluster model parameters at communication round 𝑡 is shown as
follows:

𝜽(𝑡)⋅𝑗 ←
1
𝑁

𝑁
∑

𝑖=1
𝜽(𝑡−1)𝑖,𝑗 ,∀𝑗 ∈ {1, 2,… , ||} (12)

where 1
𝑁

∑𝑁
𝑖=1 𝜽

(𝑡−1)
𝑖,𝑗 represents the average aggregation of local trained

model parameters. It is noticed that various model aggregation algo-
rithms may differ in their designed approaches and a comprehensive
description will be provided subsequently.

Popular aggregation algorithms include FedAvg [19], FedProx [21],
and SCAFFOLD [20]. FedAvg is a mean-based approach to simply aver-
age the parameters of clients as the details are given in Algorithm B.1.
FedProx adds a proximal term to the local loss function. The procedure
11 
of FedProx is summarized in Algorithm B.2. SCAFFOLD uses control
variates (variance reduction) to decrease the drift of local models and
the details are listed in Algorithm B.3.

4. Experiment

In this study, we compare the performance of the baseline models
with the proposed clustered federated learning model. The fault diagno-
sis in this paper includes one normal state and 8 types of faults, thereby
yielding in a 9-class classification task. Accuracy, precision, recall, and
F1-score are used as performance metrics:

Accuracy = 𝑡𝑝+𝑡𝑛
𝑡𝑝+𝑡𝑛+𝑓𝑝+𝑓𝑛

Precision = 𝑡𝑝
𝑡𝑝+𝑓𝑝

Recall = 𝑡𝑝
𝑡𝑝+𝑓𝑛

F1-score = 2 × Precision×Recall
Precision+recall

(13)

where 𝑡𝑝, 𝑡𝑛, 𝑓𝑝 and 𝑓𝑛 represents for true positives, true negatives,
false positives and false negatives respectively. In multi-class classi-
fication problems, for convenience of evaluation, weighted precision,
weighted recall, and weighted F1-score, which are weighted averaged
according to the number of samples in each class, are calculated in this
paper to evaluate the overall performance.

4.1. Evaluation of LMSRN with traditional federated learning framework

To assess the classification performance and efficiency of the LM-
SRN model with traditional federated learning framework, we car-
ried out two types of local model comparisons. One set of compar-
isons involved evaluating the proposed model against baseline models,
while the other set focused on conducting ablation experiments for the
proposed model.

(1) Baselines: some classic state-of-the-art deep learning models
for fault detection are selected to compare with the proposed LMSRN
model, The baseline models are described as follows and Table 5
provides the optimized configurations of baseline models:

• CNN [35]: A 4-layer deep network composed of convolutional
layer, pooling layer, fully connected layer, and classification
layer, originally designed for wind power forecasting by Moayyed
et al. (2022). Here, we have changed the model’s task to classifi-
cation and made adaptive adjustments to the model architecture.
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Algorithm 1: Clustered Federated Learning for Wind Turbine
Fault Diagnosis

Input: Datasets of all wind turbines
{

𝐷𝑖
}𝑁
𝑖=1, number of

communication rounds , number of local epochs  ,
local batch size , learning rate 𝜆, exponential decay
rates for the moment estimates 𝛽1, 𝛽2 ∈ [0, 1), constant
𝜖 = 10−8, loss function 𝓁 (⋅), number of clusters .

Output: Collection of clusters , and well-trained cluster
model parameters 𝜽⋅1,𝜽⋅2,⋯ ,𝜽⋅||.

1 Stage 1. Local LMSRN Model Training
2 On Clients:
3 Download initialized global parameters 𝜽 from central server as

local model parameters
{

𝜽𝑖
}𝑁
𝑖=1

4 for each client i = 1 : N do
5 Client 𝑖 updates parameters of local model  via Adam as

shown in Algorithm A.1 with inputs: 𝜽𝑖, 𝐷𝑖, 𝜆, 𝛽1, 𝛽2, 𝜖, ,
𝓁𝑖 (⋅)

6 Upload 𝜽𝑖 to the server
7 On Server:
8 Collect each client’s local parameters

{

𝜽𝑖
}𝑁
𝑖=1

9 Stage 2. Representational Canonical Correlation Clustering
10 On Server:
11 Acquire representational similarity matrix 𝛥 via Algorithm 2
12 // Spectral clustering
13 Construct an undirected weighted graph with vertex set

{

1,2,⋯ ,𝑁
}

and the weighted adjacency matrix is
𝛥 =

(

𝛥𝑖,𝑗
)

𝑁×𝑁
14 Define the degree of a vertex 𝑖 as 𝛿𝑖 =

∑𝑁
𝑗=1 𝛥𝑖,𝑗 and form

degree matrix 𝛴
15 Compute the unnormalized Laplacian matrix 𝛬 = 𝛴 − 𝛥
16 Compute the first  eigenvectors 𝜈1, 𝜈2,⋯ , 𝜈 of 𝛬
17 Let 𝑈 ∈ R𝑁× be the matrix whose columns are 𝜈1, 𝜈2,⋯ , 𝜈
18 for i = 1 : N do
19 Define 𝜇𝑖 ∈ R as the 𝑖-th row of 𝑈
20 Cluster the points 𝜇1, 𝜇2,⋯ , 𝜇𝑁 in R using the K-means

algorithm to form clusters 
21 Stage 3. Cluster Model Training
22 Initialize cluster models

{

1,2,⋯ ,||}

23 for each cluster j = 1 : || do
24 Conduct Algorithm B.1, B.2, or B.3 for 𝑗-th cluster model

training
25 return Collection  and well-trained cluster model parameters

𝜽⋅1,𝜽⋅2,⋯ ,𝜽⋅||

• VGG-19 [36]: A deep network model with a pyramid-like struc-
ture formed by using convolutional layers for feature extraction of
the same kernel size. VGG is commonly used in computer vision
and has been improved for bearing fault diagnosis by Ali Sher
et al. (2021).

