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A B S T R A C T   

Accurate NOx concentration prediction is of great significance for the pollutant emission control and safe 
operation of coal-fired power plants. The global properties of the research object cannot be adequately described 
by a single data driven model, which hinders generalization performance. We propose a NOx emission con
centration prediction method based on joint knowledge and data driven. First, we introduce a knowledge driven 
combined feature selection method to provide a global feature basis for data driven modeling. Second, we enable 
adaptive decomposition of the variational modal decomposition (VMD) using the modal energy difference and 
sample entropy. The method can extract deep time-frequency information in nonlinear and non-smooth features. 
Finally, we use the Informer combined with an adaptive time series segmentation method to predict NOx con
centration. The experimental results indicate that the proposed method predicts the NOx concentration better 
than several comparative models.   

1. Introduction 

One of the main sources of atmospheric pollutants, nitrogen oxides 
(NOx), is produced in huge quantities during the operation of coal-fired 
power plants [1]. During the unit denitrification reaction, accurate NOx 
concentration measurement is the foundation for determining an 
appropriate amount of ammonia injection [2]. An insufficient amount of 
ammonia injection will cause ammonia or NOx to escape and harm the 
environment [3]. Continuous emission monitoring system (CEMS) [4] is 
widely used in thermal power units to track and monitor NOx concen
trations in real time. However, CEMS measurement is hampered by is
sues such as a harsh working environment, signal interference, and its 
own failure [5]. Therefore, it is critical to develop an accurate NOx 
emission concentration prediction model from coal-fired units for 
denitrification and environmental protection [6]. 

A variety of methods for predicting NOx concentrations have been 
proposed. These models can be classified into knowledge driven [7–10] 
and data driven models [12–14] according to their principles. 

Knowledge driven models primarily use NOx generation and fuel 
combustion mechanisms in boilers to simulate the combustion process 
and predict NOx emissions. Zhao et al. [7] established a mathematical 
model for real-time thermal efficiency and NOx concentration in boilers 

based on combustion mechanisms. Chang et al. [8] proposed an inte
grated CFD model that included coal combustion and NOx emissions. 
Devarakonda et al. [9] developed a kinetic model based on the SCR 
system’s reaction mechanism and investigated the effects of various 
factors on denitrification efficiency. However, the knowledge driven 
model requires a number of assumptions that are challenging to meet in 
actual production, and the model parameters are numerous and 
complicated to calculate [10]. Therefore, the knowledge driven model is 
difficult to use for fast and accurate NOx concentration prediction. 

Coal-fired power plants with Distributed Control Systems (DCS) and 
Supervision Information Systems (SIS) provide a wealth of field opera
tion data for data driven modeling [11]. Tuttle et al. [12] compared 10 
data driven methods for NOx emissions from thermal power units. The 
results showed that the GRU was the best performing prediction model. 
Wang [13] and Tang [14] et al. recently proposed two hybrid models 
(CEEMDAN-AM-LSTM and AE-ELM), which also showed superior per
formance in NOx concentration prediction. However, data driven 
models are constrained by the manner, size, and quality of the sample 
data chosen. The model frequently performs inadequately in terms of 
generalization because it can typically only describe local features of the 
research object [15]. 

The proposed joint knowledge and data driven method has recently 
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realized the organic combination of global and local features, rules, and 
object experiences. Based on this concept, many joint driven models 
with improved performance have been proposed [16,17]. The joint 
driven models have achieved excellent results in research areas such as 
group intelligent decision making [18], fault diagnosis [19], traffic 
prediction [20], and smart manufacturing [21]. However, the applica
tion of joint driven modeling for NOx concentration prediction is still in 
the exploratory stage. Li et al. [15] reviewed the main applications of the 
current joint driven models in power systems. The joint driven method’s 
superior performance and future prospects are illustrated. Also, several 
researchers, including Li et al. [22], Yi et al. [23], and Wang et al. [24], 
confirmed that the joint driven method produces excellent results in a 
variety of power system application scenarios. Therefore, this research 
attempts to apply the concepts of joint knowledge and data driven 
modeling to predict the NOx emission concentration. 

However, the operational data of SCR systems exhibits nonlinearity 
and randomness. These traits make it more difficult for the model to 
capture the time-frequency features of NOx concentration prediction, 
lowering forecast accuracy. To handle such challenges, a hybrid model 
incorporating signal decomposition and deep learning is efficient [25]. 

Variational mode decomposition (VMD) is a popular method for 
signal decomposition [26]. It can decompose a signal into multiple 
Band-limited Intrinsic Mode Function (BIMF) with limited bandwidth in 
order to extract different frequency features and reduce nonlinearity and 
randomness interference [27]. Sun et al. [28] used VMD to describe the 
unstable and stochastic characteristics as steady-state BIMF, which 
improved the prediction performance of long and short-term memory 
neural network (LSTM). To deal with the strong nonlinear characteris
tics of wind power prediction, Xiong et al. [29] used VMD with 
nonlinear weighted combined learning. Experiments revealed the 
addition of VMD led to a significant improvement in prediction accu
racy. However, one of the major challenges is the inability of VMD to 
decompose adaptively. 

Deep learning excels at uncovering hidden quantitative relationships 
in time-series data. Transformer [30] provides a new deep network ar
chitecture for time series prediction. However, the problems of high 
time complexity and memory utilization increase the difficulty of its 
application [31]. Zhou et al. [32] proposed an efficient informer model. 
It solves the problem by using the ProbSparse self-attention mechanism 
and self-attention distilling operation. The model achieved superior 
prediction performance on four large-scale datasets. Gong et al. [33] 
developed a load prediction method for centralized heating systems 
using the informer. The experiments proved that the method is gener
alizable and robust. These researches demonstrate that informer offers a 
novel solution for improving the accuracy of time series prediction. 

This paper proposes a hybrid model based on joint knowledge and 
data driven. First, we integrate the NOx generation mechanism and 
utilize a knowledge driven combined feature selection method to 
calculate the variable correlation and offer the model’s feature base. 
Second, we introduce modal energy difference and sample entropy to 
enhance VMD and extract deep time-frequency information from 
nonlinear feature parameters. Finally, we employ informer to predict 
NOx emission concentrations following adaptive segmentation. 

