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H I G H L I G H T S

• A multi-objective optimization model for maintenance decision of plateau wind turbine.
• The time-varying properties of downtime, distribution costs are modeled.
• The constant cost assumption is changed by calculating the time for device degradation.
• The run time of each degraded state of the wind turbine is calculated.
• The maintenance intensity and frequency are determined according to the maintenance target.
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A B S T R A C T

Plateau wind power has great potential in reducing carbon emissions; however, compared with other renewable 
energy, its economics still need to be improved. As an effective approach to enhance its economic feasibility, 
maintenance strategy optimization aims to reduce maintenance costs per kilowatt-hour and extend equipment 
lifespan. This paper proposes a multi-objective optimization model for the maintenance decision-making of 
plateau wind turbines that considers the degradation state. It incorporates: i) modeling the maintenance process 
of plateau wind turbines by combining time-based and state-based methods; ii) considering the time-varying 
maintenance costs in complex environments; and iii) employing a multi-objective optimization method to find 
the optimal strategy that meets maintenance requirements. The complexity considered in the model mainly 
includes the randomness of the operating duration for each equipment state, the temporal variability of 
equipment distribution and installation costs, and the uncertainty in maintenance effectiveness. The proposed 
optimization method is applied to a wind farm in the Yunnan-Guizhou Plateau, China.

The results indicate that traditional maintenance strategies underestimate maintenance costs and equipment 
lifespan losses. Compared with conventional maintenance strategies, this method can reduce equipment main-
tenance costs by 24.07 % and extend its operating life by 11.58 %. Additionally, this paper has conducted a series 
of parametric analyses to enhance the generalization performance of the model. The proposed method effectively 
addresses the economic issues of plateau wind turbine maintenance and provides a valuable decision-making tool 
for guiding the long-term maintenance of wind turbines in complex environments.

1. Introduction

In recent years, the global decarbonization trend has led to a rapid 
expansion of the share of renewable energy [1]. As nearly all suitable 
land for wind energy development in flatlands has been allocated, the 
focus of wind power development is shifting towards more complex 
environments such as oceans and plateaus [2–4]. Except for the 

Antarctic continent, plateaus account for 30 % of the total land area [5]. 
The plateau region has a fragile environment and outdated power fa-
cilities, and residents rely on burning biomass for energy for a long time, 
posing significant challenges to the local ecosystem [6]. However, the 
plateau contains abundant wind resources [7], offering hope to over-
come this tremendous challenge and improve the living conditions of 
residents.

The availability of flatland wind power has reached a satisfactory 
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level (about 95 % to 97 %) [8]. If wind turbines (WTs) of the same type 
are installed on the plateau, their availability will significantly decrease, 
leading to a reduction in lifespan and an increase in maintenance costs. 
India, Denmark, China, and other countries have greatly tried to practice 
plateau wind energy development [9–11]. However, due to environ-
mental complexities such as wind shear [12], turbulence [13], low 
temperature [14], the challenges of developing wind power on plateaus 
are immense. Operating and managing WTs is complex, and their life-
span will be significantly affected [15]. The cost of plateau wind power 
is mainly composed of construction costs and operation and mainte-
nance (O&M) costs [16]. For wind farms that have been put into oper-
ation, improving the efficiency of operation and maintenance, and 
extending the service life of equipment are very important for enhancing 
their economic performance.

High operation and maintenance costs, coupled with limited service 
life of equipment, are among the main constraints facing the develop-
ment of wind energy on the plateau [17].The optimization of mainte-
nance strategies [18] aims to provide maintenance decision-making 
basis for wind farm operators to enhance the economic operation ca-
pacity of WTs [19].Maintenance strategy optimization aims to provide 
maintenance decisions for wind farm operators to improve the economic 
operation capability of WTs. A wind farm with a capacity of 100 MW has 
a fixed asset investment of 150 million US dollars [20], and the annual 
depreciation cost is very high. Optimizing the maintenance strategy 
could lead to cost savings of 30–40 %. Compared with a single goal 
[21–23], decision-makers often focus on multi-dimensional mainte-
nance effects, such as minimizing maintenance costs [24] and maxi-
mizing economic benefits [25]. Due to the environmental complexity of 
the plateau environment, it is often difficult to find an optimal multi- 
objective maintenance strategy. For example, low temperatures lead 
to icing of roads and blades due to significant seasonal temperature 
differences in the plateau [26], which incurs high component trans-
portation and installation costs [27]. In contrast, such time-varying costs 
are typically not a concern in plain regions.

Existing research mainly focuses on state-based [28] and time-based 
[29] maintenance decisions. The time-based strategy assumes that the 
equipment’s lifespan follows distributions such as the Weibull or 
Gamma distribution, enabling the scheduling of periodic maintenance to 
improve equipment reliability [30]. Based on the “constant cost 
assumption,” time-based maintenance strategies have yielded many 
useful conclusions [31]. However, as the environment faced by WTs 
becomes increasingly harsh, the applicability of this assumption has 
significantly decreased. Due to the progress of sensor technology and 
artificial intelligence technology, the state of WT components can be 

monitored quickly [32]. State-based strategies plan the resources 
required for equipment maintenance in advance according to real-time 
status [33], but this approach gives less consideration to time informa-
tion. In the complex plateau environment, WTs require not only periodic 
maintenance schedules but also plans for the allocation of equipment 
when immediate failures occur [34]. This necessitates that operators 
conduct a comprehensive analysis that considers the degradation char-
acteristics of the equipment and its status information. Addressing the 
issue of not considering time information in state-based methods during 
the process of breaking the “constant cost assumption” is crucial for 
plateau wind power maintenance modeling. Therefore, the maintenance 
strategy considering time and state information can more accurately 
describe the situation in the equipment O&M process, and it is necessary 
to consider the time-varying maintenance cost caused by a complex 
environment.

This paper comprehensively employs state-based and time-based 
periodic maintenance strategies to address the production losses and 
lifespan reduction of WTs caused by the complex environment of pla-
teaus. It utilizes stochastic processes to describe equipment degradation 
characteristics and establishes a time-varying cost maintenance decision 
model. By optimizing resource ratios and maintenance frequencies 
during the maintenance process, the aim is to lower the maintenance 
cost and longer the operational lifespan.

In summary, the contributions of the paper are:

1. In response to the complexity of the plateau environment, this paper 
employs multiple interrelated objectives to represent the economic 
aspects of operation and maintenance for WTs.

2. Given the single angle of traditional maintenance modeling, this 
paper combines the state-based and time-based maintenance models 
to describe plateau WTs’ degradation and maintenance process more 
accurately.

3. This paper models the time that equipment degradation states have 
experienced as a stochastic process, providing data for the time- 
varying nature of costs, thereby solving the problem that the “con-
stant cost assumption” is not applicable to the study of the economic 
feasibility of wind power in complex environments.

