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A B S T R A C T   

Breast cancer (BC) is a commonly diagnosed cancer among women nowadays. The cancer cells in the breast 
tissues are known as BC. Comprehensive research on early-stage BC detection helped to increase the survival rate 
and reduce the amortality rate associated with this disease. Mammogram scan analysis is a commonly used breast 
tissue visualization method. This image data is analyzed adequately for accurate BC diagnosis. Region of interest 
(ROI) identification is crucial in an image-based BC detection system. The ROI detection helps to segment the 
cancer tissues from the mammogram images by analyzing the heterogeneity among cancerous and normal breast 
tissues. Early-stage BC issues have homogeneous features as normal breast tissues. So, it is an open challenge for 
the researchers to develop a more accurate segmentation method during the automatic BC stages detection 
system. This study introduced fuzzy C means (FCM) distorted contour-based segmentation (FCM DCS) method to 
address the real detection issues in present studies. It uses the distorted contour (DC) based method to identify 
the contour of the cancer tissue from mammogram images. The DC method is performed with the help of FCM to 
identify the cancer tissues. Moreover, a histogram and adaptive equalization method were utilized to reduce 
image noise and preserve the edge features. The result analysis shows that the FCM-DC methods achieved a 
maximum accuracy rate (98.76 %) than comparison methods in BC detection.   

1. Introduction 

Cancer [1] is one of the high causes of unusual death worldwide. It is 
a leading health issue faced by today’s world. Cancer commonly has 
several types [2,3], defined by where it occurs in the body. Cancer is 
abnormal cell growth in a specific organ or part of the body. It has many 
types BC [4,5], brain tumor [6], skin cancer [7], cervical cancer [8], and 
etc. Among these, BC is one of the most commonly identified cancer 
nowadays. BC can occur usually in women and rarely in men as well. 
This cancer forms in the breast cells and begins to grow abnormally and 
is called BC. These cells divide more rapidly than healthy cells and 
continue to gather, forming a lump or mass. The cells may spread to the 
lymph nodes or other body parts. BC commonly begins with cells in 
invasive duct carcinoma or in the glandular tissues called invasive 
lobular carcinoma or other cells or tissues within the breast. The BC [9] 
is identified by some important symptoms in the affected patients, such 
as a lump in the breast, swelling of part of the breast, dimpling of breast 
skin, etc. These symptoms are visible from the outside. But this BC also 
occurs without the mentioned symptoms in the early stage [10]. So, it is 

essential to screen the BC to protect health. It can help to find it early 
when treatment is less invasive and easier to treat. Mammography is an 
X-ray method to diagnose BC when the cancer size is small to be felt. The 
doctor may recommend a diagnostic mammogram for further evaluation 
if an abnormality is detected. Mammogram [11] can find a cancerous 
lump before it can be felt. Other methods suggested for BC diagnosis are 
ultrasound, Biopsy, and MRI. Breast ultrasound [12] waves are used to 
produce images of structures deep within the body to determine new 
lump in the breast is a solid mass or a fluid-filled cyst. Biopsy [13] is used 
for removing a sample of breast tissue for diagnosis. Breast magnetic 
resonance imaging (MRI) [14] creates the structure of the breast’s 
interior. Regular BC screening [15] helps to find the cancer occurrence 
early to treat it easier. The current screening methods also lead to an 
increase in false positive (FP) rates. This may lead to treatment; suppose 
the doctor starts treatment with a false cancer report (if a patient does 
not have any breast cancer, but due to the false mammogram results, the 
doctors start the BC treatments). It may unnecessarily increase the 
complications. False-negative (FN) results lead to delays in the treat-
ment. Mammogram [16–18] is the trusted diagnosis method for BC 
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detection at an early stage. However, it also sometimes produces FP and 
FN results. So, it is a challenging research field for researchers to reduce 
the FP and FN rate during the early stage of BC to prevent the patient’s 
life from overtreatment and delayed treatment, respectively. This study 
focuses on developing an accurate earlier-stage BC detection with lesser 
FP and FN rates. It performs the required image enhancement phase to 
deal with some elements of the confusing breast anatomy while seg-
menting the pectoral images. This has been done with a novel effective 
segmentation method by integrating the FCM segmentation with the 
distorted contour-based segmentation model by providing seed points 
by getting the threshold from the distorted contour-based segmentation. 