The contributions of this paper are as follows. 

• A hybrid model based on joint knowledge and data driven is pro
posed. The NOx emission concentration prediction challenge is 
accomplished by integrating NOx generating mechanism knowledge, 
combined feature selection, signal decomposition, and deep 
learning.  

• A knowledge driven combined feature selection is established to 
mine the best collection of features extensively and avoid big dis
parities in describing the correlation of variables by a single method.  

• Nonlinear time-series features are decomposed using a novel signal 
decomposition method (MEVMD). The decomposed residuals are 
filtered based on the permutation entropy measurements.  

• The time series are adaptively segmented by the slicing module in the 
input layer of the encoder stack. The relationship between historical 
NOx concentration and future NOx concentration is described.  

• Informer is applied to the prediction of NOx emission concentration. 
Deep learning is utilized to capture time-series data dependent 
coupling. 

The rest of this paper is organized as follows. Section 2 describes the 
boiler in this research and NOx generation mechanism. Section 3 dis
cusses the VMD, Informer, and Methodology. Section 4 presents the 
proposed prediction model in detail. Section 5 conducts a comparison 
experiment to validate the model performance. The final section con
cludes this paper. 

2. The boiler and mechanistic knowledge 

2.1. Description of the boiler object 

In this research, the DC boiler of Shanghai Caojing Power Plant’s 
1000 MW ultra-supercritical coal-fired generating unit was used. 
Shanghai Boiler Plant Co. manufactured the boiler, which is a variable 
pressure operating spiral tube coil water-cooled wall DC furnace. It is a 
coal-fired boiler with a single chamber, primary intermediate reheat, 
four-corner cut circle combustion method, balanced ventilation, solid 
slag discharge, all-steel suspension structure, tower type, and open-air 
arrangement. The furnace height is 320.8 m, with a cross section of 
156.7 m × 156.7 m. The low NOx rotary burner is arranged in the wall- 
type boiler. The boiler tail flue is equipped with a silicon controlled 
device. Ammonia is used as the reducing agent to control NOx concen
tration. The main parameters of the boiler are shown in Table 1. 

2.2. Mechanistic analysis of NOx generation 

Selective Catalyst Reduction (SCR) is a complex chemical reaction 
system. It mainly consists of a denitrification reaction system, an 
ammonia storage and supply system, and an ammonia/air spray system. 
The SCR reactor usually adopts a high ash arrangement, i.e., it is ar
ranged in the flue between the coal saver and the air preheater. 

SCR denitrification technology is characterized by no secondary 
pollution, simple device structure, reliable operation, and easy mainte
nance. Under reasonable conditions and suitable temperature condi
tions, denitrification efficiency can reach 80–90%. Fig. 1 shows the 
overall structure and production flow chart of the SCR denitrification 
plant for the 1000 MW ultra-supercritical coal-fired unit used in this 
paper. 

Multiphase catalytic reactions generally follow the Eley-Rideal 

Table 1 
Main parameters of boiler system.  

No. Parameter description Unit Design Check 

1 Superheated steam flow t/h 2955 2955 
2 Superheated steam pressure MPa(a) 27.56 27.56 
3 Superheated steam temperature ◦C 605 605 
4 Reheat steam flow t/h 2448 2448 
5 Reheater inlet pressure MPa(g) 6.2 6.2 
6 Reheater outlet pressure MPa(g) 6.0 6.0 
7 Reheater inlet temperature ◦C 377 377 
8 Reheater outlet temperature ◦C 603 603 
9 Economizer inlet temperature ◦C 295 295 
10 Preheater inlet primary air temperature ◦C 23 23 
11 Preheater inlet secondary air temperature ◦C 27 27 
12 Preheater outlet primary air temperature ◦C 330 334 
13 Preheater outlet secondary air temperature ◦C 340 343 
14 Exhaust gas temperature ◦C 131 134 
15 Guaranteed efficiency BRL condition % 125 128 
16 Minimum stable load % 93.72 – 
17 Air preheater leakage rate % 30 30 
18 NOx emission mg/m3 6 6  
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mechanism [34] and the Langmuir-Hinshelwood mechanism [35]. Most 
scholars currently believe that SCR denitrification follows the reaction 
Eley-Rideal mechanism [36]. Ammonia (NH3) is used as the reducing 
agent and V2O5/TiO2 catalyst is filled in the SCR reactor. NH3 is mixed 
with flue gas and a series of chemical reactions take place under the flue 
gas temperature conditions of 280–420 ◦C. After the denitrification re
action, the NOx in the flue gas is reduced to non-polluting nitrogen (N2) 
and water (H2O) [37]. The schematic diagram of the SCR flue gas 
denitrification reaction is given in Fig. 2. Among them, the main re
actions are: 
⎧
⎪⎪⎨

⎪⎪⎩

4NH3 + 4NO + O2 = 4N2 + 6H2O
4NH3 + 6NO = 5N2 + 6H2O
8NH3 + 6NO2 = 7N2 + 12H2O
4NH3 + 2NO2 + O2 = 3N2 + 6H2O

(1) 

In addition to the main reactions, the following secondary reactions 
may be present: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

4NH3 + O2 = 2N2 + 6H2O
2NH3 = N2 + 3H2
4NH3 + 5O2 = 4NO + 6H2O
2NH3 + 2O2 = N2O + 3H2O
4NH3 + 4NO2 + 3O2 = 4 N2O + 6H2O

(2) 

The flue gas flow path in the SCR denitrification system is not unique 
depending on how the equipment is configured. However, the reaction 
process of gaseous NOx in flue gas is generally similar. The flue gas is 
mixed with ammonia by jets and deflectors before entering the reactor to 
begin the denitrification process. Denitrification is completed by diffu
sion from the micropores to the outer surface into the flue gas stream 
after a series of complex chemical reactions and product desorption. 

Through the thermodynamic analysis of the reaction mechanism of 

SCR system and the emission characteristics of NOx generated by 
combustion, we initially selected 39 feature variables related to the 
denitrification reaction as the candidate inputs for NOx concentration 
prediction. Table 2 lists the candidate input variables. 