• MSRAN [17]: Jiang et al. (2022) constructed the MSRAN (multi-
scale residual attention network) to simulate local models in the
federated learning framework for wind turbine icing detection.

(2) An ablation study is conducted to demonstrate the effectiveness
f the depthwise separable feature extraction unit in LMSRN. The study
nvolved replacing this unit with a traditional convolutional neural
etwork block of the same kernel size.

• LMSRN(Conv): change two depthwise separable blocks to
commonly-used CNN blocks that consist of one (1, 1) convolution
and one (3, 3) or (5, 5) convolution respectively. Make certain that
the number of feature maps of CNN block 1 are 32 and that of
CNN block 2 are 64, which are the same with LMSRN.
12 
Algorithm 2: Similarity Matrix Computation Based on RCCC

Input: Local parameters of all clients
{

𝜽𝑖
}𝑁
𝑖=1.

Output: Representational similarity matrix 𝛥.
1 Initialize a zero matrix 𝛥
2
(

𝛥𝑖,𝑖
)

= 1
3 Select weights of convolutional layers and fully connected

layers
{

𝑹1
1,𝑹

2
1,⋯ ,𝑹𝐿

1
}

,
{

𝑹1
2,𝑹

2
2,⋯ ,𝑹𝐿

2
}

,⋯ ,
{

𝑹1
𝑁 ,𝑹2

𝑁 ,⋯ ,𝑹𝐿
𝑁
}

4 for each pair of clients (i, j) do
5 for each layers l = 1 : L do
6 Compute 𝜌𝑙

(

𝑹𝑖,𝑹𝑗
)

= max
𝜔𝑖 ,𝜔𝑗

⟨𝑹𝑖𝜔𝑖 ,𝑹𝑗𝜔𝑗⟩

‖𝑹𝑖𝜔𝑖‖⋅‖𝑹𝑖𝜔𝑖‖

7 Compute similarity measurement 𝑚𝑖𝑗 =
1
𝐿
∑𝐿

𝑙=1 𝜌𝑙
(

𝑹𝑖,𝑹𝑗
)

8
(

𝛥𝑖,𝑗
)

= 𝑚𝑖,𝑗 , where 𝑖, 𝑗 = 1, 2,⋯ , 𝑁 and 𝑖 ≠ 𝑗
9 return 𝛥

4.1.1. Settings of LMSRN model with traditional federated learning frame-
work

Table 6 demonstrates detailed configurations of each layer of the
LMSRN model. It is important to note that the depthwise layer in the
LMSRN’s depthwise separable feature extraction unit uses independent
convolutions equal to the number of feature maps to extract features.
Prior to executing any task with an arbitrary deep learning network,
it is crucial to adjust hyperparameters. Specifically, for LMSRN, fine-
tuning of hyperparameters such as batch size, local epoch, learning
rate, and optimizer is necessary. Hyperparameter tuning for local mod-
els is performed by clients using their respective local SCADA datasets.
Here, we use the data from WF1 to demonstrate the tuning process.

Initially, we kept the local training epochs constant at 200 and
examined the convergence of the LMSRN model during local training as
shown in Fig. 11. We plotted the loss curves for different batch sizes as
the number of epochs increased, shown in Fig. 11(a), to determine the
optimal local epoch for training. Fig. 11(a) highlights that, compared
to larger batch sizes, Batch sizes of 32 and 64 result in significant
fluctuations in the loss curve, unstable convergence, and a slower de-
scent rate. Larger batch sizes, while leading to more stable convergence,
result in slower training. We also monitored the model’s generalization
performance by recording validation loss from the validation dataset
at each iteration round. Fig. 11(b) reveals that for batch sizes of 32
and 64, the model’s validation loss displays ’bouncing spikes’ with
increasing gradient descent steps, indicating potential overfitting. After
careful consideration, we selected a batch size of 128 and a local epoch
of 100.

Next, we move on to the selection of the learning rate and optimizer,
as illustrated in Fig. 12. We performed several training sessions with
identical hyperparameter configurations, generating graphs for training
loss. It is observed that a lower learning rate, like 0.0005, requires a
greater number of epochs for the model to reach convergence, while
a higher learning rate may lead to erratic fluctuations. Considering the
various optimizers, we decided to proceed with a learning rate of 0.005
and utilize the 𝐴𝑑𝑎𝑚 optimizer.