The remainder of this paper is organized as follows: Section 2 iden-
tifies the contributions of the paper through a literature review and 
proposes the research question. Section 3 presents the methodology used 
to address the research question. Section 4 discusses the relevant pa-
rameters of the maintenance optimization decision model. Section 5 
includes the analysis and discussion of results, using a wind farm in the 

Nomenclature

O&M Operation and Maintenance
PSO Particle Swarm Optimization
NSGA-II Non-dominated Sorting Genetic Algorithm II
RUL Remaining Useful Life
CM Corrective Maintenance
PM Preventive Maintenance
FFMS Fixed Frequency Maintenance Strategy
FRRS Fixed Resource Ratio Strategy
MOOS Multi-objective Optimization Strategy
HFMS High Frequency Maintenance Strategy
LFMS Low Frequency Maintenance Strategy

Symbols
θ1 Distribution to installation cost rate
φ1 Corrective maintenance cost penalty factor
θ2 Downtime cost rate

ck Maintenance resource ratio
η Maintenance effect influence factor
εk Maintenance effect
vk Rate of degradation
cdf1 Cumulative distribution function of Gamma process
ρ Preventive maintenance cost coefficient
Nk The number of times thekth state is maintained
γk Lifetime decay rate
fk The maintenance frequency of thekth state (times/year)
cdf2 Cumulative distribution function of Exponential 

distribution
tk The running time of thekth state (month)
CC Average transportation and installation costs ($)
CS Average downtime cost ($)
CI Regular maintenance cost ($)
CE Equipment acquisition cost ($)
TS Down time (month)
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Yunnan-Guizhou Plateau of China for case analysis. Finally, Section 6 
provides a summary and conclusion of this paper.

2. Literature review

2.1. Maintenance cost of plateau WTs

Almost all suitable land for wind energy development in flatlands has 
been incorporated into planning in recent years. In contrast, wind farms, 
as an infrastructure providing clean energy, must be expanded world-
wide [35,36]. Plateaus account for 40 % of the world’s land area, and 
the plateau wind farm has begun to provide electricity to the Qinghai- 
Tibet Plateau. Wind farms in the Pamir Plateau [37], Yunnan-Guizhou 
Plateau [38], and Pyrenees Mountains [39] have been operating for 
decades. In plateau, environmental factors such as low wind density, 
wind shear, and extreme temperatures [15] affect the O&M of WT units, 
resulting in higher O&M costs compared to flatlands. In terms of power 
supply, plateau WT have also encountered issues such as high downtime 
rates, unstable power supply, and low economic benefits. These prob-
lems have hindered the development of wind energy in plateau.

Due to the significant temperature difference between winter and 
summer, as well as the frequent freezing of roads and WT blades in 
winter, the maintenance cost of plateau wind power fluctuates consid-
erably throughout the year [40]. Gyatso et al. [5] studied the operation 
performance of WTs on the Qinghai-Tibet Plateau but only considered 
maintenance decisions from the perspective of equipment selection. The 
load of wind power equipment changes with the wind conditions and 
market demand. Due to the spatial heterogeneity of wind power distri-
bution [41], the load of the same type of WT in a wind farm may vary 
significantly throughout a year. However, most maintenance studies of 
WTs at sea or on the flatland rarely consider the characteristics of the 
environment and the equipment itself [25,42,43]. This paper integrates 
degradation states, runtime, and environmental factors such as freezing 
and wind speed fluctuations to establish a maintenance decision model 
for plateau wind power generation equipment. This aims to address the 
issue of current maintenance practices for plateau WTs neglecting 
environmental complexity.

2.2. Maintenance strategy

When wind power equipment begins to degrade, the decision 
regarding maintenance resources and maintenance frequency required 
can effectively reduce the cost of power generation [44]. In the early 
stage of equipment degradation, abandoning or directly replacing it will 
lead to higher costs. On-site maintenance can only formulate optimal 
maintenance strategies based on the degradation condition of each 
equipment, thereby reducing maintenance costs, and extending the 
equipment’s lifespans. Many studies regard maintenance as a method 
that can improve the degree of degradation. Still, the evolution of the 
degradation state of most mechanical equipment is irreversible, such as 
cracks and defects will not heal automatically [45], such as WT gears 
[46], bearings [47], etc., so the operation life can only be prolonged by 
slowing down the degradation speed.

Time-based maintenance typically utilizes stochastic processes to 
describe the age of equipment [31], and maintenance is conducted 
based on the age and operational cycle of the equipment. Time-based 
maintenance strategies typically include the “constant cost assump-
tion”, which assumes that maintenance costs are fixed and unchanging, 
or that maintenance can restore the equipment to as good as new. Under 
the“ constant cost assumption” [48], time-based maintenance decision 
optimization methods have yielded many interesting conclusions, such 
as the existence of an optimal maintenance interval within a finite ho-
rizon that minimizes the maintenance cost of the equipment [49]. 
However, changes in the environment have assumed of the “constant 
cost assumption” no longer applicable to real-world situations. For 
example, the change of seasons leads to different maintenance costs each 

month, and market prices cause fluctuations in the prices of WT spare 
parts, etc. Within a plateau wind farm, even if two WTs are of the same 
age, their degradation levels may differ due to different loads and 
operating conditions [50]. Regardless of the equipment’s age, its 
degradation state is intuitive information that reflects the equipment’s 
current condition, such as a high risk of teeth breakage caused by the 
fracture of the gear root. State-based maintenance [28] directly uses 
condition information to make maintenance decisions on equipment. 
Equipment degradation depends on the amount of maintenance re-
sources invested [51], and investing appropriate maintenance resources 
in each state is beneficial to prolong the lifespan of equipment [52]. 
State-based maintenance typically does not consider maintenance cycles 
and performs maintenance on the equipment immediately when a fail-
ure occurs. However, for heavy equipment like WT units, a large amount 
of resource allocation and maintenance personnel preparation is 
required before scheduled maintenance can be carried out [22,53]. 
Maintenance that considers both time cycles and status information can 
accommodate the development of long-term maintenance plans for 
wind farms and determine response measures for immediate failures.

During the operation of plateau WTs, the inevitable cost incurred by 
equipment degradation failure can be mitigated by reasonable mainte-
nance measures, extending the equipment’s lifespan. However, relying 
solely on state-based or time-based maintenance strategies is no longer 
sufficient to meet the maintenance needs of wind power in complex 
environments. With the rapid development of artificial intelligence and 
detection technology [54], sensor signals from industrial sites can be 
transmitted promptly and rapidly. Many studies have achieved online 
real-time equipment condition diagnosis with artificial intelligence al-
gorithms. This paper assumes that the operating time of each state fol-
lows a stochastic process and combines state-based and time-based 
strategies to study wind power maintenance issues in complex plateau 
environments.

2.3. Time-varying costs

In the research on equipment maintenance modeling, Barlow et al. 
[31] introduced an age replacement strategy, which means that PM is 
carried out if the equipment reaches a critical age. This result proved to 
be the best choice under constant cost rate and thus extended to many 
studies such as integrated maintenance [55], production [56], and 
scheduling [57]. Most later studies [58,59] focus on extending the 
applicable conditions and less on the variable cost rate problem. For 
example, Papadopoulos et al. [60], based on environmental changes and 
changes in maintenance time, windows can perform operations when 
maintenance opportunities arrive to reduce production losses caused by 
equipment downtime.

With the change in equipment maintenance conditions, the conclu-
sion under constant cost rate no longer applies to the maintenance of WT 
under variable cost rates in complex environments. Schouten et al. [40] 
considered the time-varying maintenance cost of a single WT. Still, they 
ignored the real-time state of the equipment and only described the WT 
degradation as a component following a stochastic process. In the 
operating environment of WTs, wind speed and direction change very 
fast, and the operation state of each WT is complex and changeable due 
to the equipment’s operation temperature, humidity, and power gen-
eration plan [61]. Compared with the constant cost rate, the time- 
varying cost [62] can more accurately describe the changes in the 
plateau wind power O&M environment.