This paper is organized as part 1 describes the BC, diagnosis 
methods, and needs of earlier detection methods. Part 2 describes the 
background studies on different BC strategies. Part 3 describes the 
different stages of early BC detection and evaluation results of the pro-
posed study. Finally, the result conclusion is explained in BC detection. 

The FCM-DCS model innovatively merges Fuzzy C Means with dis-
torted contour-based segmentation for breast cancer detection. Tailored 
to address complexities in mammographic images, it offers potential in 
accurately identifying cancerous regions. Novel evaluation metrics and 
clinical relevance further underscore its significance for improving 
diagnostic accuracy and patient outcomes in breast cancer management. 

Motivation for advancing breast cancer detection methodologies 
stems from the profound impact it has on patient outcomes and 
healthcare systems. Early detection significantly increases the chances 
of successful treatment and survival rates among breast cancer patients. 
By developing more accurate and efficient detection techniques, clini-
cians can diagnose breast cancer at earlier stages when treatment op-
tions are often less invasive and more effective. Improved detection 
methods also help reduce unnecessary procedures and healthcare costs 
associated with late-stage diagnoses. Furthermore, enhancing breast 
cancer detection contributes to ongoing efforts in personalized medi-
cine, allowing for tailored treatment plans based on individual patient 
characteristics. Ultimately, the motivation lies in saving lives, improving 
quality of life for patients, and advancing the overall efficacy of breast 
cancer care. 

The significance of the FCM-DCS (Fuzzy C Means Distorted Contour- 
based Segmentation) model for breast cancer detection lies in its po-
tential to revolutionize early diagnosis and treatment of the disease. By 
merging fuzzy clustering with distorted contour-based segmentation, 
the model offers a novel approach to accurately identifying cancerous 
regions within mammographic images. Its adaptation to the specific 
challenges of breast cancer detection underscores its clinical relevance 
and potential impact on patient outcomes. 

The major contribution of the FCM-DCS model lies in its potential to 
enhance diagnostic accuracy, facilitate early detection of breast cancer, 
and streamline the clinical workflow for radiologists and healthcare 
providers. By providing more precise delineation of cancerous regions 
within mammographic images, the model enables earlier intervention 
and more personalized treatment strategies, ultimately improving pa-
tient outcomes and reducing mortality rates associated with breast 
cancer. Additionally, the model’s development of novel evaluation 
metrics and validation techniques contributes to the broader field of 
medical imaging research, fostering innovation and paving the way for 
future advancements in computer-aided diagnosis and image analysis. 

2. Background study 

This section discusses some of the author’s contributions to BC 
detection. Cell cluster formation often leads to malignant-cancerous or 
benign-harmless breast tissue abnormalities. Consequently, breast tissue 
abnormalities are represented as regions that vary from normal tissue. 
Early detection is crucial for preventing future problems. 

Thyagarajan R et al. [19] developed a radionics feature 
extraction-based technique for extracting the most feature and training 
machines with relevant features using deep learning (DL) models to 

predict BC response to therapy. The authors proved that Radiomics 
could offer expected results based on present technology. However, the 
dataset in this area needs to be revised to validate the suggested strategy. 

Varma C et al. [20] developed a BC diagnosis framework in 
Anaconda Navigator. It comprises four ML algorithms, such as Logistic 
Regression (LR), Support Vector Machine (SVM), K-nearest neighbour 
(KNN), and Naive Bayes (NB), to accomplish the performance analysis. 

Amkrane Y et al. [21] developed a breast segmentation method 
utilizing the watershed transform technique. But this method’s seg-
mentation results provide poor results while identifying the ROI 
squeezed by a coloured region. The segmentation approach achieves a 
maximum of 88.65 % accuracy in detecting cancer. 

Kumar N et al. [22] utilized thermographic images to detect BC using 
a deep neural network. The study featured four deep-learning networks, 
with the ResNet50 network scoring the highest at 88.89 %. There needs 
to be more study on utilizing thermal imaging to detect BC. The majority 
of the research in the literature has been on generic segmentation. 