4.1.2. Comparison of diagnostic performance and computational efficiency
A comparative experiment is designed to showcase the performance

and computational efficiency of the proposed LMSRN model. Three
model aggregation algorithms – FedAvg, FedProx, and SCAFFOLD –
are employed to generate a unified global model. To further validate
the effectiveness of the proposed methodology, decentralized and cen-
tralized fault diagnosis experiments devoid of the federated learning
framework are also conducted. Decentralization signifies that individ-
ual clients train their diagnostic models using local datasets in isolation,
without aggregating a global model or exchanging model parameters

among each other. Centralization, which is in idealized experimental
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Table 5
Configuration of the baseline models.

Baseline model Layer Filter Kernel size Stride Padding Activation

CNN Conv2D 256 (3, 3) 1 Valid ReLU
Conv2D 128 (3, 3) 1 Valid ReLU
Conv2D 128 (3, 3) 1 Valid ReLU
MaxPooling2D (3, 3) 1 Valid
Fully Connected Layer Sigmoid
Dropout 0.5
Fully Connected Layer Sigmoid
Dropout 0.5
Fully Connected Layer Softmax

VGG-19 Conv2D(2) 64 (1, 1), (3, 3) 1 Valid ReLU
Conv2D(2) 128 (3, 3), (3, 3) 1 Valid ReLU
Conv2D(4) 256 (3, 3), (3, 3), (3, 3), (3, 3) 1 Valid ReLU
Conv2D(4) 512 (3, 3), (3, 3), (3, 3), (3, 3) 1 Valid ReLU
Conv2D(4) 512 (3, 3), (3, 3), (3, 3), (1, 1) 1 Valid ReLU
Fully Connected Layer Sigmoid
Dropout 0.5
Fully Connected Layer Softmax

MSRAN Conv2D 256 (1, 1) 1 Valid ReLU
MaxPooling2D (1, 1) 1 Valid
Conv2D Block(4) 32,64 (3, 3), (5, 5), (7, 7), (9, 9) 1 Valid ReLU
MaxPooling2D(4) (3, 3), (5, 5), (7, 7), (9, 9) 1 Valid
Self Attention(4) Hard Sigmoid
Conv2D 1 (1, 1) 1 Valid ReLU
Fully Connected Layer Sigmoid
Dropout 0.5
Fully Connected Layer Softmax
Fig. 11. Training and validation loss curves with different hyperparameters (learning rate = 0.001, optimizer is 𝐴𝑑𝑎𝑚).
Table 6
Configuration of the proposed LMSRN model.

Layer Filter Kernel size Stride Padding Activation

Conv2D(8) 128 (1, 1), (3, 1),… , (15, 1) 1 Invalid ReLU
BatchNorm2D(8)
Pointwise Conv2D 32 (1, 1) 1 Invalid ReLU
Depthwise Conv2D(32) 1 (3, 3) 1 Valid ReLU
BatchNorm2D(32)
Pointwise Conv2D 64 (1, 1) 1 Invalid ReLU
Depthwise Conv2D(64) 1 (5, 5) 1 Valid ReLU
BatchNorm2D(64)
Conv2D 1 (1, 1) 1 Invalid ReLU
BatchNorm2D
Fully Connected Layer Sigmoid
Dropout 0.5
Fully Connected Layer Softmax
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conditions, assumes that there are no data privacy constraints, allowing
clients to upload their data to the server to train a centralized diagnostic
model. Subsequently, performance metrics are calculated using the
test data from each client. It is important to note that all comparison
models underwent hyperparameter tuning by each client as outlined in
Section 4.1.1.

The classification result of different models are presented in Table 7.
Upon analyzing the precision, recall, and F1-score of different models
on the test datasets, it is evident that the proposed LMSRN model sur-
passes other models in terms of classification performance. Initially, the
analysis focuses on comparing the performance of diverse diagnostic
models within a decentralized setting. Herein, the proposed LMSRN
attains remarkable metrics, with a precision level at 0.90, a recall
standing at 0.81, and an F1-score reaching 0.85, thus demonstrating
superior outcomes relative to baseline models. It is noteworthy that
while the CNN showcases a slightly higher precision score than LMSRN,
it exhibits weaker capability in terms of fault recall. Similarly, within
a centralized framework, the proposed LMSRN also exhibits diagnostic
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Fig. 12. Training loss curves during model training process of different learning rates and optimizers (batch size = 128).
Table 7
Performance comparison of different diagnostic models.

Model Framework Aggregation Parameters Model size Prediction time(s) Precision Recall F1-score

CNN Centralization 7 951 037 30.34 MB 0.385 0.9819 0.9204 0.9474
Decentralization 0.383 0.9204 0.7855 0.8362
Federated FedAvg 0.386 0.7086 0.5120 0.5741

FedProx 0.392 0.7086 0.5068 0.5710
SCAFFOLD 0.391 0.7201 0.5753 0.6237

VGG-19 Centralization 18 655 553 71.24 MB 3.965 0.9854 0.9457 0.9641
Decentralization 3.963 0.9416 0.2627 0.3932
Federated FedAvg 3.956 0.6782 0.5249 0.5546

FedProx 3.977 0.6864 0.5211 0.5532
SCAFFOLD 3.962 0.6144 0.5575 0.5559

MSRAN Centralization 169 483 0.71 MB 2.232 0.9812 0.9517 0.9661
Decentralization 2.225 0.8756 0.7580 0.8069
Federated FedAvg 2.231 0.8881 0.7623 0.7932