3. The VMD and informer 

3.1. Description of the VMD model 

Assume that the original time series is x(t) and the mode uk(t) is a 
finite bandwidth of k with center frequencies decomposed by the input 
signal. Each of these sequences has a finite bandwidth of center fre

Fig. 1. The overall structure and production process of SCR denitration plant.  

Fig. 2. SCR denitrification reaction schematic.  

Table 2 
Candidate input variables.  

No. Parameter description Unit Notation Scope 

1 Unit load MW UL [759.32–885.23] 
2 Main steam temperature ◦C ST [571.71–605.35] 
3 Main steam pressure MPa SP [16.77–31.38] 
4 Inlet NOx concentration mg/ 

m3 
Nin [25.20–595.36] 

5 Net flue gas NOx content mg/ 
m3 

Nf [11.66–189.81] 

6 Inlet CO concentration mg/ 
m3 

CO [4.28–864.53] 

7 Inlet oxygen content % Oin [2.73–21.28] 
8 Inlet flue gas pressure kPa Pin [-1.16-0.55] 
9 Inlet flue gas flow rate m3/h Fin [128.33–159.72] 
10 Inlet flue gas temperature ◦C Tin [355.19–366.97] 
11 Outlet flue gas pressure kPa Pout [-1.61-0.98] 
12 Outlet flue gas temperature ◦C Tout [350.88–371.05] 
13 Outlet oxygen content % Oout [2,77–12.05] 
14–19 Instantaneous coal volume of 

coal feeder (A-F) 

◦C CA-F [38.86–76.96] 

20 Dilution fan current A D [0.22–0.71] 
21 Total coal volume t/h TC [301.04–378.82] 
22 Total air volume t/h TA [2895.9–3433.7] 
23 Superheat degree ◦C SH [34.05–77.29] 
24 Ammonia opening degree m3/h Ai [36.31–49.68] 
25–29 Inlet air temperature of coal 

mill (A-F) 

◦C IA-F [29.45–218.08] 

30–34 Mill outlet air temperature (A- 
F) 

◦C UA-F [21.92–86.58] 

35 Exhaust temperature ◦C T [130.07–140.15] 
36 Water to coal ratio % R [6.62–8.94] 
37 Ammonia spray flow rate m3/h Q [51.18–107.68] 
38 Ammonia escape ppm NH3 [0.86–3.42] 
39 Denitrification efficiency % DE [11.65–100.00]  
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quency, and the sum of the bandwidths is guaranteed to be minimal. The 
VMD with constraints is calculated as follows: 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min{uk},{ωk}

{
∑

k

⃦
⃦
⃦
⃦∂t

[(

δ(t) +
j

πt

)

× uk(t)
]

e− jωkt
⃦
⃦
⃦
⃦

2

2

}

s.t.
∑

k
uk = x(t)

(3)  

where {uk} = {u1, ..., uk} is the decomposition of each modal compo
nent. {ωk} = {ω1, ...,ωk} is the center frequency of each modal compo
nent. δ(t) is the impulse function. ∂t is the partial derivative of t. 

To find the optimal solution to the constrained variational problem, 
we introduce penalty factors and Lagrange operators to convert the 
constrained problem into an unconstrained problem. 

L({uk}, {ωk}, λ)= α
∑

k

⃦
⃦
⃦
⃦∂t

[(

δ(t) +
j

πt

)

× uk(t)
]

e− jωkt
⃦
⃦
⃦
⃦

2

2

+

⃦
⃦
⃦
⃦
⃦

x(t) −
∑

k
uk(t)

⃦
⃦
⃦
⃦
⃦

2

2

+

[

λ(t), x(t) −
∑

k
uk(t)

] (4)  

where α is the penalty factor, and it ensures the reconstruction accuracy 
of the signal in the presence of gaussian noise. λ(t) is the Lagrangian 
multiplication operator, and it maintains the stringency of the con
straints. 

We calculate the optimal solution of the variational modal model by 
alternately updating un+1

k , ωn+1
k , and λn+1

k . Thus, the time series x(t) is 
decomposed into k narrowband IMF components. The calculation for
mula is given in Eq. (5)(6) (7). 

ûn+1
k (ω)=

x̂(ω) −
∑

i∕=k
ûi(ω) +

λ̂(ω)

2

1 + 2α(ω − ωk)
2 (5)  

wn+1
k =

∫∞
0 ω

⃒
⃒ûn+1

k (ω)
⃒
⃒2dω

∫∞
0 |ûn+1

k (ω)|
2
dω

(6)  

λ̂
n+1

(ω)= λ̂
n
(ω) + τ

[

x̂(ω) −
∑

k

ûn+1
k

]

(7)  

∑

k

⃦
⃦ûn+1

k − ûn
k

⃦
⃦2

2

/
⃦
⃦ûn

k

⃦
⃦2

2 < ε (8)  

where τ is the update factor. ûn+1
k (ω), x̂(ω), and λ̂

n+1
(ω) represent the 

Fourier transforms of un+1
k , x(t), and λn+1

k , respectively. The discriminant 
accuracy is set to ε > 0, and the iteration is stopped when Eq. (8) is 
satisfied. 

3.2. Description of the informer model 

Time series prediction tasks require models that can efficiently and 
accurately capture the long-term dependent coupling between outputs 
and inputs. The Transformer model [30], based on a self-attentive 
mechanism, uses a classical encoder-decoder structure and has been 
successfully applied to a variety of sequence-to-sequence tasks. 

Fig. 3 illustrates the basic structure of the Transformer model. In 
recent years, the Transformer model has performed superiorly in time 
series prediction. However, the problems with Transformer’s higher 
memory resource usage and computing time prevent it from being 
directly applied to time series prediction. 

Zhou et al. proposed an efficient Informer model to solve these 
problems [32]. The Informer greatly reduces the running cost and 
memory resource usage while ensuring the model’s performance re
mains unchanged. Improvements include: 1) Proposing the ProbSparse 
self-attention mechanism to reduce the time complexity of memory 
occupation to O(L logL) (L is the length of time series). 2) Halving the 
cascading layer inputs by the self-attention distilling operation to 
highlight the dominance of attention and efficiently process the input 
time series data. 3) Using a generative decoder to prevent the accumu
lation of cumulative errors during the inference phase. 