Khasana S et al. [23] developed a novel method for automatically 
identifying masses in mammography images. This study uses the Fuzzy 
C Means (FCM) approach to segment the tumours from the ROI. The 
evaluation results show that the FCM segmented the BC region with 
reliable accuracy. 

Kiymet S et al. [24], Applied to separate cancer areas correctly and 
provide distinct pictures with crisp boundaries and excellent segmen-
tation results. The concept is essential, and just a few seed points are 
necessary to convey the authors’ intended characteristics. Concurrently, 
seed locations and other conditions for area growth are defined. The 
Harris corner recognition algorithm and the cloud technique performed 
well on mammography picture mdb218. The results show that our sys-
tem can locate both the nibbling point and the cancer site (Calcifica-
tion). It also uses selective median filtering and CLAHE to diagnose BC 
and has a 93 % accuracy rate. 

Seleck M et al. [25] initiated a BC detection method to reduce 
mortality. It utilizes thermography to conduct painless and cost-effective 
screening to detect BC at an early stage. It allows one to seek further 
diagnostic testing only whenever it is required. It helps to avoid un-
necessary and painful mammography screening. Even though 
mammography is extensively used for BC screening, the researchers 
discovered a substantial false-positive rate. Therefore, a biopsy must be 
done to confirm the cancer’s presence to avoid the FP rate using the 
mammogram. Consequently, this finding suggests that frequent 
pre-mammography and post-mammography screening be incorporated 
to improve women’s health outcomes. 

Table 1 compares the accuracy percentage and False Positive rate 
(FPR) with various existing authors’ methods and the proposed FCM- 
DCS method. Consequently, the studies discussed in this section 
clearly distinguish various methodologies to detect benign tumours in 
the image for an early examination and their challenges. The mammo-
gram image analysis approaches to analyze the characteristics of cancer 
tissues, texture and morphological differences in specific regions using 
cluster analysis methods. This method assists in identifying, analyzing, 
categorizing, and eliminating the malignant region. However, these 
steps are only utilized by some researchers, which is concentrated in this 
research. 

Some background studies identified that the researchers concen-
trated on diagnosing BC. The effects can be capable of using segmen-
tation without focusing on changes in the structure of breast cancer 
tissues. So, these issues in the previous studies are addressed in this 
study by adopting the image enhancement technique by developing an 
effective segmentation method. Reducing FP and FN rates is the open 
challenge for the BC detection analysis. So, this study introduces fuzzy C 
means (FCM) distorted contour-based segmentation (FCM DCS) method 
to address the real detection issues in present studies. It uses the dis-
torted contour (DC) based method to identify the contour of the cancer 
tissue from mammogram images. The DC method is performed with the 
help of FCM to identify the cancer tissues. Moreover, a histogram and 
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adaptive equalization method were utilized to reduce image noise and 
preserve the edge features. It reduces the FP and FN rates. 

A notable research gap in breast cancer detection pertains to the need 
for more accurate and robust segmentation methods, particularly in 
early-stage detection systems. Despite advancements, existing tech-
niques often struggle to effectively differentiate between cancerous and 
normal breast tissues due to their heterogeneous nature. This challenge 
is exacerbated by the homogeneous features exhibited by early-stage 
breast cancer, making it difficult to achieve precise segmentation. 
Consequently, there is a pressing need for innovative segmentation ap-
proaches capable of accurately delineating cancerous regions from 
mammogram images with higher sensitivity and specificity. Addressing 
this gap is crucial for improving the reliability and effectiveness of 
automated breast cancer detection systems, ultimately leading to earlier 
diagnosis and better patient outcomes. 

The FCM-DCS model include its innovative integration of Fuzzy C 
Means clustering with distorted contour-based segmentation tech-
niques, tailored to address the heterogeneous nature of breast tissue and 
the complexities of early-stage breast cancer. The model’s reliance on 
advanced image analysis methodologies and its focus on improving 
segmentation accuracy and efficiency set it apart from traditional ap-
proaches to breast cancer detection. 

3. Methodologies of FCM-DCS: fuzzy C means distorted contour- 
based segmentation approach for breast cancer detection 

This section discusses the methodologies adopted in this study to 
detect BC tissues using mammogram images. It contains three main 
stages; image acquisition, image preprocessing using noise suppression 
and enhancement, and BC detection using the FCM-DCS method. 