FedProx 2.230 0.8902 0.7742 0.8019
SCAFFOLD 2.228 0.7962 0.7775 0.7864

LMSRN(Conv) Centralization 107 852 0.44 MB 0.958 0.9820 0.9502 0.9657
Decentralization 1.002 0.9080 0.8121 0.8538
Federated FedAvg 0.868 0.8055 0.7203 0.7450

FedProx 0.879 0.8940 0.7610 0.8000
SCAFFOLD 1.013 0.8678 0.8387 0.8521

LMSRN Centralization 47948 0.41 MB 1.112 0.9859 0.9572 0.9712
Decentralization 1.180 0.9030 0.8088 0.8451
Federated FedAvg 1.115 0.9108 0.7302 0.7772

FedProx 1.128 0.9124 0.7093 0.7673
SCAFFOLD 1.329 0.8876 0.8531 0.8691
performance that surpasses that of the baseline models. Due to the
integration of fault samples from all clients, the centralized dataset is
larger, thereby resulting in superior diagnostic performance compared
to the decentralized framework and federated learning framework.
Additionally, the performance of LMSRN(Conv), which integrates tra-
ditional convolutional layers, is found to be largely equivalent to that
of LMSRN. However, the LMSRN(Conv) requires a substantially larger
parameter count, exceeding that of LMSRN by more than a twofold
margin.

Subsequently, the contrast centers on the diagnostic performance
under the federated learning framework. In this paper, a parallel eval-
uation of FedAvg, FedProx, and SCAFFOLD is conducted to assess the
efficacy of the proposed LMSRN. When considering the aggregation
algorithms of FedAvg and FedProx, the precision of LMSRN can exceed
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0.91, whereas other models typically fall below 0.90. In scenarios
related to real fault diagnosis, recall becomes a critical factor. Models
with high recall performance can swiftly detect faults that might other-
wise be overlooked, thus preventing losses from sudden wind turbine
shutdowns. Upon utilizing SCAFFOLD as the aggregation algorithm
for the global LMSRN model, a decrement in precision is noted, with
reductions of 2.3% and 2.5% relative to FedAvg and FedProx, respec-
tively. However, the recall value reaches 0.8531, indicating a superior
capability in fault detection, a characteristic lacking in baseline models.
Similar to the LMSRN, LMSRN(Conv) also exhibits comparably high
recall, underscoring the robust fault detection potential inherent in this
architecture. In general, the recall values of baseline models are con-
sistently below 0.80, indicating a high rate of missed fault detections.
Particularly for VGG-19, which has the largest number of parameters
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and significant disparities in parameter distribution, global averaging
aggregation leads to a noticeable decline in fault diagnosis perfor-
mance. It is important to note that, despite the superior classification
performance of the proposed LMSRN model compared to other models
under traditional federated learning aggregation algorithms, there is
still substantial room for improvement overall. This underscores the
need for enhancing traditional federated learning frameworks.

From the comparative analysis between decentralization and fed-
erated learning framework, it becomes evident that with the SCAF-
FOLD aggregation algorithm, the LMSRN performs on par with the de-
centralization, showcasing comparable precision, recall, and F1-score.
Global model aggregation through weighted parameter averaging tends
to compromise the diagnostic efficacy for minority fault categories,
while concurrently augmenting the accuracy for fault types shared
extensively among clients. Notably, in scenarios where fault class dis-
tributions among certain clients are skewed and data volumes are
insufficient, decentralization struggles to attain optimal diagnostic ac-
curacy. A critical distinction lies in the fact that decentralization is
inherently incapable of diagnosing fault categories not represented
within a client’s local dataset. In contrast, federated learning, by amal-
gamating fault information from all participating clients, confer a
broader diagnostic capacity, enabling the diagnosis of a wider range
of faults that may not be locally prevalent. Comparing centralization
and federated learning framework, the former, owing to its integration
of all data, possesses optimal fault diagnosis performance and can thus
be considered the upper bound for federated learning algorithms.

Compared to baseline models, the proposed LMSRN model demon-
strates notable benefits in relation to both model size and parameters,
particularly leading lightweight property by approximately three orders
of magnitude when compared to CNN and VGG-19. The number of
model parameters critically impacts the speed of forward propagation
during prediction. On the same computer setup, the proposed LM-
SRN model displays faster prediction times when compared to other
baseline models. On the ablation study wise, the parameter count of
LMSRN(Conv) exceeds that of LMSRN by more than 100%, due to the
designed depthwise separable feature extraction unit for lightweight-
ing. Meanwhile, the model size and prediction time of LMSRN are
similar to those of LMSRN(Conv). As for model size, the model weight
file saves the well-trained model in pytorch dictionary format, resulting
in the demand to store more convolutional kernel names when saving
the depthwise separable feature extraction unit. In terms of prediction
time, frequent splitting and concatenating of feature maps will also
slow down the inference speed to some extent.

4.2. Evaluation of LMSRN with clustered federated learning framework

The results of above experiments demonstrate the performance of
the proposed LMSRN model in diagnosing faults in wind turbines
within a traditional federated learning framework. This section eval-
uates LMSRN model with clustered federated learning framework. Fol-
lowing a similar approach as before, we will utilize three different
model aggregation algorithms within each cluster and compare the
proposed framework with various baseline methods and an ablation
study to highlight the benefits of clustered federated learning in the
context of wind turbine fault diagnosis.