3. System description and maintenance strategy

3.1. General assumptions

To make the assumptions more consistent with the operating char-
acteristics of the plateau WT and, at the same time, reduce the model 
complexity, we consider a system that can be simplified by a single 

H. Tang et al.                                                                                                                                                                                                                                    Applied Energy 377 (2025) 124464 

3 



component, such as considering only the most essential elements. 
Assuming that the system’s state at time t can be represented by an 
observable random variableXt, for example, the evolution of a gear 
crack, the process(Xt)t≥0is an increasing stochastic process.

In addition, some assumptions are as follows:

(1) At the initial time, the device’s state isx0. The device is in a brand- 
new state, and each CM replaces the previous component with an 
intact one.

(2) The state detection is perfect and does not occupy the running 
time; that is, it can accurately and quickly detect the working 
state of the equipment. The degradation state is self-alarming; 
that is, the sensor detects the degradation state of the equip-
ment all the time.

(3) The failure of equipment can have significant consequences, and 
CM should be performed immediately upon occurrence of such 
failure.

3.2. Degradation modeling

During their operation, plateau WT units are often affected by 
freezing, squalls, and hail. These influencing factors are not continu-
ously applied to the WTs but gradually cause damage to them over time.

The gamma process, which has been widely used to describe the 
degradation process of various industrial systems, is strictly mono-
tonically increasing, which is in line with the degradation behavior of 
most devices. In addition, the gamma process [63] is the accumulation 
of countless small shocks, that is, discontinuity, and this characteristic is 
well in line with the degradation process of the mechanical structure of 
the plateau WT [64]. We assume that the degraded state between thekth 
state and thek+ 1th state follows a gamma stochastic process(Xt)t≥0, 
which has the following characteristics:

(1). X0 = 0,(X̃t)t≥0is monotonically increasing.
(2). The independent incrementX̃k+1 − X̃kof the degradation state 

between thekth state and thek+ 1th state follows a gamma probability 
density function with shape parameterαkand scale parameterβ, as shown 
in Eq. (1). 

fαk ,β(x) =
1

Γ(αk)
βαk xαk − 1exp( − βx)I{x≥0} (1) 

here,Γ(αk) =
∫∞

0 ωαk − 1exp( − ω)dω,αk, β > 0,I{x≥0} is an indicative vari-
able,αk = νk/β, andvkis the rate of degradation between statekand 
statek+ 1at statexk. The degree of PM can determinevk, that is, there is a 
functional relationship between the degree of PM and the rate of 
degradation. This paper argues that the degree of PM can change the 
average degradation rate; that is, PM with more resources can improve 
the average degradation degree, and cheap PM will even increase the 
degradation rate of equipment.

3.3. Maintenance strategy

Mechanical equipment will experience a variety of defect states 
during its life cycle. If the defect is repaired immediately, it will incur 
high costs. Advanced fault diagnosis methods often classify equipment 
degradation states into limited types [65], and corresponding mainte-
nance decisions to limited kinds of degradation states can reduce the 
difficulty of maintenance decisions [66]. Fig. 1 illustrates the degrada-
tion paths of a WT gearbox.

The corresponding maintenance strategy is as follows:
In this study, finite degradation states are considered, and the 

degradation states are defined according to the actual industrial prob-
lems. Let the degradation state xk ∈ {x1, x2, x3,⋯, xM}, equipment 
degradation develops in subscript order, such as gear crack change.

1. The climatic conditions and local load on the plateau are analyzed. It 
is found that when the wind speed is too high or the demand is low, 
the WTs cease operation.

2. Whenxk < x1, the equipment is in a healthy state and does not need 
too much maintenance. It only needs to be inspected according to the 
daily work content.

3. Whenxm ≤ xk ≤ xn,m < n,m ≥ 1, the equipment is in a defective 
state, and PM with frequencyfkand maintenance intensityckis 
required according to the corresponding degradation state. The 
routine inspection currently is included in the PM process.

4. Whenxk ≥ xN, the equipment is in a failure state, and CM needs to be 
performed immediately, otherwise the failure will cause permanent 
damage to the whole system.

Fig. 2 is the decision-making flowchart for this paper, which is 
mainly divided into two parts based on the results of the status check. If 
the equipment is in a healthy state, perform routine maintenance. If the 
equipment has entered a degradation phase, use the methods of this 
paper to make decisions on the resources and maintenance frequency 
required for the maintenance process. Then execute this maintenance 
strategy until the equipment fails.

4. Model formulation

This section describes the formulation of the proposed model, which 
was developed from the research of Phuc Do et al. [67] and Schouten 
et al. [40]. The purpose of the maintenance model is to minimize the 
maintenance cost per kWh and maximize the operation time of the 
equipment. The decision variables are the maintenance frequency and 
resource input ratio at each stage of the WT maintenance. The mainte-
nance cost depends on the stochastic preventive and time-varying CM 
costs. CM costs, including maintenance resource deployment, lifting 
equipment, and labor costs; PM costs, including replacement parts, labor 
costs, downtime costs, and downtime costs refer to the loss of revenue 
caused by WT replacement equipment.

4.1. Time-varying cost rate

As the road of the plateau wind farm is often relatively poor, it is 
prone to freezing in winter [68], which is an enormous challenge for the 
transportation of maintenance resources and causes varying resource 
distribution costs over time. In addition, the downtime cost needs to 
consider the plateau climate change, which has similarities with the 
resource distribution cost, and the downtime cost rate can be obtained 
according to the seasonal patterns of the wind field.

This paper determines the CM cost rate function and the downtime 
cost rate function. According to the relationship between the risk of 
extreme weather and time, considering the relatively high cost caused 

Fig. 1. Case of gearbox degradation path.
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by distribution and installation in the CM process, the cost rate function 
of distribution and installation is given by Eq. (2). 

φ1, t ∈ PeriodofFreezing
1, other (2) 

The CM cost multiplier during the freezing period is set to φ1, φ1 > 1, 
while the resource distribution cost rate is 1 at other times. Winter is a 
high-incidence season for road icing, and the cost of maintaining 
resource distribution and installation is very high. As a penalty, we set a 
very high delivery and installation cost rate during the freezing period to 
avoid major component replacements during this time.

The characteristics of wind speed change in plateau areas may differ 
from those in flatlands. Firstly, the wind speed in the plateau area is 
generally lower compared to coastal regions. Secondly, the peak-to- 
valley variation trend of wind speed also differs from that in flatlands. 
The peak-to-valley variation of wind speed changes in the plateau area is 
affected by terrain, altitude, longitude, and latitude. Accurate fitting of 
the variation patterns can be achieved by utilizing local wind mea-
surement station data.

According to the study of Schouten et al. [40], the wind change can 
generally be fitted as the following function, and the downtime cost rate 
can be obtained by simply fitting the parameters based on field data.

The change rate of downtime cost is given by Eq. (3), 

θ2 = Asin(ωt+φ2)+B (3) 

wheretis the downtime, A, B, andφ2are used as correction parameters, 
which are determined by the wind speed variation rule at the study site. 
According to the equipment degradation cycle length and inspection 
law, using a month as the maintenance time unit is more appropriate.

4.2. Preventive maintenance cost

When the equipment is in a particular state, the decision variables 
are the ratio of resources invested in each maintenance and the main-
tenance frequency of this state. The ratio of resources invested in each 
maintenance determines the degradation speed, where a higher resource 
allocation ratio leads to a reduced degradation rate. The maintenance 
frequency determines the state’s running time, with an appropriate 
maintenance frequency prolonging the continuation time of the state, 
while a lower maintenance frequency reduces the running time [64].

