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Abstract—Fault detection (FD) algorithms based on

supervisory control and data acquisition (SCADA) data have
been widely used in the operation and maintenance of wind
turbines (WT). However, the performance of FD models will
degrade due to the time-varying operating conditions (TVOC).
Incremental learning (IL) methods can be employed to update
the models online to adapt to TVOC, but the error accumulation
caused by false negatives will lead to a continuous decrease in the
fault detection rate (FDR). A novel IL method considering false
negatives is proposed to improve the performance of WT FD
models. Firstly, a data buffer is built to cache some new normal
data used in model updating. Secondly, a processing strategy for
false negatives is proposed to block some high-risk data from
being added to the buffer, thereby weakening the error
accumulation. Thirdly, when the buffer is full, update the FD
model using the data in it. A real-world SCADA dataset with
gearbox faults and four different FD algorithms with various
model updating strategies are used in the experiments. The
results demonstrate that the proposed method can lower the false
alarm rate (FAR) of all four FD algorithms. After processing
false negatives, for example, for the FD model based on Gaussian
kernel regression, its FDR increased by about 11%, and for the
FD model based on multivariate state estimation technique, its
FDR increased by about 14%. The results of hyperparameter
experiments and early stopping experiments show that the
proposed method has good potential for practical applications.

Index Terms—Wind turbine (WT), Fault detection (FD),
Incremental learning (IL), Supervisory control and data
acquisition (SCADA), Error accumulation.

I. INTRODUCTION
he demand for new technologies in the operation and
maintenance (O&M) of wind turbines (WT) has grown
in recent years. It is crucial to monitor the conditions

of WT by analyzing the operational data to detect incipient
faults and reduce O&M costs [1]. Methods based on
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supervisory control and data acquisition (SCADA) data have
received a lot of attention for condition monitoring of WT [2-
4]. However, there is an imbalance problem with SCADA data
[5], meaning that there is much less fault data than normal
data. The reasons for this include WT not being allowed to
operate for a long time under fault conditions [6], inefficient
manual labeling, etc. Therefore, fault detection (FD)
algorithms based on normal behavior modeling [7, 8] have
been widely used. These FD models are trained using only
normal data and can detect faults by analyzing the differences
between current and normal conditions.
Due to external factors such as changes in weather and

season, as well as internal factors such as system settings
adjustments and equipment retrofits, WT is often under time-
varying operating conditions (TVOC) [1]. For example, the
normal temperature of the generator bearing is higher in
summer than in winter. And when the settings of the cooling
system are adjusted, the normal range of the gearbox oil
temperature will change. The accuracy of FD models will
degrade under TVOC because training and test data are non-
identically distributed, which originates from the complex,
open, and dynamic operating environment of WT. Therefore,
the training data of FD models should cover all possible
normal conditions, which is difficult in practical practice,
especially for new wind farms [9].
In addition to general strategies like regularly retraining the

models, existing research has proposed some methods to
improve the performance of WT FD models under TVOC.
The dynamic threshold methods are used to enable the models
to tolerate the parameter fluctuations caused by TVOC [10,
11], thereby reducing the false alarm rate (FAR). The transfer
learning methods are used to make the data from other
turbines applicable for training the FD model of the target WT
[12, 13]. The covariate adjustment methods are used to
decouple some temperature parameters from environmental
factors [14, 15], which can improve the stationarity of these
parameters under TVOC. However, the above methods may
not be able to adapt to new types of TVOC in the data stream,
resulting in the degradation of FD model performance during
long-term operation.
Incremental learning (IL) refers to a learning paradigm that