(1) Baseline: Traditional federated learning with one global model,
aggregation methods include FedAvg, FedProx, and SCAFFOLD.

(2) Ablation study: Clustered federated learning with other cluster-
ing methods.

• Self-organizing map (SOM), an unsupervised learning algorithm,
is employed to group clients into clusters [37]. The study will
input all trainable model parameters of each local model into the

SOM algorithm.
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Table 8
Details of comparison methods.

Type Method Clustering
Algorithm

Aggregation Number of
clusters

Baseline Traditional FL FedAvg 1
FedProx 1
SCAFFOLD 1

Ablation Clustered FL SOM FedAvg 2, 3, 4, 5, 6
SOM FedProx 2, 3, 4, 5, 6
SOM SCAFFOLD 2, 3, 4, 5, 6

Clustered FL K-means FedAvg 2, 3, 4, 5, 6
K-means FedProx 2, 3, 4, 5, 6
K-means SCAFFOLD 2, 3, 4, 5, 6

Proposed Clustered FL RCCC FedAvg 2, 3, 4, 5, 6
RCCC FedProx 2, 3, 4, 5, 6
RCCC SCAFFOLD 2, 3, 4, 5, 6

• K-means, a traditional clustering algorithm, divides clients into
clusters based on distances to cluster centers [38]. In this re-
search, all trainable parameters of each client’s local model will
first undergo dimensionality reduction through principal compo-
nent analysis before being clustered using the K-means algorithm.

The performance of the clustered FL framework is also influenced by
clustering algorithms and the number of clusters. In Table 8, we list
all the methods for comparison. When the number of cluster is 1,
the clustered federated learning method reduces to the traditional FL
framework.

4.2.1. Diagnostic performance
Detailed test results of different methods in traditional FL and

clustered FL frameworks are presented in Fig. 13. The weighted pre-
cision, recall, and F1-score of fault diagnosis across various clustering
methods, aggregation algorithms, and the number of clusters are shown
in Fig. 13(a), (b), and (c). An analysis of the metric curves indicates
an overall increasing trend, highlighting the superior diagnostic perfor-
mance of clustered FL compared to traditional FL. The precision of fault
diagnosis tends to improve with an increase in cluster quantities when
RCCC and K-means are used as clustering algorithms, while the SOM
algorithm shows less stability. Recall and F1-score are further exhibited
in Fig. 13(b) and (c). Notably, the RCCC method consistently outper-
forms K-means and SOM under both FedAvg, FedProx, and SCAFFOLD
aggregation algorithms before the number of clusters reaches 5. The
behavior observed at a cluster number of 4 is particularly noticable,
as the recall and F1-score curves of RCCC show a turning point. This
trend is noticeable for all the three aggregation algorithms. When
the number of clusters is set to be 3 or 4, RCCC demonstrates high
diagnostic performance, surpassing the other two clustering methods.
Additionally, FedProx and SCAFFOLD, derived from FedAvg, help mit-
igate the slow convergence issue caused by data heterogeneity. The
experiments indicate that FedProx and SCAFFOLD are able to effec-
tively address intra-cluster data heterogeneity and achieve remarkable
diagnostic capability.

The application of RCCC within the clustered FL framework demon-
strates improved fault diagnosis capabilities compared to the traditional
FL framework and other clustering methods. Furthermore, experiments
have shown that the optimal diagnostic performance is achieved with
3 or 4 clusters. Considering practical scenarios, a lesser number of
clusters necessitates fewer cluster models, thereby facilitating manage-
ment and operational efficiency. Moreover, larger clusters encompass
a greater number of clients, aggregating a richer and more diverse
repository of fault knowledge. Consequently, this paper selects 3 as the
optimal number of clusters. Table 9 show detailed client information of
the 3 clusters. Subsequent discussions will delve into the characteristics
of these 3 clusters as the RCCC algorithm measures the model similarity
between clients. Further analysis of the similarity between different
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Fig. 13. Comparison of fault diagnosis performance metrics of the clustered FL framework under 3 aggregation algorithms: FedAvg, FedProx, and SCAFFOLD.
wind farms can be conducted based on the similarity matrix 𝛥 output
by the RCCC algorithm. By treating each wind farm as a node and the
similarity between them as weighted edges, the wind farm network
graph illustrated in Fig. 14 can be created. The nodes of the same
color in the graph represent wind farms in the same cluster, and the
thickness of the edges indicates the level of model similarity between
the wind farms. In addition to internal similarities within clusters,
there are also edges with relatively small weights connecting different
clusters, suggesting a certain degree of similarity between them. This
implies the potential presence of shared mechanisms underlying fault
occurrence. Remarkably, the resultant clustering bears a significant
relationship to both the rated power of the wind turbines and their
geographical locations. Specifically, Clusters 1 and 3 are characterized
by wind farms housing turbines with a rated capacity of 3.6 MW,
diverging from Cluster 2, which includes turbines with a distinctively
lower rating of 2 MW. Wind farms grouped within Cluster 1 pre-
dominantly occupy positions in Shanghai and Jiangsu, demonstrating
spatial adjacency. Likewise, Cluster 3’s constituent wind farms are
situated in Shanghai and Zhejiang, regions that share a contiguous
geographical landscape and are notably proximate to coastal areas,
thus potentially influencing the observed clustering patterns. Fig. 15
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Table 9
Clustering results of the proposed RCCC approach.