The proposed FCM-DCS method has three stages Noise removal, 
segmentation, and performance analysis, as shown in Fig. 1. It shows the 
overall flow structure with algorithm details. 

3.1. Data sources 

The performance and efficiency of the proposed method are evalu-
ated using two mammography image datasets. It is taken from Kaggle 
repositories; the images with a 6.3 GB memory size [30] and 442 MB 
memory size of the dataset [31] are two different datasets utilized in this 
study. The Digital Database for Screening Mammography (DDSM) has 
been modernized with the CBIS-DDSM (Curated Breast Imaging Subset 
of DDSM). Two thousand six hundred twenty digitized film mammo-
grams from across the globe are stored in the DDSM database. It com-
prises ailments scientifically shown to exist, such as benign and 
malignant conditions. The DDSM is a helpful tool for developing and 

Table 1 
Performance analysis of some of the effective segmentation methods.  

Related work Author’s Contribution Limitations Dataset Acc FPRR 

H Li et al.,  
[26] 

Developed a robust texture feature descriptor. The detailed textural 
features are extracted using more Rotation invariants with different 
concerned numbers of spatial transitions applied to extend the local 
quandary pattern. 

Need to support classification model in 
achieving reliable accuracy rate. 

MIAS  80.30 %  0.45 % 

H Soleimani 
et al., [27] 

Data-driven prediction and graph-based image analysis method is 
introduced for 

Still, some elements of breast anatomy are 
confusing while segmenting the pectoral images 

MIAS  97 %  0.16 % 

H. Ture [28] A rule-based contour detection method is introduced to segment 
patterned isocontours. 

Due to the overlapping tissue in radiography, 
some medical images’ tissue masses remain 
blurred or invisible. 

MIAS  92 %  1.26 % 

Teixeira F 
et al., [29] 

Prepared performance analysis of various ML models on BC data. Need improvements in prediction and testing 
approaches in databases containing images. 

DDSM  73.9 %  6.9 %  

Fig. 1. FCM-DCS-based BC detection system.  
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testing decision support systems due to its vast database and validation 
against the ground truth. CBIS-DDSM is a data set chosen and curated for 
CBIS-DDSM by a skilled mammographer. The mammography images for 
this investigation are taken from MIAS and the DDSM Mammography 
Kaggle dataset. The original MIAS Database (digitized with a 50-micron 
pixel edge) has been reduced to a 200-micron pixel and clipped/padded 
to 1024 × 1024 pixels, containing 575 photos. The proposed model has 
been evaluated with these datasets. Fig. 2 shows the gallery’s samples 
from the MIAS dataset images of BC mammograms. 

Fig. 2 shows a sample input mammography image taken from the 
Kaggle as mentioned earlier data source. 

3.2. Noise removal 

Mammography enhancement essentially improves contrast, espe-
cially in prominent breasts. Mammography can differentiate between 
malignant and normal thick tissue, but only below the human eyesight 
threshold. Similarly, microcalcifications may need to be seen in a thick 
enough concentration. As a result, defining the characteristics of 
microcalcifications is challenging. Conventional image processing 
techniques could perform better on mammographic images. Traditional 
fixed neighbourhood techniques, such as un-sharp masking, are less 
effective owing to feature size and shape changes. Fixed or global 
techniques may respond to local features within a neighbourhood, but it 
does not change the size of the neighbourhood to account for local 
issues. 

Histogram equalization improves the contrast of a Mammography 
scan for breast cancer compared to a non-equalized histogram. As a 
result, it may do this by effectively spacing out the most common in-
tensity values in the BC Mammography image’s intensity spectrum. 
When the relevant data is provided as near-contrast values, this method 
often improves the overall contrast of photos. As previously stated, this 
enhances contrast when local contrast is poor. To improve visual 
contrast, AHE (adaptive histogram equalization) is used in computer 
image processing. It performs well when local contrast and edge clarity 
are critical, such as individual picture parts. One of the algorithm’s key 
goals is to reduce noise while keeping excellent image quality.  