allows models to continuously learn new knowledge from new
data while retaining the learned knowledge [16]. Using IL
methods, FD models can continuously learn new knowledge
online from the data stream, thereby adapting shortly to
TVOC and maintaining good performance. In [17], a novel
incremental support vector data description method was
proposed for damage detection of blades based on acoustic
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signals, and the model can be adaptively updated to improve
accuracy. In [18], a framework based on deep learning and IL
was proposed for fault identification of drive bearings using
vibration signals, and it enables adaptive creation and
modification of fault patterns. In [19], an FD method based on
non-parametric regression and IL was proposed for the
gearboxes using SCADA data, and the FAR is lower than the
traditional models during long-term operation. IL methods for
data streams include two specific strategies: (1) how to select
specific data from the data stream for model updating, and (2)
how to adjust parameters in the model. Existing research
mainly focuses on the latter strategies, including the elastic
weight consolidation strategy [20], dynamic structure strategy
[21], replay strategy [22], etc. It should be noted that these
strategies are only applicable to specific learning algorithms.
In this paper, we focus on the strategies that select specific
data to be used in model updating, which can be applicable to
different FD algorithms and model updating strategies.
Besides the catastrophic forgetting problem where the

learned knowledge is abruptly forgotten as new information is
learned [23], models with IL also face the error accumulation
problem. This mean that errors will propagate from previous
data to later ones through model updating, causing more errors
[24]. For the FD models based on normal behavior modeling,
only normal data is used in online updating, just like in offline
training. The error accumulation of these FD models is caused
by false negatives, which are defined as fault samples being
misclassified as normal and also known as missing alarms.
This lead to more false negatives and a continuous decrease in
the fault detection rate (FDR) during long-term operation. It is
common for certain parameters of WT to undergo short-term
fluctuations due to TVOC and noises [25], which can result in
significant false negatives and substantial error accumulation.
To address this issue, an adaptive condition monitoring
method for WT, based on non-parametric regression and
continual learning, was proposed in [26]. In this method, a
punishment mechanism is proposed for fault data and their
adjacent data to improve the FDR. However, the punishment
mechanism lacks flexibility, limiting its suitability only to
high-frequency updating.
In this paper, a novel IL method for WT FD models is

proposed considering the false negatives, and the proposed
method is compatible with various FD algorithms. In the
proposed IL method, normal data detected by the FD model in
the data stream are cached in a data buffer. When the buffer is
full, the FD model is updated using the data in it. To address
the error accumulation, high-risk data that are adjacent to the
detected fault data are identified as false negatives and
prevented from being used in model updating. Specifically,
when the FD model detects a fault data, part of the data
previously cached in the buffer is deleted, and part of the
subsequent data is blocked from being added to the buffer. A
real-world WT SCADA dataset with gearbox faults is used to
verify the proposed IL method through various experiments,

and the performance of the proposed method is discussed in
four different FD algorithms.
The contributions of this paper are as follows:
1) A data buffer is built to cache some new data used in

model updating. Normal data detected by the FD model in the
data stream will be cached in a buffer, and the data in it will be
used for the model updating when the buffer is full. The
proposed method can be applied to different FD algorithms
and is suitable for practical applications.
2) A processing strategy for false negatives is proposed to

alleviate the error accumulation in FD models with IL.
Considering the strong temporal correlation in the data stream,
some high-risk data that are adjacent to fault data are
identified as false negatives and they are blocked from model
updating. The proposed strategy can improve the FDR of FD
models during online updating.
The rest of the paper is organized as follows: Section II

presents the framework of FD models with IL. Section III
analyzes the error accumulation caused by false negatives and
presents the proposed IL method in detail. Section IV presents
the SCADA dataset and the processing of the dataset. Abound
experiments and related analyses are listed in Section V.
Section VI discusses the conclusions.