4.2.1. Quality of maintenance
The cost of PM is usually determined by the level of resources allo-

cated to the operation. The cost of maintenance increases with the in-
crease of resources, and the quality of maintenance also improves. The 
degradation rate depends on the degree of maintenance, and the 
maintenance behavior may only sometimes improve the system. As 
evidenced by numerous cases in practice indicate that low-quality 
maintenance may accelerate the deterioration of equipment [69,70].

The maintenance quality depends on the resource ratiockinvested in 
each maintenance in the statexkstage. According to the actual applica-
tion, it can be set to the maintenance tool level, worker level and other 
factors that affect the maintenance effect.

When the equipment is in statek, the impact of each maintenance 
input resource ratiockon maintenance quality can be described by var-
iableεk, which satisfies Eq. (4), 

εk = 2(ck)
η
− 1 (4) 

here,ckis the ratio of resources invested in each maintenance at the state 
x ∈ (xk, xk+1), whose value ranges from (0,1). The valueεkis in the range 
( − 1,1), indicating whether the maintenance was of low or high qual-
ity.ηis the correlation factor, which describes the nonlinear relationship 
between maintenance resource ratio and maintenance quality and takes 
a nonnegative real number.

If the maintenance action of state k is CM, then the degradation rate 
after maintenance is reset tov0 = α0/β. Here, α0refers to the shape 
parameter of the gamma process when the WT is in a healthy state, 
andβis the scale parameter of the process. If the maintenance is PM, the 
degradation rate after maintenance is Eq. (5). 

vk = vk− 1(1+ εk) (5) 

Eq. (5) represents the impact of maintenance quality on the degra-
dation rate, and in the subsequent description, the degradation rate is 
used to model the maintenance cost, the slower the degradation after 
maintenance, the higher the cost of maintenance. Based on the degra-
dation rate, the cost of PM can be evaluated as a function of the 
degradation rate. According to Eq. (5), we can obtain the recursive 
formula for the shape parameterαkwhen the WT is in statexk, which 
isαk = βνk.

We assume that the degradation state between thekth state and 
thek+ 1th state follows a gamma stochastic process(Xt)t≥0,cdf1(x)is the 
cumulative distribution function of the degradation state x, and the 
probability of the device being in statex ∈ (xk, xk+1) is given in Eq. (6). 

Pk(x) = P{xk < x < xk+1} = cdf1(x) − cdf1(xk), (k = 1, 2,⋯) (6) 

The cost of the PM phase isCP, 

CP = Nk

∑M

k=1

ρckPk(x) (7) 

ρis the cost coefficient of the PM phase, which is determined by the 
actual situation of the wind farm.Nkis the maintenance number of thekth 
state, Nk = tkfk,fkis the maintenance frequency at statek, andMis the 
number of degraded states that are divided.

PM strategy optimization can be applied to decision-making pro-
cesses such as long-term maintenance resource procurement and 

Fig. 2. Decision-Making Flowchart.
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optimal staff scheduling to determine the optimal maintenance strategy 
and resource allocation strategy.

4.2.2. Frequency of maintenance
To simulate the effect of maintenance frequency on the operation 

time of each state of the equipment, this paper assumes that the oper-
ation time of each state is determined only by the maintenance fre-
quency of that state. This can be found in many practical studies [71]. 
For example, adding lubricating oil to the bearing at an appropriate 
frequency can keep the pitting area of the bearing rolling element un-
changed. In contrast, the pitting area of the rolling component will 
become more prominent when the frequency is low, and the operation 
time of the equipment under the pitting defect state will be shortened.

When the equipment statex ∈ (xk, xk+1), the impact of the mainte-
nance frequencyfkat stagekon the reduction in the running time of the 
equipment at this state can be expressed by a nonnegative continuous 
random variabley, which follows the exponential distribution with 
probability density function as in Eq. (8). 

h(y) = γkexp( − γky)I{ck≥0} (8) 

fkis the maintenance frequency of the device at phasek, and a 
different maintenance frequency is used in each state. Since the main-
tenance frequency is constant in a state, it is assumed that the equipment 
degradation rate is constant in this state, and the reduction in the 
running time of this state relative to the previous state due to degra-
dation is determined byγk, γkas in Eq. (9). 

γk = loga(fk) (9) 

ais used as the basic unit of maintenance time, meaning that the year 
a is divided into equal parts. Due to the limitation of maintenance re-
sources, wind farms often use a fixed duration as the basic maintenance 
unit to ensure wind power benefits. Whena = 12, then the basic unit of 
maintenance time is one month, and iffk = 2 currently, it means that 
maintenance is performed twice a year.fk ∈ ℤ+. Here,amust be greater 
than 1 to ensure that the equipment gets more than one maintenance 
opportunity per year.

At a certain frequencyfk, the probability of the reduction of the 
running time of a state xkrelative to the previous statexk− 1is given by Eq. 
(10). 

ϑk = cdf2(xk) − cdf2(xk− 1) (10) 

cdf2(xk)denotes the cumulative probability function ofx ∈ (xk, xk+1). 
The duration of the device in statek − 1 istk− 1. After the maintenance of 
frequencyfk, the durationtkin statekis given by Eq. (11). 

tk = tk− 1(1 − ϑk) (11) 

That is, when the equipment is in a certain statexk, the higher the 
maintenance frequency of this phase, the longer the duration of this 
phase. Since the device degradation is more severe than the previous 
state, we assume that the current state will not run longer than the 
previous state.

4.3. Corrective maintenance costs

Maintenance operations require corresponding resource allocation, 
and the seasonal turnover in the plateau region causes varying main-
tenance cost rates over time. When a fail-down event occurs, CM is 
necessary.CM requires deploying maintenance resources from external 
sources and assigning workers, which involves the remote movement of 
heavy equipment, which is highly costly due to the extreme tempera-
tures in the plateau. Therefore, regarding equipment replacement costs, 
it is crucial to not only account for the equipment purchase cost but also 
factor in the changing equipment transportation cost [72]. Because it 
takes more time for maintenance resources and personnel to arrive at the 
wind farm in winter, and the wind in winter is not conducive to 

maintenance operations, CM will cause extended downtime and incur 
huge downtime costs.

The equipment replacement cost of plateau wind power includes the 
equipment purchase cost and the maintenance equipment assembly cost. 
The rise and fall of equipment acquisition cost is slight, and the acqui-
sition cost of equipment in the whole life cycle is assumed to be a con-
stant valueCE.

The change of maintenance equipment assembly cost rate with time 
is expressed by Eq. (12). 

CC(t) = CCθ1(t) (12) 

CCis the average assembly cost generated by the primary equipment 
replacement of the important components of the plateau WT, andθ1(t)is 
the resource distribution cost rate of the plateau wind farm. tis the time 
that the equipment needs to be replaced, depending on the total time of 
operation of the equipment and the month in which the equipment was 
just put into operation. Generally, when the equipment fails, the pur-
chase demand is sent to the manufacturer immediately, and the manu-
facturer can ship the equipment to the wind farm in time.

The downtime cost mainly focuses on the loss of power generation 
due to wind loss during the downtime and is related to the specific time 
when the downtime occurs. The downtime cost during the equipment 
replacement period is given by Eq. (13). 