Cluster Wind farms

Cluster 1 WF5 WF6 WF7 WF8
Cluster 2 WF1 WF2 WF3 WF4 WF12 WF13
Cluster 3 WF9 WF10 WF11

illustrates the confusion matrix using the proposed RCCC approach with
3 clusters. The diagram showcases the diagnostic performance of the
cluster models on the test datasets. It is evident that the cluster models
perform satisfactorily for most fault categories. Moreover, RCCC shows
consistent diagnostic performance across different model aggregation
algorithms, highlighting its robustness in diverse aggregating scenarios.

To provide a clearer visualization of the detection rate for fault
events as achieved by the proposed method, three-dimensional bar
plots are depicted in Fig. 16. The plots document the detection rate
for each type of fault across every wind farm, where the detection rate
is defined as the ratio of correctly detected faults to the total number of
faults of that particular type. Generally, when the cluster number is set
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Fig. 14. Network graph depicting clusters of wind farms, where each node represents a unique wind farm. The edges connecting two wind farms show model similarity based on
the proposed RCCC, with thicker lines indicating larger similarity.

Fig. 15. Confusion matrix of the proposed RCCC approach on test datasets (3 clusters).

Fig. 16. Detection rate results for 8 distinct types of fault events across 13 wind farms when applying the proposed RCCC algorithm to obtain 3 clusters, where 𝐹𝑎𝑢𝑙𝑡 in the
axis denotes the aggregated detection rate for all fault categories combined. Subfigure (a), (b), and (c) correspondingly represent the results obtained when the model aggregation
algorithms employed for the cluster models are FedAvg, FedProx, and SCAFFOLD, respectively.
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Fig. 17. Overall fault detection rate curves in different local epoch settings. Clustered federated learning (CFL) and traditional federated learning (TFL) are compared under FedAvg,
FedProx, and SCAFFOLD.
Table 10
Detection rate of fault events for different methods.

Wind farm Methods

CFL+FedAvg CFL+FedProx CFL+SCAFFOLD TFL+FedAvg TFL+FedProx TFL+SCAFFOLD Decentralization Centralization

WF1 0.8900 0.8700 0.9400 0.6100 0.6500 0.9300 0.9500 0.9300
WF2 0.8228 0.8268 0.9528 0.5197 0.5984 0.7756 0.7402 0.9528
WF3 0.9100 0.9176 0.9556 0.4575 0.4246 0.6388 0.8200 0.9392
WF4 0.9545 0.9517 0.9766 0.6359 0.6262 0.7766 0.6455 0.9614
WF5 0.5390 0.5228 0.5591 0.4046 0.4288 0.6304 0.7460 0.9449
WF6 0.9876 0.9766 0.9890 0.9245 0.8585 0.9780 0.7747 0.9766
WF7 0.9841 0.9696 0.9797 0.9059 0.8524 0.9711 0.8162 0.9725
WF8 0.9973 0.9973 0.9973 0.9959 0.9932 0.9986 0.9919 0.9986
WF9 0.9232 0.9532 0.8396 0.8062 0.7717 0.8552 0.8875 0.9421
WF10 0.9864 0.9895 0.9895 0.8840 0.8208 0.9172 0.9142 0.9608
WF11 0.9637 0.9521 0.9780 0.7837 0.7772 0.9028 0.8277 0.9469
WF12 0.8702 0.8969 0.9542 0.4466 0.4351 0.8817 0.5840 0.9160
WF13 0.9522 0.9596 0.9890 0.7132 0.7096 0.9706 0.6176 0.9522
Overall 0.9112 0.9115 0.9208 0.7302 0.7093 0.8531 0.8088 0.9572
to 3, all three aggregation algorithms demonstrate a favorable detection
rate for faults. Table 10 further illustrates the impact of different
training paradigms on the overall fault detection rate when employing
LMSRN as the diagnostic model. Among them, CFL (proposed clustered
federated learning) exhibits superior performance, achieving an overall
detection rate greater than 0.9 across all wind farms, which outper-
forms both TFL (traditional federated learning) and Decentralization
methods. Furthermore, the diagnostic performance of CFL favorably
approaches that achieved under the idealized centralized framework.
This comparative analysis reaffirms the superiority and innovation of
the proposed methodology in facilitating collaborative fault diagnosis
among multiple wind farms while preserving data privacy.
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4.2.2. Communication cost
In federated learning, communication cost arises from two primary