3.3. Methodology 

The weaknesses of single knowledge driven or data driven models in 
complex NOx concentration prediction are demonstrated. The joint 
knowledge and data driven model can improve prediction accuracy and 
generalization ability. For the various needs of power system application 
scenarios, the joint driven models primarily include: parallel mode, se
rial mode, bootstrap mode, and feedback mode [15]. 

In this research, the bootstrap mode is used to establish the NOx 
concentration prediction model. We take the knowledge driven com
bined feature selection method as the basis to guide the construction of 
data-driven section model. Because the nonlinear properties of unit 
operating data affect prediction accuracy, a combination of MEVMD and 
Informer is employed to build the data driven section model. The newly 
proposed sub-models are detailed in the following section. 

4. The proposed models 

4.1. MEVMD 

Data driven models are deficient in predicting data with nonlinear 
characteristics [15]. Because feature parameters such as ammonia spray 
flow are nonlinear and nonstationary, the time-frequency information in 
the variables is minimal, making prediction more difficult. 

We use VMD to decompose the nonlinear time series features into 
simple and smooth IMF and residual pairs. The decomposed subse
quence is relatively stable and has local time-frequency feature infor
mation. In addition, we use the permutation entropy to filter the 
randomness of the residuals generated after decomposition [38]. 

The VMD requires a manual determination to set the decomposition 
layers and penalty factors. Due to the engineering characteristics of the 
thermal process data, the empirical method is usually used to take the 
values at present. We propose a modal energy and sample entropy based 

Fig. 3. The structure of the Transformer.  
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variational modal decomposition (MEVMD). The method can determine 
the parameters adaptively to improve the predict performance. Fig. 4 
shows the overall flow of the MEVMD. 

4.1.1. Modal energy difference 
We use the modal energy difference to measure the decomposition 

quality of the eigenmodes and adaptively determine the number of 
layers of the VMD decomposition. The calculation steps are as follows. 

Step 1. Define the signal sequence as u(t). The total length of the 
signal sequence is N. Calculate the signal energy of each modal 
component: 

E =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

t=1
u2(t)

N

√
√
√
√
√

(9)  

where E is the signal energy of each modal component. 

Step 2. The energy difference between the sum of the energy of each 
modal component and the energy of the original signal is calculated. 
The calculation formula is given in Eq. (10). 

ξ=

⃒
⃒
⃒
⃒
∑K

k=1
Ek − Et

⃒
⃒
⃒
⃒

Et
(10)  

where Ei is the energy of the k modal component. Et is the energy of the 
original signal. ξ is the signal energy difference. 

Step 3. When |ξK+1 − ξK| > 0.1 is satisfied, the modal number K is 
determined as the optimal number of decomposition layers [39]. 

4.1.2. Sample entropy 
The value of the penalty factor also has a large impact on the VMD 

decomposition results. Sample entropy is an improved method based on 
approximate entropy. It proves that the self-similarity of a sequence 
shows an inverse ratio to its entropy value [40]. We consider that the 
thermal process data has the property of high self-similarity. Therefore, 
according to the sample entropy theory, we can choose the penalty 
factor that minimizes the sum of the sample entropy values of each mode 
as the optimal value. 

Step 1. For a signal of sequence length u(t), construct the vector um(i)
of N − m+ 1. The defining equation is as follows: 

um(i) = [u(i), u(i + 1),…, u(i + m − 1)]
i = 1,⋯,N − m + 1 (11)  

where m is the number of embedding dimensions. 

Step 2. Define the vector spacing as dm. Calculate the probability of 
matching two sequences at point m and calculate the mean value. 

dm[um(i), um(j)]=max[um(i+ k) − um(j+ k)], 0⩽k⩽m − 1 (12)  

Bm,i(r)=
1

N − m + 1
vm(i) i = 1,⋯,N − m + 1 (13)  

Bm(r)=
1

N − m
∑N− m

i=1
Bm,i(r) (14)  

Where r is the tolerance for accepting matrices. vm is the number of 
dm ≤ r. Bm,i(r) is the probability of matching two points. Bm(r) is the 
mean value of the matching probability. 

Step 3. Calculating the sample entropy. 

SampleEn(m, r)= − ln
Bm+1(r)
Bm(r)

(15)  

Where SampleEn(m, r) is the sample entropy value. 

Step 4. The step size is set to 100, and the traversal is performed in 
the interval [1000, 10,000]. Calculate the sample entropy values for 
each mode of the time series data. The penalty factor that minimizes 
the sum of each entropy value is selected as the optimal value. 

4.2. Knowledge driven combined feature selection method 

Feature selection is an important step before building a prediction 
model. To avoid the problem that a single feature selection method 
makes it difficult to comprehensively explore the best set of features for 
NOx concentration, we propose a knowledge driven combined feature 
selection method. We use MIC, CART, RF, and XGBoost algorithms to 
determine the input feature variables in combination with mechanistic 
knowledge. 

Step 1. Based on the reaction mechanism analysis of NOx generation 
in Section 2.2, we initially select 39 feature variables as candidates 
for NOx concentration prediction. 
Step 2. We use MIC, CART, RF, and XGBoost algorithms to calculate 
the correlations between 39 candidate variables and NOx 
concentrations. 
Step 3. For each candidate variable, we calculate the mean value by 
adding the correlation results of the four different algorithms and 
then dividing by the total number of algorithms. We regard the mean 
value as the variables’ importance. All variables are calculated in 
turn and ranked. 
Step 4. Based on the ranking results, variables with importance 
greater than 2% are selected as model inputs. According to the 
mechanistic knowledge of NOx generation, direct correlation fea
tures such as inlet NOx concentration and ammonia spray flow rate 
are retained as default input feature variables. 

We use the uniform input representation module of Informer to 
extract time features [32]. The time features consist of three parts, such 
as a scalar projection, the local time stamp, and the global time stamp. 
We set the global time stamp to be embedded by minutes, days, weeks, 
and months. The time features of the input xt

i can be expressed as: 

xt
i = ut

i + PE(Lx×(t− 1)+i,) +
∑

p

[
SE(Lx×(t− 1)+i)

]

p (16) 

Fig. 4. Overall flow of MEVMD method.  
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where p ∈ {minute, time, week, month}. ut
i denotes a scalar projection. 