CS(t) = TSCSθ2(t) (13) 

TSis the average downtime duration andCSis the average downtime 
cost per unit time. tis the moment when the device is replaced.

Regardless of downtime or CM costs, operators do not want down-
time when extreme cold occurs. Through the previous analysis, we can 
decide the degree of PM each time, which will change the degradation 
state experience time, which makes it possible to change the WT 
downtime. Specifically, we need to control the maintenance degree in 
the PM process and try to control the downtime at other times except the 
freezing period.

4.4. Regular inspection of costs

General industrial equipment will conduct regular inspections, 
whether in a defective or normal state. Although the regular inspection 
cycle is relatively long, it will still produce non-negligible costs. The 
difference between conventional and PM costs is that conventional 
maintenance considers the cost of transportation and personnel 
arrangement in the process of regular inspection. In contrast, PM cost is 
the cost of maintenance resources used in the maintenance process 
because PM requires maintenance resources that are more expensive 
than conventional maintenance.

Each inspection looks for the moment of lower wind speed in the 
future to reduce the impact of downtime. The inspection cost of the 
whole life cycle is given by Eq. (14). 

CI = CINI (14) 

Among them,NIis related to the wind field environment and WT 
characteristics, NI = T/TI, andTIis the routine inspection cycle. Ac-
cording to the maintenance regulations of the wind field, the unit needs 
to carry out routine maintenance of the WT within a fixed time.CIrep-
resents the average downtime, resource consumption, and labor cost 
incurred during routine maintenance.

4.5. Maintenance objectives

To evaluate the performance of the maintenance strategy, this paper 
takes minimizing the total maintenance cost of the life cycle and 
maximizing the operation time as the goal and finally obtains the 
maintenance frequencyfkand the resource investment ratiockwhen the 
optimal decision parameter state isk.
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The total maintenance cost of the key equipment of the WT from 
operation to failure replacement is given by Eq. (15), which includes 
both preventive maintenance costs and corrective maintenance costs. 

Call = CP +CC +CS +CI +CE (15) 

H is the running time of the equipment, as shown in Eq. (16). 

H =
∑M

k=1

tk (16) 

The maintenance requirement of the wind farm is to minimize the 
maintenance cost per kWh and maximize the operation time. The opti-
mization objectives and constraints are as follows, 

min C =
Call

H⋅E
=

∑M
k=1CkPk(x) + CCθ1(t) + TSCSθ2(t) + CINI + CE

H⋅E
(17) 

max H =
∑M

k=1
tk (18) 

Eis the amount of electricity generated per unit time, which can be 
obtained by consulting the wind farm operation log.

t = (H + initial time)//12in objectiveCmeans that 
theinitial timepasses through the total life lengthHand the specific month 
of shutdown (the remainder is taken to represent the month). 
H⋅Erepresents the total amount of electricity generated during the 
equipment’s life cycle.

If the expected maintenance cost of the equipment at a certain stage 
exceeds the average CM cost, then CM is the more economical choice, so 
a constraintρckNk + tkCS < CC + TSCSneeds to be introduced, That is, the 
sum of the PM cost and the subsequent generation revenue at a certain 
stage needs to be less than the average CM costCC + TSCS, otherwise it 
directly enters the CM procedure.

Therefore, the constraints are as follows, 
⎧
⎨

⎩

fk ∈ ℤ+

0 < ck ≤ 1
ρckNk + tkCS < CC + TSCS

(19) 

According to Eqs. (17)–(18), the model has two objectives, with 
decision variables being the maintenance frequency for each state and 
the maintenance resource ratio. For the multi-objective optimization 
model, this paper employs the NSGA-II algorithm for solving, while for 
the single-objective optimization problem in the comparative experi-
ment, this paper utilizes the PSO algorithm for solving.

5. Numerical example

5.1. Scenario set-up

The wind farm studied in this paper is in western Guizhou Province, 
China, at an altitude of 2700 m. Since the wind farm has been in oper-
ation for a considerable period, it has experienced various mechanical 
and electrical failures in a typical plateau environment. Among them, 
the fault with the most enormous single economic loss is attributed to 
the gearbox. To achieve the above maintenance objectives, the WT of the 
wind farm is taken as the research object, and the field data from the 
wind farm are collected to conduct a case study.

A WT has many components, but the mechanical components 
determine its maintenance costs. In addition to the gearbox, other 
components, such as generators, bearings, etc., choose the WT’s main-
tenance cost. The method of the text can also be used as a module to 
construct a maintenance decision model for multiple components. 
Because other essential components can also divide their degradation 
states by monitoring techniques, this paper’s method of combining state 
and time is still valid. Therefore, the case study part of this paper only 
considers the WT component that causes the most significant single 
economic loss –the gearbox.

Fig. 3 shows the monthly average wind speed change curve of the 
wind farm studied in the past 10 years [73]. Observing the ten-year wind 
data obtained in this paper, it can be found that the wind speed of the 
Yunnan-Guizhou Plateau wind farm studied in this paper has a trend of 
sinusoidal variation. To model concisely while also describing the 
characteristics of the data, we have also chosen the sine function for 
modeling.

It can be seen from the figure that the average wind speed is the 
maximum in March and the minimum in September. Using the fitting 
method to fit the scatter plot, Eq. (20) can be obtained, 

θ1(x) = 0.7sin
(π

6
x −

π
12

)
+ 2.99 (20) 

The wind farm icing cycle occurs from the middle of December to the 
middle of February, a total of 2 months, during which there are many 
snow and freezing days. Due to the long CM cycle of the equipment, it is 
entirely possible to fall within this span, so it is necessary to avoid CM in 
this period [74]. This paper uses the penalty factor method to prevent 
the WT replacement event from occurring in the freezing period. Fig. 4
shows the monthly average weekly freezing days in the wind farm area 
in the last ten years. (See Fig. 5.)

Due to the progress of prediction technology, the rotating machinery 
of the plateau WT has been able to predict its operation stage roughly, 
and the average downtime caused by failure has been shortened from 2 
to 3 months to half a month [75]. Although the equipment replacement 
cycle is significantly reduced, if the replacement occurs in the freezing 
season, it is still necessary to perform road and tower blade deicing, 
which will bring considerable time and economic costs.

The following are some parameters from the wind farms under study, 
Table 1 shows the cost coefficient versus the moment of commissioning 
of the equipment, CCis equipment transportation and installation cost, 
CSis downtime cost, CIis routine.

maintenance cost, andCEis equipment acquisition cost. The units of 
the above costs are thousands of dollars (k$),TSdowntime time is taken 
as maintenance unit in months.

The initial time here means that the WT was installed and put into 
operation in November. According to the reference [67], the shape pa-
rameters and scale parameters are selected as Table 2.

Given the highly nonlinear nature of the objective function, aver-
aging can mitigate the impact of random fluctuations in individual ex-
periments on the outcomes, leading to a more balanced set of solutions. 
Consequently, this paper employs a method of averaging results from 
multiple experiments for each experimental setup.

5.2. Results of fixed maintenance frequency

This section optimizes the policy using a fixed maintenance fre-
quency. The fixed maintenance frequency data were collected from the 
wind farm described in the previous.

Fig. 3. Fitted plot of monthly mean wind speed.
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section, and the input parameters are provided in Section 5.1. The 
FFMS focuses on the maintenance resources required for the equipment 
in each state and can be considered as a state-based maintenance 
strategy.