aspects: the scale of model parameter transmission and the frequency of
model broadcasting and aggregating. The scale of parameter transmis-
sion has been thoroughly addressed in Section 4.1, where a lightweight
and efficient model, LMSRN, is selected as the diagnostic model for pa-
rameter transfer between clients and the server. By employing LMSRN,
the volume of data transmitted during each round of communication
is significantly reduced, contributing to lower overall communication
costs. The frequency of model broadcasting and aggregating is di-
rectly reflected in the number of communication rounds, which is
global epoch . When the number of local epochs  is fixed, there
exists an optimal number of communication rounds  that enables
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the models in federated learning to reach convergence [39]. Therefore,
assessing the communication cost of model aggregation algorithms
can be done by examining the number of communication rounds re-
quired for convergence. A lower frequency of global communication
close to convergence indicates a lower communication cost. To
substantiate the superior communication efficiency of the proposed
clustered federated learning (CFL) framework, comparative experi-
ments are conducted by setting the cluster number to 3 and employing
the LMSRN as the diagnostic model. These experiments are specifically
designed to contrast the convergence velocity of CFL against that of
traditional federated learning (TFL). As illustrated in Fig. 17, under
various settings of local epochs, the proposed CFL consistently exhibits
rapid and robust convergence, achieving high detection rate levels.
Among different aggregation algorithms, SCAFFOLD notably acceler-
ates convergence in CFL framework, making it particularly suitable
for scenarios characterized by data heterogeneity across multiple wind
farms.

5. Conclusion

This paper introduces a clustered federated learning framework
for collaborative fault diagnosis of multiple wind turbines in various
wind farms. The framework trains server-side global models for fault
diagnosis while maintaining the privacy of local wind turbine client
data. By grouping wind farms with similar models into clusters, the
proposed framework addresses data heterogeneity issues and generates
clustered models. Similarity between parameterized deep fault diag-
nosis models is measured using canonical correlation coefficients, and
clusters are obtained through representational canonical correlation
clustering (RCCC). To reduce communication overhead and speed up
fault diagnosis, a lightweight multiscale separable residual network
(LMSRN) is introduced as the wind turbine fault diagnosis model. The
LMSRN utilizes multiscale spatial feature derivation units to extract
correlations among wind turbine variables and depthwise separable
feature extraction units to reduce the model’s parameter quantity.

The study presents experimental results comparing the proposed
LMSRN model and clustered federated learning framework with base-
line methods. The findings show that the LMSRN model outperforms
other baseline models in classification performance and lightweight
properties. Additionally, the clustered federated learning framework
with multiple cluster models shows better fault diagnosis performance
and more efficient convergence compared to the traditional federated
learning framework with a single global model. The study concludes
that the RCCC algorithm efficiently clusters wind farms into groups,
with optimal diagnostic performance ability observed when using 3
clusters.

Certain constraints of the algorithms and framework are acknowl-
edged, such as the need to determine the optimal number of client
clusters dynamically and improve communication between clusters for
enhanced fault pre-diagnostic capability. Furthermore, future research
should explore tailored federated learning algorithms to address class
imbalance effectively.
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Appendix A. Local model parameter update

The details of the local model parameter update algorithm are
provided below in Algorithm A.1.

Algorithm A.1: Adaptive Moment Estimation (Adam)
Input: 𝜽𝑖, 𝐷𝑖, 𝜆, 𝛽1, 𝛽2, 𝜖, , 𝓁𝑖 (⋅).
Output: 𝜽𝑖.

1 𝑠 ← 0 Initialize 1st moment vector
2 𝑟 ← 0 Initialize 2nd moment vector
3 𝑡 ← 0 Initialize time step
4 while 𝑡 < |𝐷𝑖|

 do
5 Get gradient 𝑔 ← ∇𝜽𝑖𝓁𝑖

(

𝜽𝑖
)

6 Update biased 1st moment estimate 𝑠 ← 𝛽1𝑠 +
(

1 − 𝛽1
)

𝑔
7 Update biased 2nd raw moment estimate

𝑟 ← 𝛽2𝑟 +
(

1 − 𝛽2
)

𝑔2

8 Correct bias in 1st moment �̂� ← 𝑠
1−𝛽𝑡1

9 Correct bias in 2nd moment �̂� ← 𝑟
1−𝛽𝑡2

10 Update local parameters 𝜽𝑖 ← 𝜽𝑖 − 𝜆 �̂�
√

�̂�+𝜖
11 𝑡 ← 𝑡 + 1

12 return 𝜽𝑖.

Appendix B. Model aggregation algorithms

Details of the three model aggregation algorithms mentioned in
Section 3 are provided below.

Algorithm B.1: Federated Averaging (FedAvg)
Input: 𝑗-th cluster 𝐶 ∈  and clients belong to it, datasets of

wind turbines
{

𝐷𝑗
𝑖

}

|𝐶|

𝑖=1
in cluster 𝐶, number of

communication rounds , number of local epochs  ,
local batch size , learning rate 𝜆, exponential decay
rates for the moment estimates 𝛽1, 𝛽2 ∈ [0, 1), constant
𝜖 = 10−8, loss function 𝓁 (⋅).