SE(pos) is the global time stamp that can be learned. The local time 
position embedding can be expressed as: 

PE(pos,2j) = sin
(

pos
/
(2Lx)

2j/d
)

(17)  

PE(pos,2j+1) = cos
(

pos
/
(2Lx)

2j/d
)

(18)  

where j ∈ {1,…,d /2}. pos denotes location information. PE(pos) denotes 
the local time stamp. d denotes the input feature dimension. 2j + 1 and 
2j denote the odd and even dimensions, respectively. Fig. 5 presents a 
depiction of time feature extraction. 

4.3. Adaptive timing series segmentation 

In Informer, the slicing module of the encoder stack’s input layer will 
slice the historical time series segments. The input time series length is 
set to L. Each slice contains ClnL consecutive measurements [32]. C is a 
constant sampling factor. The sampling factor is set to 12 in this 
research. 

The ProbSparse self-attentive mechanism extracts sparsity relations 
in adaptive temporal slices and also reduces the time and space 
complexity of the method. The output matrix of the ProbSparse self- 
attentive mechanism is: 

A (Q,K,V)=Softmax
(

QK⊤

̅̅̅
d

√

)

V (19)  

where Q, K, and V are the query matrix, key matrix, and value matrix, 
respectively. d is the input dimension. Q ∈ RLQ×d, K ∈ RLK×d, V ∈ RLv×d. 
The sparse metric matrix is defined as: 

M(qi,K)=maxj

{qik⊤
j
̅̅̅
d

√

}

−
1

LK

∑LK

j=1

qik⊤
j
̅̅̅
d

√ (20)  

where LK = LQ = L. Q is the sparse matrix containing only the query 
data under the sparse metric M(Q,K), and zero padding is used for the 
other dot product pairs. 

In this research, based on the data length, we let each historical time 
series slice include 120 feature data points and set 66 of them as prior 
knowledge. The slices are used to predict the next 36 data points until 
the entire sequence is searched. It should be noted that, due to the 
fundamental properties of time series data, no further filling is per
formed when the amount of data to be sliced at the end is insufficient. 
Fig. 6 illustrates the adaptive time series segmentation for predicting 
NOx concentration. 

4.4. Overall prediction model 

We propose a joint knowledge and data driven NOx concentration 
prediction model. For convenience, the proposed model is abbreviated 
as ME-INF in the following sections. Fig. 7 shows the overall framework 
of ME-INF. The overall steps are as follows.  

• Data preparation. Input the original dataset. Perform preprocessing 
operations such as removing outliers, filling in exceptions and empty 
data, and data normalization. Data with a difference between time 
series greater than twice the mean value of the series is defined as 
invalid data points and filled with the mean value of the 25 points 
before and after.  

• Feature variable selection. Candidate feature variables are initially 
chosen based on knowledge of the SCR reaction mechanism. Calcu
late the relevance of the variables and rank them using a knowledge 
driven combined feature selection algorithm. Determine the input 
feature variables for the model.  

• Nonlinear sequence decomposition. The MEVMD method is used to 
decompose the nonlinear and unstable feature series into simple and 
smooth IMF and its residual pairs. The deep time-frequency infor
mation of the variables is extracted through the subsequence. And 

Fig. 5. Time feature extraction.  

Fig. 6. Time series segmentation process.  

Fig. 7. The structure of the ME-INF.  

Z. Wu et al.                                                                                                                                                                                                                                      



Energy 271 (2023) 127044

7

the randomness of the decomposed residuals is filtered according to 
the permutation entropy.  

• Model training. Input the mechanistic feature variables, time feature 
variables, and decomposed subsequences into the model. Initialize 
the model parameters. Set parameters such as learning rate and 
number of iterations to train the prediction model. Select the 
optional hyperparameters in the model using the grid search method.  

• Model testing. Input test dataset. Output the prediction results of 
NOx concentration at the outlet of the SCR system by the ME-INF 
model. 

5. Forecast results and analysis 

5.1. Experimental datasets 

In the research, historical operational data of 1000 MW coal-fired 
generating units at Shanghai Caojing Power Plant are used for NOx 
concentration prediction comparison experiments. In order to verify the 
generalization of the prediction model, we selected a dataset consisting 
of measured data from four consecutive weeks in March, May, August, 
and November. The four datasets cover four seasons: spring, summer, 
autumn, and winter, which fully reflect the operating characteristics of 
the plant in different periods. 

The data sampling interval is 1 min, and each dataset contains 
10,080 sample points. Each sample includes 13-dimensional input fea
tures after filtering. The division ratio of the training set, validation set, 
and test set is 7:1:2. For convenience, we note the four datasets as: D1, 
D2, D3, and D4. Fig. 8 provides the images of the four experimental 
datasets. 

It should be noted that the CEMS performs a 3-min blowback every 4 
h or so. The control logic maintains the NOx concentration measure
ments during the blowdown. NOx concentration data during the blow
down period can have significant distortions. During the blowdown 
period, we mark this part of the data when the blowdown signal is issued 
and do not use it for the data. 

Fig. 8. The images of the experimental datasets.  

Fig. 9. Importance ranking of candidate feature variables.  

Table 3 
Results of correlation analysis of input feature variables.a  

Notation MIC CART RF XGBoost 

UL 0.0740 0.0014 0.0016 0.0397 
Nf 0.0046 0.0357 0.0376 0.0592 
Tin 0.1026 0.0418 0.0276 0.0553 
Oin 0.0227 0.0074 0.0078 0.0587 
Oout 0.0587 0.0048 0.0041 0.0561 
NH3 0.0370 0.0025 0.0029 0.0622 
TC 0.0647 0.0051 0.0055 0.0840 
TA 0.0772 0.0031 0.0033 0.0879 
Fin 0.0601 0.0023 0.0025 0.0298 
Ai 0.1530 0.1166 0.0971 0.0517 
DE 0.1553 0.3963 0.3928 0.0866 
Q – – – – 
Nin – – – –  

a The results of the correlation analysis are normalized using the L1 
parametric. 
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5.2. Assessment indicators 

We choose three commonly used assessment indicators: the mean 
absolute error (MAE), the root mean square error (RMSE) and the mean 
absolute percentage error (MAPE) to reflect the predictive effect of the 
model. The formulas are as follows: 

MAE =
1
N
∑N

t=1
|x(t) − x̃(t)| (21)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

t=1
(x(t) − x̃(t))2

√
√
√
√ (22)  

MAPE =
1
N

∑N

t=1

⃒
⃒
⃒
⃒
x(t) − x̃(t)

x(t)

⃒
⃒
⃒
⃒ (23)  

where x(t) is the real NOx concentration value. ̃x(t) is the forecasted NOx 
concentration value, and N is the total number of data. 