The unit of the above strategy is the number of maintenances per 
year. In the current practice of wind farm maintenance, the influence of 
maintenance frequency on the unit is rarely considered. Therefore, this 
section summarizes the two maintenance frequencies shown in Table 3
according to the actual situation of the wind farm to verify the influence 
of frequency on the maintenance effect.

Because the maintenance frequency is fixed, the service age of WT 
components depends entirely on the maintenance frequency through the 

analysis model; an objective has been fixed here, so it is converted into a 
single objective optimization problem. Using the PSO algorithm [76] 
with the particle number of 100 and 200 iterations, when the low- 
frequency maintenance strategy is used in the maintenance of the WT 
components, the cost of kWh can be reduced to 4.687$/MWh by opti-
mizing the maintenance resource ratio, and the life of the equipment is 
261.7 months. When using the high-frequency maintenance strategy, 
the kWh cost can be reduced by optimizing the maintenance resource 
ratio to 3.352$/MWh, which is 278 months of life. The above conclu-
sions show that the strategy of higher maintenance frequency in the 
early degradation stage will not only increase the cost of electricity per 
unit but can also prolong the service life of the equipment.

5.3. Results for fixed resource ratios

Currently, most wind power airports do not consider the impact of 
the change in input resource ratio on equipment life and production 
costs when performing maintenance. To compare the effects of different 
maintenance resource ratios on the life and production costs of the WTs, 
this section uses different maintenance resource ratios to optimize the 
maintenance of the plateau WTs. FRRS mainly optimizes the variable of 
maintenance frequency, which is consistent with the time-based main-
tenance strategy, and therefore can be regarded as an optimization of 
the time-based maintenance strategy.

According to the maintenance resource input ratio of each state of 
the WT gear, five maintenance strategies are designed, as shown in 
Table 4. The number represents the input resource ratio, which is 
distinguished according to the specific equipment. For example, the 
quality of maintenance supplies, workers’ technical proficiency, and the 
condition monitoring level can be considered when maintaining the 
gearbox. The maintenance of fixed maintenance resource ratio is a 
multi-objective optimization problem. Here, the NSGA-II algorithm [77] 
with 100 particles and 300 iterations is adopted to optimize the prob-
lem, and the results are as follows. The NSGA-II algorithm incorporates 
an elitist strategy and a method for calculating crowd distance, thereby 
enhancing the efficiency and quality of solutions. It possesses strong 
robustness and effectiveness when dealing with multi-objective 
problems.

Where the ordinate is the maintenance cost per kWh, the unit is 
$/MWh. Combined with Table 3, we can see that during the healthy and 
slight wear of the equipment, maintenance with a low resource ratio can 
reduce the kWh cost of the equipment life cycle to a greater extent. 
Maintenance using a large resource ratio may not be worth the loss in 
the early stage of equipment operation. Combined with the conclusion of 
the previous section, in the early stage of equipment operation, opera-
tion, and maintenance personnel need to maintain the equipment a 
small number of times, and the maintenance frequency can be higher. 
Still, it can use low-maintenance resources. In the middle and late stages 
of equipment operation, increasing the maintenance frequency and 
improving the resources invested in maintenance is necessary.

5.4. Model validation

To verify the validity and credibility of the model, this section studies 
the maintenance strategy of the WT in the plateau wind farm when it is 
put into operation at different times. The model considers equipment 

Fig. 4. Period of Freezing.

Fig. 5. Comparison of maintenance cost per kWh for fixed input resource ratio.

Table 1 
Cost coefficient and initial time.

CC(k$) TS(months) CS(k$) CI (k$) CE (k$) Initial time

20 0.5 45 1 200 November

Table 2 
Model parameters.

α0 β η ρ

1 2 2 0.1

Table 3 
Fixed maintenance frequency strategy.

Strategy x1 x2 x3 x4 x5

HFMS 6 7 8 9 12
LFMS 2 3 4 6 12

Table 4 
Five fixed maintenance resource ratio strategies.

Strategy x1 x2 x3 x4 x5

Strategy One 0.01 0.05 0.6 0.8 0.9
Strategy Two 0.1 0.15 0.6 0.8 0.9
Strategy Three 0.1 0.2 0.6 0.8 1.0
Strategy Four 0.2 0.4 0.6 0.8 1.0
Strategy Five 0.6 0.7 0.8 0.9 1.0
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distribution and installation costs over time, and the primary input pa-
rameters have been given in Section 5.1. Table 1 shows the parameter 
settings used by the NSGA-II algorithm to obtain the optimal solution. 
The population size of the algorithm is 100 individuals, the iteration is 
300 generations, and everyone’s fitness value is evaluated by the given 
calculation formula for the running time and the calculation formula for 
the maintenance cost of per MWh.

Fig. 6 shows the obtained Pareto front, which demonstrates the non- 
dominated solutions for the device’s expected lifetime and the cost per 
MWh. (See Figs. 7 and 8.)

Due to the high cost of distribution and installation, the high risk of 
abnormal climate, the wind farm studied in this paper does not carry out 
the loading and unloading operation of significant components from 
December to February of the following year. So, this paper chooses 
March, June, September, and November as the initial months for the WT 
to be put into operation. The resulting Pareto fronts are shown in Fig. 6
(a), 6(b), 6(c), and 6(e). Analysis of Fig. 6 shows that different opera-
tional times will lead to different optimal maintenance strategies for 
WTs. Putting the WT into operation in March can make it run longer, but 
the maintenance cost will increase in the optimization strategy. The 
reasons for the jump are analyzed in the parameter analysis section. 
Commissioning in June may shorten the WT’s life but will not signifi-
cantly impact maintenance costs. The service life of the WTs put into 
operation in September is reduced even more, and the maintenance cost 

is not significantly affected. For the WTs put into operation in 
November, using the maintenance strategy developed in this paper may 
extend the WT’s life, but it will increase the maintenance cost. Table 5
shows the four Pareto-optimal strategies with the operational time of 
March, June, September, and November.

This paper selects four typical installation moments for WT equip-
ment to optimize the O&M strategy. Combined with Fig. 6, the WT 
maintenance must be carried out at a high frequency in the early stage of 
equipment degradation, requiring a small investment in maintenance 
resources, but this is very effective for WT gearbox maintenance.

Table 6 compares the maintenance strategies and their effects. 
Combining the results of Sections 5.2 and 5.3, it can be found that when 
using the FFMS, which is equivalent to using a state-based method, even 
if the optimal state-based strategy results in a maintenance cost of 
$4.02/MWh, the multi-objective optimization method in this paper can 
still reduce the maintenance cost by 24.07 %. At the same time, by 
comparing the operating time, it can be found that in the settings of this 
paper, using the state-based maintenance strategy will result in a loss of 
11.58 % of the lifespan. When using the FRRS, i.e., the time-based 
maintenance strategy, the optimal maintenance frequency results in 
an average lifespan of 289.3 months, while the multi-objective optimi-
zation method in this paper can increase the operating time by 3.69 %. 
This also means that using the time-based maintenance strategy will 
result in an economic loss of 18.21 %. After comparing with FFMS and 

Fig. 6. Time-varying costs considering time and state maintain the optimization results.
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FRRS, the results show that the multi-objective maintenance strategy in 
this paper can make the plateau WT have a longer lifespan with lower 
maintenance costs.