II. FRAMEWORK OF WIND TURBINE FAULT DETECTION WITH
INCREMENTAL LEARNING

Due to the data imbalance problem, many FD algorithms
using SCADA data are based on the framework of normal
behavior modeling to train models and detect faults. And
considering improving accuracy through model updating, IL
methods can be used. The framework of WT FD models with
IL based on normal behavior modeling is given in Fig. 1. This
framework consists of the following three parts.
1) Offline modeling. Firstly, historical SCADA data

collected under normal conditions is pre-processed, and two
types of data should be processed. One type is data collected
during shutdown, power limitation, and other similar
conditions because the WT cannot output electricity normally
during these times. Another type is data that contains gross
errors, null values, or null timestamps caused by noise,
transmission errors, etc. After pre-processing, the majority of
the remaining historical data is normal data. Secondly, the
normal data constitutes a training set, and the FD model is
trained based on this training set and used in Online detection.
2) Online detection. Firstly, the SCADA data stream is pre-

processed using the same rules as Offline modeling to prevent
interference. For example, data collected under power
limitation conditions may be misjudged as potential faults.
Secondly, the processed real-time data is input into the FD
model and the FD index is calculated. Thirdly, the FD result is
obtained based on the FD index and the FD threshold.
Generally, data above the threshold is classified as fault data,
while data below the threshold is classified as normal data.
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Fig. 1. Framework of WT FD models with IL.

3) Incremental Learning. Firstly, the normal real-time data
that falls below the threshold constitutes an incremental
training set. Secondly, based on the designed IL method, the
FD model is updated or retrained online using the incremental
training set, which can adapt to TVOC during long-term
operation. Thirdly, the new FD model replaces the previous
model and is used in Online detection.

Ⅲ. PROPOSED INCREMENTAL LEARNING METHOD
CONSIDERING FALSE NEGATIVES

A. Error accumulation caused by false negatives
The original definition of error accumulation is the errors

generated in each integration operation in numerical solution
or in each component of a system are continuously
accumulated and propagated, resulting in the total error that
exceeds the acceptable limit [27]. Error accumulation
commonly exists in various tasks, including numerical
simulation [27], image processing [28], inertia navigation [29],
etc. In different tasks, the forms of error accumulation are
usually different. For the FD models with IL, the error
accumulation is caused by false negatives, which are defined
as fault samples that are misclassified as normal. The
mechanism of the error accumulation is shown in Fig. 2.
As shown in Fig. 2, firstly, the FD model will inevitably

output some false negatives during online detection. Secondly,
false negatives will be added to the incremental training set if
they are not processed. There will be more fault data in the
incremental training set that should only consist of normal
data, and it is equivalent to more label noise [30]. Thirdly, the
low-quality incremental training set will be used to update the
FD model and its accuracy will be negatively affected.
Specifically, considering the correlation between different
fault data, the FD model will misclassify more fault data after
updating, thereby reducing the FDR and outputting more false
negatives. Thus, a positive feedback mechanism driven by
false negatives is built, which leads to error accumulation. The
above error accumulation problem can seriously weaken the
performance improvement brought about by IL and it is
necessary to alleviate its negative effects.

Fig. 2. Error accumulation caused by false negatives.

Fig. 3. Schematic diagram of proposed processing strategy for
false negatives.

These false negatives in Fig. 2 are related to the strong
temporal correlation in the SCADA data stream and the
threshold-based hard classification strategy. Because of the
strong temporal correlation, some data adjacent to the fault
data have a high risk of being fault data. Because of the hard
classification strategy, if the FD indexes of some data adjacent
to the fault data are slightly below the FD threshold, these
high-risk data will be classified as normal data and are likely
to become false negatives.
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Based on the above analysis, a processing strategy for false
negatives is proposed as shown in Fig. 3. Firstly, the normal
data in the data stream is continuously added to the
incremental training set until the real-time data is classified as
fault data, that is, its FD index is above the threshold.
Secondly, a specific amount of data adjacent to the fault data
is identified as false negatives, including previously collected
data and subsequent data to be collected. These false negatives
and the fault data are blocked from being used in model
updating, which can reduce the errors in the incremental
training set and improve the FDR of the FD model.

B. Proposed incremental learning method
For WT FD models, a novel IL method is proposed to

adaptively update the models online. The two key points of the
proposed method are a data buffer that caches some new
normal data used in model updating, and a processing strategy
for false negatives that blocks false negatives from being used
in model updating, respectively. The detailed process of the
proposed IL method is shown in Fig. 4.