5.3. The combined feature selection 

Fig. 9 ranks the importance of the candidate variables after the 
combined feature selection. Table 3 shows the correlation analysis re

sults of the finalized 13 input features. 
From Table 3, it can be seen that each algorithm has different 

importance ranking results for the candidate variables. For example, the 
importance of total air volume (TA) under MIC and XGBoost algorithms 
is significantly higher than other two algorithms. The importance of net 
flue gas NOx content (Nf) under CART and RF algorithms is also higher 
than the MIC algorithms. The ranking results of the inlet flue gas tem
perature (Tin) were inconsistent for all four algorithms. 

Therefore, single feature selection methods differ greatly in 
explaining the importance of candidate features due to differences in 
principle. The single feature selection method is not sufficient to 
comprehensively reflect the influence of each candidate feature on the 
NOx concentration. The combined feature selection approach can pro
vide a more comprehensive analysis of the correlation between the 
feature variables and predicted data.12 

5.4. Modal decomposition 

We use modal energy difference and sample entropy to adaptively 
determine the optimal values of decomposition layers and penalty fac
tors for VMD. Table 4 shows the optimal number of decomposition 
layers and penalty factors for each dataset. 

After that, we decompose the nonlinear time series features, such as 
ammonia spray flow rate, using the MEVMD method. The method can 
extract the deep local time-frequency information of the features, thus 
reducing the difficulty of fitting the nonlinear relationships. 

Table 4 
Optimal number of decomposition layers and penalty factors.  

Dataset Decomposition number Penalty factor 

D1 8 2500 
D2 9 3100 
D3 9 3900 
D4 10 4500  

Fig. 10. Decomposition results for ammonia spray flow rate feature of D3 and D4.  

Table 5 
The central frequency and permutation entropy of each mode.a  

Mode D3 D4 

uk ep uk ep 

Mode1 0.84 1.71 0.52 1.48 
Mode2 5.00 1.81 5.22 1.82 
Mode3 17.40 2.04 16.14 2.01 
Mode4 37.10 2.22 30.06 2.14 
Mode5 60.96 2.31 53.46 2.26 
Mode6 93.00 2.36 85.42 2.32 
Mode7 149.62 2.37 143.56 2.36 
Mode8 211.22 2.39 192.52 2.37 
Mode9 – – 239.76 2.36 
Residue 276.88 3.12 306.39 2.98  

a The results of D1 and D2 are given in the supplementary materials 
(Table 14). 

1 For clarity of presentation, we list only 18 of all the feature variables.  
2 To shorten the text, the results of the decomposition of D1 and D2 are 

shown in the supplemental materials (Fig. 14). 
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The decomposition results of ammonia spray flow rates for D3 and 
D4 are taken as examples3 (Fig. 10). The central frequency uk and the 
permutation entropy ep of each mode are shown in Table 5. It can be 
concluded that the central frequency of each mode is basically propor
tional to the permutation entropy. At the same time, the residual pairs 
have relatively large values of the permutation entropy. Therefore, the 
permutation entropy [38] is used as the randomness measure. Set the 
threshold h to filter the invalid residuals. In this paper, the threshold 
value h is set to 3.0. 

To verify the effectiveness of the method improvement, we used 
VMD [26], EMD [41], CEEMD [13], and HVMD [42] for the recon
struction comparison experiments after modal decomposition. 

The correlation coefficient Coef is usually used to evaluate the match 
between the reconstructed and original signal. The more |Coef | ap
proaches to 1, the stronger the correlation. The calculation formula is: 

Coef =

∑N

i=1
x(t)y(t) −

[
∑N

i=1
x(t)

∑N

i=1
y(t)
]/

N
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
∑N

i=1
x2(t) −

[(
∑N

i=1
x(t)
)2
]/

N

)(
∑N

i=1
y2(t) −

(
∑N

i=1
y(t)
)2
/

N

)√
√
√
√

(24)  

where x(t) is the reconstructed signal. y(t) is the original signal. N is the 
signal length. 

From the results in Table 6, the reconstructed signal processed by the 

MEVMD method outperforms other comparison methods in terms of 
correlation coefficient and RMSE of the original signal. The effectiveness 
of the MEVMD improvement is proved. 

Meanwhile, we compare the prediction results of INFORMER with 
ARIMA and LSTM for each mode. The results are summarized in Table 7. 
It can be seen that the prediction accuracy of LSTM is better than ARIMA 
for low-frequency and high-frequency modes overall. INFORMER shows 
comparable performance to LSTM on low-frequency modes. And the 

Table 6 
Reconstructed signal performance comparison.a  

Model D3 D4 

Coef RMSE Coef RMSE 

EMD 0.9873 4.0195 0.6536 6.5386 
VMD 0.9903 1.1744 0.9805 1.6477 
CEEMD 0.9892 2.0193 0.8209 1.9812 
HVMD 0.9936 1.0372 0.9863 1.3219 
MEVMD 0.9989 0.4125 0.9988 0.4008  

a The results of D1 and D2 are given in the supplementary materials 
(Table 15). 