Pseudo code for noise removal 
Input: Input the mammogram image 

Step 1: Initialise landmark points //Points must be near the boundary 
Step 2: Utilize Gaussian smoothing kernel 
Step 3: Apply Gaussian blur image and Generate Gradient magnitude. 
Step 4: For every point change, Estimate the average distance (aveD) Step 5: 
Calculate (EC, ECurandEimg) for each neighbour. 
Step 6: Normalize Points. 
Step 7: Change the position of entire points to new positions. 

Output: Filtered and smoothened images  

Fig. 3 depicts the original picture with a filtered mammography 
image. After the noise removal stage, the input image filters for 

segmentation. The output for the filtered image is shown in Fig. 3. 
Fig. 4 illustrates the resultant images of preprocessing stages using 

low contrast and contrast stretching, histogram equalization and adap-
tive equalization, respectively. In this, the resultant of Gaussian 
smoothing is considered the low contrast image to enhance the image. 
Initially, contrast stretching is applied to stretch the range of the in-
tensity values. Next, the resulting images are utilized to apply the his-
togram equalization method to normalize the pixel intensity of the input 
contrast stretched image. Finally, adaptive equalization is adopted to 
improve the local contrast of the mammogram and define the edges of 
the image. It computes several histograms to select the local contrast. 
The resultant image is utilized for the segment and detects the BC. 

3.3. Fuzzy C means distorted contour-based segmentation (FCMDCS) 

FCM-DCS contains advantages in various image segmentation ap-
plications and image registration applications. The main challenge in 
FCM is finding corresponding pixels in a congested environment. There 
have been several recommendations for modifying FCM to various 
segment elements; however, many have difficulties that must be solved. 
FCMs may be located in a particular domain, and their curves or surfaces 
change in response to internal and external influences. Internal and 
external stresses on a model may lead the border of an object or other 
desired visual components to cling together. Preliminary shape infor-
mation is often used to improve medical picture segmentation models, 
which is very successful. Particular difficulties may be well matched to 
the restrictions supplied by global shape knowledge when organs or 
structures have stable shapes and are correctly characterized by a 
particular shape model. More broad constraints are necessary for 
increasingly complex cases, such as buildings with rapidly altering or no 
fixed shape. The shortcomings in the FCM are reduced in this research 
with the help of Distorted Contour. This section discusses the function-
alities of the FCMDCS model in detail. It is an efficient pixel classifica-
tion method and permits a part of pixels belonging to two or more 
clustering centres with a membership value. 

OFCM = (A,B,Z) =
∑N

i=1

∑c

j=1
am

i,j d2( zi, bj
)
, 1 < m < ∞ (1) 

The Eq. (1) minimizes the objective function (OF). In this, m denotes 
the blur exponent. The image vector(Z = {z1, z2,…, zN }) comprises N 
pixels. The vector for the cluster centre is represented as B =

{b1, b2,…, bc}. Euclidean distance d2(zi, bi) is the formula for the 
computed distance between the object zi And jth cluster centre. The 
standard FCM algorithm fuzzy membership is assigned to each pixel in a 
cluster zm

i,j. The degree of memberships. 

0 ≤ ai,j ≤ 1
∑N

j=1
ai,j = 1,

∑N

i=1
ai,j ≤ N, i = 1,2,…,N j = 1,2,…, c (2) 

Fig. 2. Sample Mammography images.  
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Fig. 3. Differentiations Original Filtered Image.  

Fig. 4. Intensity graph of each preprocessing stage for a sample mammogram image.  
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The degree of membership satisfies the need to satisfy the rules 
mentioned in the Eq.(2). The cluster centres and membership degrees 
are constantly updated for each iterative process. Whenever the mem-
bership degree is updated, the value of OF must be closer to the 
minimum. 

ai,j =
1

∑c

i=1
(

disti,j
disti,k

)
2

m− 1

(3)  

bj =

∑N

i=1
am

ij .zi

∑N

i=1
am

ij

(4) 

The membership matrix ai,j, and the cluster centres bj are updated 
using Eq. (3) and Eq.(4). The membership of the image cannot reflect the 
nature of the subordinate centre in a noisy environment. To overcome 
the shortcomings of the FCM algorithm, it can use the location infor-
mation of the pixel intensity. To reduce the negative impact of the noise 
on the membership calculation. 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dist1
i,j,p = γ1

pMax(0, b1
j,p − z3

i,p)

d2
i,j,p = γ2

p

⃒
⃒
⃒b2

j,p − z2
i,p

⃒
⃒
⃒

dist3
i,j,p = γ3

pMax(b3
j,p − z3

i,p, z3
i,p − b1

j,p)