Furthermore, the optimization results also indicate that the FRRS 
adopted by traditional wind facilities, which means that the mainte-
nance resources in the early and later stages of equipment operation are 
the same, affecting later-stage performance of the equipment. It is 
necessary to invest in maintenance with lower resource ratios in the 
early stages of equipment operation and then transition higher ones in 
the last stages. Only with such a maintenance strategy can minimize the 
cost of electricity consumption during operation. Unlike previous find-
ings, the maintenance party needs to employ a higher maintenance 
frequency in the early stage and maintain a higher maintenance fre-
quency in the later stage to maximize the equipment’s operational 
lifespan. Considering all factors, during the maintenance process of 
plateau WTs, low resource ratios but multiple maintenance are required 
in the early stage of equipment operation. While in the later stage of 
equipment operation, high-level resources and higher frequency main-
tenance are necessary to optimize kilowatt-hour maintenance cost and 
operational lifespan.

5.5. Applicability analysis

To demonstrate that the maintenance strategy considering both time 
and state information can accurately represent the actual operation and 
maintenance process of equipment under the complex operating envi-
ronment of the plateau, this section simulates the maintenance process 
of WTs in different scenarios by changing model parameters. Since 
plateau wind power has a relatively poor economic performance 
compared to plain wind power, the main comparison object in this 
section is plain wind power.

The air density on the plateau is low, and when the wind force is 
small, it does not meet the starting conditions for WTs at all. Most plain 
wind farms do not have this problem, and their WTs can almost always 
meet the power generation conditions throughout the year. Therefore, in 
plain areas, no matter when equipment maintenance and replacement 
are carried out, there will be downtime costs. However, in plateau, if 
maintenance plans are executed when there is no wind, it is possible to 
avoid huge downtime costs. Therefore, this paper uses the annual 

Fig. 7. PM effects for differentη.

Fig. 8. Non-dominated solutions for differentη.
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average wind speed to replace the downtime cost change rate function of 
the plateau environment, indicating that the plain area can meet the 
power generation conditions throughout the year. Since the phenome-
non of road icing rarely occurs in plain, and even in winter, effective 
maintenance of wind power equipment can be carried out, the assembly 
cost rate is set to 1, indicating that there is no additional assembly cost 
generated by environmental changes.

Table 7 presents the optimal solutions obtained using this model 
under different scenarios. In the scenario settings, two scenarios are set 
for the plain: the first is where the wind is relatively stable and can meet 
the power generation conditions throughout the year; the second is 
where there are slight wind fluctuations within a year, but the fluctua-
tions are small, and the assembly cost rate for both scenarios is set to 1. 
According to surveys, on the Qinghai-Tibet Plateau, the wind fluctua-
tions are relatively small throughout the year, but the freezing period is 
longer, resulting in higher equipment assembly costs; while on the East 
African Plateau, there are larger wind fluctuations throughout the year, 
but the freezing time is shorter; on the Yunnan-Guizhou Plateau, there 
are larger wind fluctuations throughout the year, and the time of 
freezing is also longer. Implementing the maintenance strategy proposed 
in this paper under extreme conditions can demonstrate the applicability 
of the method presented.

From the table, the plain with stable wind power can obtain the 
highest benefit, including the lowest maintenance cost per kWh and the 
longest lifespan. As the environment deteriorates, the cost per kWh 
gradually increases, and the lifespan of the equipment also gradually 
shortens. In the plateau scenarios, the data from the extreme environ-
ment comes from a wind farm in the western part of Guizhou Province, 
where the monthly average wind speed fluctuations are significant, and 
the freezing period is also relatively long. At the same time, we designed 
maintenance experiments for several other wind farms, studying the 
impact of different environmental factors on the maintenance effect of 
plateau wind farms by controlling variables. The experimental results 

show that during the execution of the maintenance strategy provided in 
this paper, compared to scenarios with larger wind speed fluctuations, 
scenarios with longer freezing periods will have a greater maintenance 
cost per kWh, and the lifespan of WTs will be shortened. This indicates 
that freezing periods has a greater impact on the economic performance 
of plateau wind power, while the impact of monthly average wind speed 
fluctuations is slightly lower.

5.6. Sensitivity analysis

The parameters and data analyzed above are from a plateau wind 
farm in the west of Guizhou, China, and the selected parameters may 
deviate from other plateau wind farms. This section analyzes the crucial 
parameters in the model to analyze the generalization performance of 
the model.

5.6.1. Maintenance effect influence factorη
ηis a parameter that influences the ratio of maintenance input re-

sources on the quality of PM. Different operators have different opera-
tion levels. To simulate the maintenancelevels of varying wind power 
operators or maintainers, this paper uses Eq. (4) to describe this rela-
tionship, and its characteristics are shown in Fig. 7.

To study the change ofηon the maintenance effect, this section sets up 
five control experiments with different values ofη. Fig. 8 (d) is the non- 
dominated solution obtained in the previous section, which is put into 
Fig. 8 for the convenience of comparison.

Here, the values ofηare chosen as 0.1, 0.3, 1, 2, 2.5, and 5.
ηrepresents the impact of maintenance input resources on mainte-

nance quality, which generally depends on the workability of the 
maintainer. Wind farms with higher performance can convert mainte-
nance resources into corresponding maintenance quality, while wind 
farms with lower performance have difficulty converting invested 
maintenance resources into corresponding maintenance quality. Since 
the value of the input resource ratio is a decimal between 0 and 1, and 
the input resource ratio is very high in the later stage of maintenance, 
the largerηis, the faster the transformation efficiency changes, and the 
WT maintenance effect is more affected by the resource ratio, which 
leads to the jump of the solutions in Fig. 8 (e) and Fig. 8 (f). Whenηis 
between 0.1 and 2, it is more convenient to use this model for mainte-
nance decision making, whenη > 2, the non-dominated solution will 
produce some jumps, which is unfavorable for the decision process.

5.6.2. Sensitivity analysis of PM cost ratioρ
This section studies the impact of varyingρon the maintenance effect. 

As the scaling factor of the cost of the PM phase in the maintenance cost 
of the whole equipment life cycle, the value ofρcan be adjusted ac-
cording to the actual situation of the wind farm. The wind power 
equipment selected in this paper does not consider the most extreme 
situation in the plateau environment, and the value ofρof this equipment 
in the PM stage is 0.1. Due to the change in environment and the se-
lection of model parameters, we consider the scaling fac-
torρ ∈ (0, 0.25)to comprehensively show the change in the maintenance 
cost of wind power equipment in the complex plateau environment.

Table 8 shows the impact of the change inρon the two objectives. 

Table 5 
Pareto strategies for different input running times.

Time Variable x1 x2 x3 x4 x5

March ck <0.1 <0.1 0.1–0.63 0.1–0.54 0.8–1
fk 6–9 6–12 6–10 8–10 9–12

June
ck <0.1 <0.1 0.8–1 0.4–0.6 0.6–1
fk 6–8 6–9 6–12 8–12 9–12

September
ck <0.1 0.2–0.25 0.6–0.93 0.5–0.81 0.6–0.77
fk 7–9 7–11 5–9 4–10 4–8

November ck <0.1 <0.1 0.6–0.9 0.16–0.44 0.57–0.74
fk 8–12 9–12 8–12 9–12 8–12

Table 6 
Comparison of maintenance strategies.

Strategy Maintenance cost($/MWh) Run time(months)

FFMS 4.02 268.85
FRRS 3.7324 289.3
MOOS 3.0525 299.97

Table 7 
Applicability Analysis under Different Scenarios.