Fig. 4. Proposed IL method for WT FD models.

As shown in Fig. 4, in each computing cycle, the FD model
outputs the FD index of the real-time data, and the data is
classified as normal data or fault data based on the FD
threshold. Then, the proposed IL method will start. Firstly, if
the real-time data is fault data, it will not be added to the
buffer and the processing strategy will start to delete false
negatives in the buffer and block some subsequent false
negatives. If the real-time data is normal, it will be added to
the buffer when it is not blocked. Secondly, if the data buffer
is full, the data in it will be used to update the FD model, and
the buffer will be emptied after updating. If the buffer is not
full, the FD model will not be updated.
One of the hyperparameters in the proposed method is the

capacity of the data buffer, which determines the shortest

period for model updating. A lower capacity means a higher
update frequency, and this has the advantage of higher
accuracy because the model can adapt to TVOC faster.
However, a higher update frequency also means higher
computational costs, and the model may face more serious
error accumulation. Another hyperparameter in the proposed
method is the identification scope of false negatives. The
larger the scope, the more data will be identified as false
negatives, resulting in stronger suppression of error
accumulation, but it will also increase information loss.
The proposed IL method has concise procedures and is

compatible with different FD algorithms, which has good
potential for practical applications.

C. Algorithm of processing strategy for false negatives
The pseudocode of the proposed processing strategy for

false negatives is shown in Algorithm. 1. One of the keys to
the algorithm is to define the data structure of the buffer as a
stack, that is, inserting and deleting data only at the end of the
buffer. So data that are not adjacent to fault data will not be
identified as false negatives. Another key is to use a pointer p
to control the modification of the buffer and the flexibility of
the strategy is improved.

Algorithm. 1. Proposed processing strategy for false negatives

Initialization: Data buffer (stack) � = ∅ ; Pointer for
modifying buffer �(�) = 0 . (In addition to running the
algorithm for the first time, initialization is required when
“Empty data buffer” is executed as shown in Fig. 4.)
Input: Real-time data �(�) ; Fault flag of �(�) �(�) ; Data
buffer � = �� �=1

� ; Pointer �(�); Identification scope of false
negatives �.
Output: Data buffer after modifying �; Pointer �(� + 1).

{ If �(�) is true. //Real-time data is fault data.

If �(�) ≥ �. //Delete false negatives previously stored.
Delete samples in � from �� to ��−�+1.

End

If �(�) > 0 and �(�) < �.
Delete samples in � from �� to ��−�(�)+1.

End

�(� + 1) =− �. //Block subsequent false negatives.

Else //Real-time data is normal.

If �(�) ≥ 0 //Subsequent data are not blocked.
Add �(�) to � as ��+1.

End

�(� + 1) = �(�) + 1. //Subsequent data are blocked.
End }
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In [26], a punishment mechanism is proposed for fault data
and their adjacent data. However, in this mechanism, all of the
data in the buffer will be deleted when the real-time data is
fault data, instead of utilizing the stack and pointer in the
proposed strategy. Therefore, the mechanism in [26] is not
suitable for FD models with low update frequencies, as it is
challenging for a large buffer to become full under TVOC. In
comparison to the previous method, the proposed strategy can
be applied to data buffers of various sizes and update
frequencies.

IV. SCADA DATASET AND PROCESSING

A. Data description and parameter selection
The SCADA dataset used in this paper is from an onshore

WT and it records overheating faults of the gearbox. The
information about the SCADA dataset and the gearbox faults
is shown in Tab. I.