Table 7 
Prediction results for each mode of the D3 dataset.a  

Mode ARIAM LSTM INFORMER 

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

Mode1 1.51 1.73 1.19 0.15 0.22 1.37 0.13 0.17 1.70 
Mode2 1.49 1.86 8.69 0.12 0.16 2.68 0.25 0.32 4.46 
Mode3 1.07 1.26 9.98 0.24 0.29 5.50 0.58 0.74 2.29 
Mode4 0.34 0.48 14.13 0.28 0.36 10.88 0.79 1.00 6.94 
Mode5 0.92 1.11 21.52 0.37 0.44 12.34 0.32 0.36 11.36 
Mode6 1.69 2.03 34.75 0.51 0.57 14.73 0.45 0.52 12.62 
Mode7 1.71 2.12 39.57 0.55 0.59 24.07 0.60 0.76 21.33 
Mode8 1.83 2.27 40.41 0.88 0.98 33.37 0.78 0.97 31.20 
Residue 2.30 2.97 64.12 1.03 1.24 50.71 0.94 1.21 41.21  

a The results of D1, D2, and D4 are presented in the supplementary materials (Tables 11–13). 

Table 8 
Comparison of NOx concentration prediction results.a,b.  

Model D1 D2 D3 D4 

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

GRU 2.13 2.65 5.98 2.33 3.11 5.93 3.20 3.88 9.21 3.50 4.32 9.14 
BP 3.08 3.57 8.46 2.56 3.38 6.75 3.43 4.58 9.26 5.81 6.48 15.30 
AE-ELM 1.42 1.77 3.94 1.61 1.92 4.13 2.57 3.44 7.10 2.97 3.49 7.75 
CA-LSTM 1.23 1.72 3.37 1.84 2.91 4.68 2.21 4.03 5.99 3.45 4.20 8.98 
Informery 1.24 1.58 3.46 1.64 2.01 4.19 2.76 3.69 7.40 3.15 5.17 8.18 
Informer 1.15 1.46 3.21 1.47 1.80 3.93 1.83 2.27 4.98 1.60 1.96 4.18 
ME-INFy 1.11 1.40 3.08 1.50 1.81 3.96 2.38 2.99 6.44 2.23 2.63 6.04 
ME-INF 0.94 1.17 2.60 1.08 1.33 2.83 1.07 1.41 2.92 1.27 1.55 3.39  

a y indicates that the model has not undergone knowledge driven combined feature selection. 
b The experimental results are taken as the mean of the best 5 out of 20 experiments. 

Table 9 
Model parameter setting.  

Parameter Numerical setting 

Adaptive sequence length 120 
Number of encoder layers 2 
Number of decoder layers 2 
Muti-head number 8 
Prob attention factor 5 
Model dimension 64 
FCN dimension 128 
Train epochs 12 
Batch size 32 
Initial learning rate 0.0001 
Dropout 0.05 
Loss function MSE  

3 y indicates that the model has not undergone knowledge driven combina
tion feature selection. 
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prediction performance is better in high frequency and residual modes. 
Therefore, INFORMER is expected to show its excellent performance in 
the prediction of combinatorial models based on signal decomposition. 

5.5. Prediction comparison experiment 

We conduct experiments comparing ME-INF with a variety of 
methods. The comparison methods include two single models, GRU [12] 
and BP, and two recently proposed hybrid models, CA-LSTM4 [13] and 
AE-ELM [14]. D1, D2, D3 and D4 are chosen as the experimental 
datasets. 

The parameter settings in the ME-INF model are given in Table 9. 
Feature parameters are input by the results of mechanistic knowledge 
and combined feature selection. Time features are extracted by minutes, 
days, weeks, and months. The parameter settings of the comparison 

methods were kept the same in the original research. Both training and 
testing procedures are implemented on python 3.9 platform. 

Table 8 summarizes the prediction results of each model. From the 
data, it can be obtained that: 1) The hybrid model outperforms the single 
model in terms of prediction performance. This suggests that the single 
model is difficult to handle thermal process data with strong coupling, 
nonlinearity, and perturbation. 2) The prediction performance of the 
ME-INF is better compared to the Informer. This is because the MEVMD 
method is used to deal with the feature variables with nonlinearity and 
non-smoothness, which can enhance the model’s performance in 
resolving time-frequency information. 3) The prediction performance of 
the data driven models without incorporating knowledge driven com
bined feature selection (Informery and ME-INF†) varies widely across 
datasets. However, the prediction performance of the ME-INF model is 
generally consistent across the four datasets. It also outperforms the 
other comparison models in terms of prediction accuracy. The reason is 
the introduction of mechanistic knowledge provides an important global 
feature basis for data driven modeling. It compensates for the drawback 

Fig. 11. Absolute error distribution of different models.  

Table 10 
The quantitative improvement effect of model prediction performance.  

Model D1 D2 D3 D4 

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

Single Model 
GRU − 55.87 − 55.85 − 56.52 − 53.65 − 57.23 − 52.28 − 66.56 − 63.66 − 68.30 − 63.71 − 64.12 − 62.91 
BP − 69.48 − 67.23 − 69.27 − 57.81 − 60.65 − 58.07 − 68.80 − 69.21 − 68.47 − 78.14 − 76.08 − 77.84 
Informery − 24.19 − 25.95 − 24.86 − 34.15 − 33.83 − 32.46 − 61.23 − 61.79 − 60.54 − 59.68 − 70.02 − 58.56 
Informer − 18.26 − 19.86 − 19.00 − 26.53 − 26.11 − 27.99 − 41.53 − 37.89 − 41.37 − 20.63 − 20.92 − 18.90 
Hybrid Model 
AE-ELM − 33.80 − 33.90 − 34.01 − 32.92 − 30.73 − 31.48 − 58.37 − 59.01 − 58.87 − 57.24 − 55.59 − 56.26 
CA-LSTM − 23.58 − 31.98 − 22.85 − 41.30 − 54.30 − 39.53 − 51.58 − 65.01 − 51.25 − 63.19 − 63.10 − 62.25 
ME-INFy − 15.32 − 16.43 − 15.58 − 28.00 − 26.52 − 28.54 − 55.04 − 52.84 − 54.66 − 43.05 − 41.06 − 43.87  

4 We abbreviate CEEMDAN-AM-LSTM as CA-LSTM in Ref. [13]. 
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that the data driven model cannot comprehensively characterize the 
research object. The joint knowledge and data driven model greatly 
improves accuracy and generalization ability of NOx concentration 
prediction. 

Fig. 11 presents the absolute error distributions of the different 
models. It can be seen that the absolute error distribution of the ME-INF 
model prediction results is in the smallest interval [0,4] compared to the 
comparison method. Meanwhile, the vast majority of the error values 
are in the interval [0,1], and there is no distribution in the high error 
interval. This demonstrates the higher prediction accuracy of the ME- 
INF model than other comparison methods. 