(5) 

The parameters γ1
p is a weighted coefficient of the distance measure 

(distk
i,j,p), γi

p ≥ 0, i = 1, 2,3and p = 1,2. 

disti,j = (dist1
i,j,1, dist2

i,j,1, dist3
i,j,1, dist1

i,j,2, dist2
i,j,2, dist3

i,j,2) (6) 

If the parameter λi = 1, the fuzzy distance measure is expressed as in 
Eq. (6). 

ai,j =
1

∑c

i=1

⎛

⎜
⎜
⎜
⎝

∑2

p=1

∑3

k=1
distki,j,p

∑2

p=1

∑3

k=1
distki,j,p

⎞

⎟
⎟
⎟
⎠

1
m− 1

k = 1,2,….., c (7)  

bj =

∑N

i=1
am

ij . zk
i,p

∑N

i=1
am

ij

(8) 

The membership matrix and clustering centre vector in Eq. (3) and 
Eq. (4) are optimized by using multiple objects in the local region of the 
pixel to retain the nature of the textural information in the mammogram 
using the Eq. (7) and Eq. (8) respectively. 

The local intensity is essential for accurate segmentation, but the 
FCM must improve handling inappropriate borders and intensity. So, the 
Distorted Contour (DC) method is combined with the FCM to overcome 
the drawbacks in the FCM segmentation model. 

The image segmentation was performed using the picture contours 
provided by coarse segmentation. Fine-segmented nuclei are evaluated 
for potential areas of interest during fine segmentation. By examining 
the region characteristics, such as the region area and the average area 
across all segmented areas, as well as eccentricity and the region 
diameter-to-perimeter ratio, it can identify the crossing contours with a 
large number of intersecting objects. Segmentation of the DCS starts 
with uneven borders due to the inhomogeneous intensity distribution 
inside the initial outlines. It is used in local image data of the DCS model 
to compensate. 

∈ 1 = ξc(A(I) − I − d1 )2.dc+ ζc(DCS)) (9) 

In Eq. (9), the A(I) is an average filter, and d is represented the in-
tensity averages of the different images. The contour denotes C. 

Fig. 5 illustrates the segmentation results of the FCM-DCS model. The 
FCM is used to segment similar features from the mammogram images. 
The FCM segmented pixels’ groups are considered the input to the DC 
segmented to segment the un-sharp edges. The proposed method com-
prises a mark deemed noise, maintained by minimizing the information 

Fig. 5. Segmented FCM-DCS.  
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necessary to operate. The step-by-step proposed FCM-DCS Breast cancer 
detection process is explained in the following algorithm. 

Algorithm. : FCM-DCS-based BC detection. 

The FCM-DCS model uses preprocessed images as input to perform 
BC detection. The image and the threshold value are initialized to 
compute the threshold, the number of segments and the membership 
function. Then, it randomly computes the cluster centre. Compute dis-
tance among each pixel intensity with cluster centre. Each cluster has 
one cluster centre, and the fuzzy membership function normalizes the 
pixel intensity to improve the local intensity pixels’ quality. It updates 
the cluster centre and the position of all pixels in each iteration. The 
segmented pixels with improper edges reduce the segmentation accu-
racy. So, in this study, the DCS method is applied to the resultant matrix 
to segregate the cancer tissues. The performance of the proposed BC 
detection method is discussed in the subsequent section. 

4. Performance analysis 

The FCM-DCS is developed in Python version 3.8. The mammog-

raphy imaging data sets from CBIS-DDSM and MIAS BC database are 
analyzed (The data source information is given in the previous section). 
The performance of the FCM-DCS model is compared with the 
performance-wise best two segmentation models, such as the ROI [24] 
based method and the Deformable model [28]. The proficiency of the 
FCM-DCS is assessed using accuracy, Signal to mean square error 
(SMSE), FP prediction rate, and FN prediction rate. 