Output: Well-trained 𝑗-cluster model parameters 𝜽⋅𝑗 .
1 On Server:
2 Initialize cluster model parameters 𝜽(0)⋅𝑗
3 for each communication round t = 1 :  do
4 for each client i = 1 : |𝐶| do
5 𝜽(𝑡−1)𝑖,𝑗 ← 𝐿𝑜𝑐𝑎𝑙𝑈𝑝𝑑𝑎𝑡𝑒

(

𝐷𝑗
𝑖 ,𝜽

(𝑡−1)
⋅𝑗

)

6 𝜽(𝑡)⋅𝑗 ← 1
|𝐶|

∑

𝑖∈𝐶 𝜽(𝑡−1)𝑖,𝑗

7 𝑳𝒐𝒄𝒂𝒍𝑼𝒑𝒅𝒂𝒕𝒆
(

𝐷𝑖,𝜽𝑖
)

:
8 for each local epoch e = 1 :  do
9 𝜽𝑖 is updated via Adam shown in Algorithm A.1 with

inputs: 𝜽𝑖, 𝐷𝑖, 𝜆, 𝛽1, 𝛽2, 𝜖, , 𝓁𝑖 (⋅)
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Algorithm B.2: Federated Proximal (FedProx)
Input: 𝑗-th cluster 𝐶 ∈  and clients belong to it, datasets of

wind turbines
{

𝐷𝑗
𝑖

}

|𝐶|

𝑖=1
in cluster 𝐶, number of

communication rounds , number of local epochs  ,
local batch size , learning rate 𝜆, exponential decay
rates for the moment estimates 𝛽1, 𝛽2 ∈ [0, 1), constant
𝜖 = 10−8, loss function 𝓁 (⋅).

Output: Well-trained 𝑗-cluster model parameters 𝜽⋅𝑗 .
1 On Server:
2 Initialize cluster model parameters 𝜽(0)⋅𝑗
3 for each communication round t = 1 :  do
4 for each client i = 1 : |𝐶| do
5 𝜽(𝑡−1)𝑖,𝑗 ← 𝐿𝑜𝑐𝑎𝑙𝑈𝑝𝑑𝑎𝑡𝑒

(

𝐷𝑗
𝑖 ,𝜽

(𝑡−1)
⋅𝑗

)

6 𝜽(𝑡−1)𝑖,𝑗 ← 𝜽(𝑡−1)𝑖,𝑗 + 𝜆
(

𝜽(𝑡−1)𝑖,𝑗 − 𝜽(𝑡−1)⋅,𝑗

)

7 𝜽(𝑡)⋅𝑗 ← 1
|𝐶|

∑

𝑖∈𝐶 𝜽(𝑡−1)𝑖,𝑗

8 𝑳𝒐𝒄𝒂𝒍𝑼𝒑𝒅𝒂𝒕𝒆
(

𝐷𝑖,𝜽𝑖
)

:
9 for each local epoch e = 1 :  do
10 𝜽𝑖 is updated via Adam shown in Algorithm A.1 with

inputs: 𝜽𝑖, 𝐷𝑖, 𝜆, 𝛽1, 𝛽2, 𝜖, , 𝓁𝑖 (⋅)

Algorithm B.3: Stochastic Controlled Averaging (SCAFFOLD)
Input: 𝑗-th cluster 𝐶 ∈  and clients belong to it, datasets of

wind turbines
{

𝐷𝑗
𝑖

}

|𝐶|

𝑖=1
in cluster 𝐶, number of

communication rounds , number of local epochs  ,
local batch size , learning rate 𝜆, exponential decay
rates for the moment estimates 𝛽1, 𝛽2 ∈ [0, 1), constant
𝜖 = 10−8, loss function 𝓁 (⋅).

Output: Well-trained 𝑗-cluster model parameters 𝜽⋅𝑗 .
1 On Server:
2 Initialize cluster model parameters 𝜽(0)⋅𝑗 and control variates 𝒄

3 Communicate
(

𝜽(0)⋅𝑗 , 𝒄
)

to clients
4 for each communication round t = 1 :  do
5 for each client i = 1 : |𝐶| do
6 Initialize control variates 𝒄𝒊 ← 𝒄

7 𝜽(𝑡−1)𝑖,𝑗 ← 𝐿𝑜𝑐𝑎𝑙𝑈𝑝𝑑𝑎𝑡𝑒
(

𝐷𝑗
𝑖 ,𝜽

(𝑡−1)
⋅𝑗 , 𝒄, 𝒄𝒊

)

8 𝒄+𝒊 ← 𝒄𝒊 − 𝒄 + 𝜆


(

𝜽(𝑡−1)⋅𝑗 − 𝜽(𝑡−1)𝑖,𝑗

)

9 𝛥𝒄𝒊 ← 𝒄+𝒊 − 𝒄𝒊
10 𝒄𝒊 ← 𝒄+𝒊
11 𝜽(𝑡)⋅𝑗 ← 1

|𝐶|

∑

𝑖∈𝐶 𝜽(𝑡−1)𝑖,𝑗

12 𝒄 ← 𝒄 + 1
|𝐶|

∑

𝑖∈𝐶 𝛥𝒄𝒊

13 𝑳𝒐𝒄𝒂𝒍𝑼𝒑𝒅𝒂𝒕𝒆
(

𝐷𝑖,𝜽𝑖, 𝒄, 𝒄𝒊
)

:
14 for each local epoch e = 1 :  do
15 𝜽𝑖 is updated via Adam shown in Algorithm A.1 with

inputs: 𝜽𝑖, 𝐷𝑖, 𝜆, 𝛽1, 𝛽2, 𝜖, , 𝓁𝑖 (⋅)
16 𝜽𝑖 ← 𝜽𝑖 − 𝜆

(

𝒄 − 𝒄𝒊
)
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