To more clearly illustrate the prediction performance improvement 
effect of the proposed model, we introduced a quantitative indicator 
proposed in Ref. [43]. 

Im =
EIp − EIo

EIo
(25)  

where Im denotes the effect of model prediction performance improve
ment. EIp is the value taken for the assessment indicator of ME-INF. EIo is 
the value taken by the comparison model under the same assessment 
indicator. 

Table 10 provides the prediction performance improvement effect of 
the ME-INF model. It can be found that each assessment indicator of the 
ME-INF is greatly reduced. Taking the D3 dataset as an example, 
compared with GRU, BP, AE-ELM, CA-LSTM and Informer, RMSE is 
reduced by 63.66%, 69.21%, 59.01%, 65.01% and 61.79%, and MAPE is 
reduced by 68.30%, 68.47%, 58.87%, 51.25% and 60.54%, respectively. 

Therefore, the proposed model improves the prediction accuracy of NOx 
concentration significantly. 

5.6. The effectiveness of the knowledge driven combined feature selection 
method 

Fig. 12 presents the box line plots of the absolute errors between 
predicted and true values for ME-INF, ME-INFy, and other comparison 
models.5 The red line indicates the median error of the models. The 
curves show the distribution of the errors. The greater the concentration 
of the absolute error distribution, the smaller the median error, indi
cating greater prediction accuracy. According to Fig. 12, when the 
knowledge driven combined feature selection method is not embedded, 
the method has a wide range of error variation. The ME-INF model re
duces the median error, makes the error distribution more concentrated, 
and improves prediction accuracy. Meanwhile, ME-INF performs 
essentially the same across four datasets with minimal error compared 
with other models. The effectiveness of the proposed knowledge driven 
combined feature selection method is demonstrated. 

5.7. The effectiveness of the MEVMD method 

The prediction results of the model with nonlinear decomposition 

Fig. 12. The box line plot of model prediction errors.  

5 y indicates that the method has not undergone knowledge driven combined 
feature selection. 
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using MEVMD (ME-INF) and without decomposition (INF) are compared 
in Fig. 13. The black line segment represents the ideal straight line 
where the predicted and true values are equal. The higher the prediction 
accuracy, the closer the circular blob is to the line distribution. From 
Fig. 13, there is a significant difference between the forecasted and real 
values of the model without nonlinear feature decomposition. The pre
diction accuracy has improved since the introduction of the MEVMD 
method. This is because the MEVMD method eliminates the non- 
smoothness of signals such as ammonia spray flow rate and enhances 
the model’s ability to extract information from nonlinear features. It is 
advantageous to fit the NOx emission concentration and the feature 
variables’ deep time-frequency connection.6 

6. Discussion 

Through a series of experimental comparisons and analyses, we can 
obtain the following conclusions.  

• The ME-INF solves the problem of data driven model being unable to 
describe the global characteristics of the research object, as well as 
improving prediction accuracy and generalization performance. 
Compared with GRU, BP, Informer, AE-ELM, and CA-LSTM, the 
prediction performance of ME-INF is basically consistent across the 
four datasets (Table 8). The prediction results’ absolute errors were 
distributed within the minimum interval [0,4] (Fig. 11). The 

prediction accuracy under several assessment indicators was higher 
than that of other comparison methods (Table 10).  

• Different feature selection methods differ significantly in their 
principle of resolving variable correlation. In comparison to the 
single method, the knowledge driven combined feature selection 
method completely resolves the correlation between candidate var
iables and predicted data (Table 3, Fig. 9). The introduction of this 
method reduces the median error of ME-INF and concentrates the 
error distribution. The generalization performance of ME-INF out
performs many comparable models (Fig. 12).  

• The modal energy difference and sample entropy can determine the 
optimal number of decomposition layers and penalty factor of VMD. 
Compared with VMD, EMD, CEEMD, and HVMD, the reconstructed 
signal following MEVMD has a stronger correlation with the original 
signal (Table 6, 15). MEVMD effectively eliminates the effects of 
nonlinear features such as ammonia injection flow. The introduction 
of this method improves the prediction accuracy of ME-INF (Fig. 13). 
The permutation entropy filters the random residuals and avoids the 
negative impact of noise (Table 5, 14).  

• Informer performs well in hybrid prediction models involving signal 
decomposition and deep learning. In high-frequency and residual 
modes, informer outperforms ARIMA and LSTM, and in low- 
frequency modes, it outperforms ARIMA and is comparable to 
LSTM (Table 7, 12-14). 

The limitations of ME-INF are as follows.  

• ME-INF does not take into account feature factors such as different 
operating conditions and coal quality variations. These factors may 

Fig. 13. Comparison of NOx concentration prediction results.  

6 We resample the data points in units of 10 to make a clearer presentation of 
the sample points in Fig. 12. 
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be included in future research to check whether the prediction will 
be improved.  

• ME-INF is unable to achieve satisfactory NOx emission concentration 
prediction results on distorted data of CEMS blowdown events. We 
may try to develop other algorithms for predicting distorted data in 
future research. 

7. Conclusions 

Establishing an accurate and stable NOx emission concentration 
prediction model is the foundation for realizing denitrification and 
environmental protection in coal-fired power plants. A hybrid predic
tion model based on joint knowledge and data driven is proposed for the 
NOx emission concentration prediction. First, the knowledge driven 
combined feature selection is utilized to provide a global feature base for 
data driven modeling. Second, the VMD is improved by modal energy 
difference and sample entropy to enhance the model’s capacity to 
extract nonlinear information. Finally, informer and adaptive segmen
tation are employed to forecast NOx emission concentrations. In com
parison to other methods, the experimental results demonstrate the 
model’s strong generalization and prediction accuracy. 

The concept of joint knowledge and data driven modeling offers a 
novel solution for complex time-series prediction tasks. However, its 
application to NOx concentration prediction is still in the exploratory 
stage. The goal of future research is to expand the model’s dynamic 
prediction capabilities by including additional feature parameters, such 
as operating conditions, coal quality changes, etc. 
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