SignaltoMeanSquareError =
(Si − Sʹ

i)

n
(10) 

The segmentation error is estimated using the SMSE in Eq. (10). It is 
stated and measured in decibels (dB). The ’Si‘is indicates the ‘i’th pixel in 
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the original image, and the’Sʹ
i‘denoted the boosted anisotropic filter 

smoothened pixel intensity. The ‘n’ indicates sample mammogram im-
ages count. 

SegmentationAccuracy(%) =
TP + TN

n
∗ 100 (11) 

The segmentation accuracy is evaluated using Eq. (11). The notation 
‘n’ indicated the cancer image counts. Positively segmented samples and 
negatively segmented samples are represented as TP, TN respectively. 

Table 2 includes the SMSE evaluation results obtained by different 
segmentation methods considered in this study for BC detection. Many 
cancer photographs in the 10–100 are considered adequate for experi-
mental purposes. Several techniques, including fuzzy Clustering and the 

DCS model, have been attempted and compared to the recommended 
method. One hundred cancer wizards have been gathered for scientific 
purposes. The resultant value of the proposed Distorted Contour Based 
technique is superior to the others in reducing segmentation errors.How 
many cancer photos have been successfully segmented is divided by how 
many cancer images have been wrongly segmented? Slightly less than 
one per cent of the total number of cancer images evaluated as input is 
used to represent genuine positive/FN samples. The segmentation ac-
curacy may be expressed theoretically as a percentage (per cent) and 
quantified in percentage. 

Fig. 6 compares the Signal to mean square error for ROI-based seg-
mentation, Deformable model, and distorted contour model-based seg-
mentation. The x-axis denotes the number of mammography cancer 
images, and the Y-axis denotes the number of values. It clearly shows 
that the proposed method outperforms in segmenting BC tissues. 

Table 3 contains accuracy rate comparison results of different seg-
mentation such as ROI, Deformable, FCM-DCS methods. The analysis 
results show that the DC-based FCM model obtained a maximum accu-
racy rate in segmenting the pixels. The higher segmentation accuracy 
indicates that the FCM-DCS method is more efficient than the compar-
ison method. 

The segmentation accuracy is differentiated from ROI-based seg-
mentation, Deformable, and FCM-DCS, as shown in Fig. 7. The X-axis 
denotes the number of mammography cancer images, and the Y-axis 
denotes the accuracy percentage. The graph values indicate that the 
FCM-DCS model obtained maximum accuracy than the comparison 
model. 

Table 4 contains the accuracy, false negatives and false positives 
(FPR) achieved by the FCM-DCS method while segmenting the BC 
detection in mammogram images for MIAS and DDSM datasets. Overall Fig. 6. Measure of SMSE.  

Table 3 
Segmentation Accuracy.  

Number of 
Mammography 
cancer images 

Segmentation Accuracy (%) 

ROI based 
segmentation 

Deformable 
model 

FCM-DCS model 
(Disorderd 
contour)  

10  60.21  65.17  69.23  
20  70.01  71.54  79.54  
30  80.77  82.23  85.47  
40  85.62  87.27  90.59  
50  86.57  90.37  92.53  
60  90.12  91.23  95.31  
70  91.62  92.47  96.32  
80  92.35  93.45  97.54  
90  93.79  94.74  98.23  
100  94.24  95.37  98.76  

Fig. 7. Measure of Segmentation Accuracy.  

Table 4 
Overall performance analysis of three approaches.  

Related 
work 

Dataset Accuracy False -Positive- 
reduction rate 

False -Negative 
reduction rate 

FCM-DCS DDSM  97.9 %  0.40 %  0.35 % 
FCM-DCS MIAS  98.76 %  0.14 %  0.15 %  

Table 5 
Performance Comparison of Accuracy.  

Segmentation Technique DDSM MIAS 

DRD-UNet  93.12  94.23 
DDA-AttResUnet  94  95.1 
FCM-DCS  97.9  98.76 %  

Table 2 
SMSE.  