Scenarios Maintenance cost 
($/MWh)

Run time 
(months)

Plain
Wind stability 2.8182 302.17
Low wind 
fluctuations 2.8324 301.46

Plateau
The wind is choppy 3.0350 300.86
Long freezing period 3.0436 300.37
Extreme environment 3.0525 299.97
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Whenρis small, it means that the cost of the PM stage is relatively small, 
and the influence of the local environment on the degradation of the WT 
is not significant, while whenρis large, it means that the impact of the 
environment on the WT is enormous. From the perspective of electricity 
cost, it can be found that when the environment is more complex, the 
electricity cost will also rise, but due to the optimization of the strategy, 
the trend of the equipment operation time changing withρis not obvious.

5.6.3. Rationality analysis of assembly cost rate
This section analyzes the rationality of the assembly cost rate. Fig. 3

can be regarded as showing that the number of freezing days per week 
follows a gaussian distribution. The above text simply summarizes the 
freezing cost rate as a staircase distribution function, with the intention 
of penalizing activities such as the transportation of equipment and 
personnel allocation during the freezing period. This section considers 
the weekly average freezing dates in the plateau environment to follow a 
normal distribution, thereby verifying the rationality of the step as-
sembly cost rate distribution function.

Fig. 9 (a) presents the optimization results of the assembly cost rate 
distribution function used in this paper, which is a staircase distribution 
function. Fig. 9 (b) shows the assembly cost rate distribution function 
obtained by fitting the original data with a gaussian.

distribution. It can be observed from the figures that the solutions 
obtained using both the gaussian distribution and the staircase distri-
bution functions are similar, with maintenance costs being $3.05/MWh 
and operation duration being 299.95 months, which are basically 
consistent with the solutions in Section 5.4. This indicates that the 
staircase distribution function used in this paper is reasonable. At the 
same time, when using the gaussian distribution function, the initial 
convergence speed of the algorithm is relatively slow. The algorithm was 
implemented in MATLAB® using a computer equipped with a 12th Gen 
Intel Core CPU at 2.0 GHz and 64 GB of RAM. When using the gaussian 
distribution function, the running time was about 2 h, while when using 
the staircase distribution function, the running time was reduced to 1.5 
h. This demonstrates that using a staircase distribution function to 
approximate the assembly cost rate distribution function is both 
reasonable and efficient.

5.6.4. The impact of technological advancement on maintenance
The technological iteration and commercialization of wind power 

generation are progressing very rapidly worldwide. To balance the 
technological iteration with ongoing maintenance, this section analyzes 
the impact of technological advancements on the maintenance process 
of WTs. With the progress of artificial intelligence technology, the fault 
diagnosis of gearboxes has evolved from initial manual identification to 
current intelligent diagnosis, which has not only improved diagnostic 
accuracy but also reduced the cost of diagnosis. Therefore, this paper 
primarily models the impact of technological iteration as a decrease in 
maintenance costs over time.

As technology advances over time, almost all costs associated with 
equipment maintenance will gradually decrease, such as preventive 
maintenance costs, corrective maintenance costs, regular inspection 
costs, and equipment purchase costs [78]. The reduction of these costs 
can essentially be seen as the depreciation of maintenance technology 
costs. With the rapid development of the wind power market, the cost of 
maintenance will become increasingly lower [16]. Therefore, we add a 
depreciation factor to the numerator of Eq. (19), and the new 

maintenance cost function is shown as Eq. (21). 

min C =
CallR
H⋅E

(21) 

In the equation,R = 1
(1+δ)g(H), where R is the depreciation factor, 

andδrepresents the depreciation rate. Since the technological iteration 
process is relatively long, it is set asg(H) = H/12to characterize the 
gradual progress of technology. The number 12 here indicates that 
technological iteration occurs once a year, but it can also be set to other 
appropriate values. However, the focus of this paper is not on how much 
this value should be set, but on the changes in maintenance strategies 
under the condition of technological progress. Fig. 10 shows the trend of 
changes in maintenance objectives as the depreciation factor varies.

The discount on maintenance costs due to technological progress is 
usually low, as a revolutionary change in an industry typically requires 
decades or even centuries of technological accumulation. In this paper, 
three discount rates are selected to explore the impact of technological 
progress on the economic viability of maintenance. From Fig. 10, we can 
see that as the discount rate increases, the cost of electricity from wind 
power gradually decreases, but the reduction is relatively small and 
tends to show a saturation trend. The results indicate that the usual 
means for wind power companies to improve economic viability is not to 
adopt more advanced maintenance technologies, as the effect on 
reducing maintenance costs is limited. Of course, if companies are 
willing to make appropriate investments in updating maintenance 
equipment or developing innovative maintenance technologies, they 
can still reduce some costs.

6. Conclusion

To solve the problem of low economic efficiency and more complex 
performance degradation of WTs in complex operating environments on 
high plateaus compared to flatlands, a maintenance strategy is proposed 
for plateau WTs that considers degradation states and time-varying 
maintenance costs. This paper models the life decay of each state of 
the equipment as a random process that follows an exponential distri-
bution, establishing a model for the time-variant maintenance costs of 
WTs. A case study was conducted on a plateau wind farm in Guizhou, 
China, optimizing the maintenance cost per unit of electricity and 
operational lifespan, thereby determining the optimal level of mainte-
nance resource input and maintenance frequency for each state.

The study demonstrates that compared to FFMS, our strategy can 
reduce the maintenance cost per unit of electricity by 24.07 %, while 
extending the operational lifespan of the equipment by 11.58 %. In 
contrast to FRRS, our strategy can reduce the maintenance cost per unit 
of electricity by 18.21 % and extend the operational lifespan of the 
equipment by 3.69 %. When making maintenance decisions for wind 
farms, the optimization strategy proposed in this paper eliminates the 
need to focus on when equipment failures will occur; instead, it requires 
deciding on the resources needed for each maintenance and the fre-
quency of maintenance. Compared to opportunistic or state-based 
maintenance strategies, our approach requires only condition moni-
toring at any time after a WT is put into operation, followed by opti-
mizing decisions on the ratio of maintenance resources and maintenance 
frequency. Furthermore, the optimization results indicate that the FRRS 
traditionally adopted by wind farms, where the maintenance resources 
are the same in the early and late stages of equipment operation, affects 
the operational condition of the equipment in the later stages. In the 
long term, during the maintenance of plateau WTs, a low level of re-
sources but frequent maintenance is required in the early stages of 
operation, while a high level of resources and higher frequency of 
maintenance is needed in the mid-to-late stages.

This work primarily focuses on the maintenance costs and opera-
tional lifespan of the equipment, without considering the efficiency 
changes of WTs during operation and equipment depreciation. In 

Table 8 
Range of nondominated solution strategies for differentρ.

ρ Maintenance cost($/MWh) Run time(months)

0.05 2.892–2.916 285.7–289.5
0.1 2.837–2.974 284.1–288.6
0.15 2.923–3.006 288.6–292.5
0.2 2.952–3.105 286.3–289.8
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practice, improving the efficiency of WTs can better enhance the eco-
nomic viability of wind power, while equipment depreciation affects the 
utility of the maintenance plan. Therefore, our future research can 
revolve around these key points, improving the model from a broader 
perspective to adapt to more complex situations. Additionally, con-
ducting experiments in wind farms will also be a focus of our next phase 
of work.
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Appendix A. Optimization results of operation at other times

Fig. A1. Optimization results when put into operation in April and May.

Fig. A2. Optimization results when put into operation in July and August.
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Fig. A3. Optimization results from the operation launched in October.
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