Number of 
Mammography 
cancer images 

SMSE (dB) 

ROI based 
segmentation 

Deformable 
model 

FCM-DCS 
(Disorderd 
contour)  

10  11.26  8.04  3.75  
20  12.28  9.54  3.32  
30  12.12  9.25  3.57  
40  13.63  9.93  4.54  
50  13.57  10.18  4.68  
60  13.68  10.65  4.47  
70  14.15  11.47  4.38  
80  14.72  12.31  4.82  
90  14.56  12.42  5.67  
100  15.64  12.96  5.98  
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performance analysis of three segmentation approaches is given. The 
table values show that the FCM-DCS provides better performance for 
MIAS dataset images. 

The performance analysis of different BC detection models proves 
that the FCM-DCS method performs well than the comparable models. 
The overall evaluation results of the BC segmentation models show that 
the FCM-DCS method achieved the research objective. 

Table 5 presents a comprehensive comparison of the accuracy ach-
ieved by three distinct segmentation techniques—DRD-UNet, DDA- 
AttResUnet, and FCM-DCS—across two significant datasets, DDSM and 
MIAS. The accuracy values, expressed as percentages, serve as indicators 
of the efficacy of each technique in accurately delineating breast cancer 
regions within the respective datasets. Notably, DRD-UNet exhibits 
commendable accuracy, achieving 93.12 % on the DDSM dataset and 
94.23 % on MIAS, showcasing consistent performance with a slight 
improvement on the MIAS dataset. DDA-AttResUnet shows further 
enhancement over DRD-UNet, achieving 94 % accuracy on DDSM and 
95.1 % on MIAS, indicating moderate improvement across both data-
sets. However, the most striking performance is demonstrated by FCM- 
DCS, which significantly surpasses both DRD-UNet and DDA-AttResUnet 
with remarkable accuracies of 97.9 % on DDSM and 98.76 % on MIAS. 
Such substantial improvements signify the superior capability of FCM- 
DCS in accurately identifying breast cancer regions within mammo-
graphic images. These findings underscore the potential of FCM-DCS to 
revolutionize breast cancer detection, potentially leading to earlier di-
agnoses and improved patient outcomes. Fig. 8, likely depicting this 
comparison graphically, provides a visually accessible representation of 
the accuracy disparities among the segmentation techniques, facilitating 
a more intuitive understanding of their respective performances. 

Histological slides stained with Hematoxylin and Eosin are vital for 
cancer diagnosis. This paper introduces DRD-UNet for breast cancer 
segmentation, outperforming traditional UNet models on BCSS Chal-
lenge data. Additionally, DDA-AttResUNet enhances breast tumor seg-
mentation in BUS imaging, promising improved diagnosis and patient 
outcomes [32,33]. 

5. Conclusion 

Thus, the study has introduced the most effective, reliable and low- 
cost early-stage BC detection method to achieve the research objec-
tive. The mammogram images contain much information about the 
breast structure and tissue conditions. Still, early-stage BC biomarker 
features can only be identified directly with an efficient mass abnor-
mality detection algorithm. So, this study’s research objective addresses 
some of the leading gaps in the present BC detection-based studies. It 
shows a low-dose mammography x-ray to visualize the internal breast 
tissue structure. It introduces an FCM-DCS method to achieve the 
research objective. The performance of the FCMDCM shows that the 
segmentation method improves the BC detection accuracy up to 97.9 % 
for the DDSM dataset and 98.76 % for the MIAS dataset. It proves that 
the FCM with the DCS approach to segment BC images-based adaptive 
equalization method enhanced the pixel quality and accurately 
segmented similar cancer tissue in the abnormal structural regions with 
the help of DCS for seed point selection. 

Moreover, the noise reduction, Histogram equalization, contrast, and 
adaptive equalization support the FCMDCM method to reduce the FN 
and false favorable rates. The FCM-DCS method is suggested to construct 
the segmentation to predict BC better and identify anomalies in breast 
tissue while diagnosing breast cancer. Texture analysis is another 
application beyond the identification of BC. This method extracts areas 
of interest from biological images using the appropriate threshold limit. 
The texture analysis, thresholding, and segmentation steps help to 
improve visibility and detection. The feature extraction and automatic 
classification are not concentrated in this study. This study is extended 
to handle different picture formats rapidly with minimal processing 
delays without relying on aspects like raw images and deep learning- 
based techniques that can be suggested to improve the segmentation, 
feature extraction and BC classification results and also to improve the 
automatic BC classification performance. 
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