TABLE I
INFORMATION OF SCADA DATASET USED IN EXPERIMENTS

Type Onshore WT Rated power 1.5 MW

Location Hebei province,
China Rated wind speed 11.5 m/s

Generator Doubly fed
induction generator Cut-in wind speed 3 m/s

Sampling period
of data 1 min Cut-off wind speed 25 m/s

Time range of dataset 02-21 to 11-17, in the year 2017

Fault records about the gearbox fault Gearbox oil temp exceeded the
upper limit (starts at 11-17)

Fault start time estimated by
professional 10-28

TABLE II
OPERATIONAL PARAMETERS USED IN FD EXPERIMENTS

No. Name of parameter Unit

P1 Main shaft speed r/min

P2 Nacelle temp ℃

P3 Gearbox oil inlet pressure bar

P4 Gearbox oil filter-front pressure bar

P5 Gearbox drive bearing temp ℃

P6 Gearbox no-drive bearing temp ℃

P7 Gearbox oil temp ℃

As shown in Tab. I, it is worth noting that the auto-recorded
fault start time 11-17 is later than the estimated fault start time
10-28 by professional of the wind farm. This is common in
practice because conservative alarm rules and thresholds are
often used in SCADA systems, resulting in incipient faults
being hardly detected under TVOC [31].
To detect gearbox overheating faults and reduce the

complexity of FD models, seven parameters are selected from
the parameters in SCADA data, as shown in Tab. II. Main

shaft speed (P1) can reflect the load of the gearbox, which is
related to the heat generation of the gearbox. Nacelle temp (P2)
can reflect the external temperature of the gearbox, which is
related to the heat dissipation of the gearbox. P1 and P2 are
two important external factors of the TVOC of the gearbox.
P3~P7 are the only five parameters that are directly acquired
from the gearbox, which reflect the operating conditions of the
gearbox.

B. Data pre-processing
The raw data is pre-processed using the following rules.
1) Delete the data that contains null values or null

timestamps.
2) Delete the data where the active power is less than or

equal to zero, and the data where the wind speed is less than
the cut-in speed or greater than the cut-out speed. This is
because they are collected when the WT cannot output
electricity.
3) The three-sigma criterion is used to detect gross errors

and the detected data will be deleted.
4) The Z-Score method is used to normalize the remaining

data, which can avoid the negative effect of dimensions in
different parameters.
Since approximately 19% of raw SCADA data does not

contain timestamps or measured values, deletion is used in
pre-processing instead of interpolation to ensure accuracy at
the cost of data volume. Taking parameter P1 as an example,
the results before and after pre-processing are shown in Fig. 5.
Except for null values, a significant amount of raw data
contains extremely low values before pre-processing, which
are collected when WT was not generating electricity. After
pre-processing, these outliers are deleted, reducing the
interference to the FD task.

(a) Before pre-processing (313,669 samples in total)

(b) After pre-processing (215,142 samples in total)

Fig. 5. Parameter P1 before and after data pre-processing.

All seven parameters after pre-processing are shown in Fig.
6. As shown in the figure, different parameters show various
types of TVOC. For P1, P5 and P6, their long-term trends do
not change significantly. For P2, it shows significant periodic
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TVOC due to seasonal variations. For P3, it gradually
decreases at the beginning and remains stable thereafter, and it
decreases a lot at the final stage, which is highly relevant to
the gearbox fault. For P4, its trend is similar to P3 until 08-09.
From 08-09 to 08-23, it shows a prominent change that the
normal range of the pressure decreases a lot. For P7, it remains
stable until it increases sharply after 10-28, which is consistent
with the fault description shown in Tab. I. The above various
types of TVOC will lower the accuracy of WT FD models.
Additionally, it is worth noting that a large amount of noise in
the SCADA data is preserved after processing, which is
similar to the practical scenarios of the WT FD models.

Fig. 6. Seven parameters after data pre-processing.

C. Data segmentation
The data is divided into different datasets after pre-

processing as shown in Tab. III. The training set is used to
offline train the FD models. The test set is divided into the
normal stage and the fault stage, and they are used to evaluate
the FAR and FDR of FD models, respectively. The

segmentation point between the normal stage and the fault
stage is 10-28, which is based on professional opinions as
shown in Tab. I.

TABLE III
PARTITIONING OF DIFFERENT DATASETS

Dataset Time span Number of samples

Training set 02-21 to 03-31 30,434

Test set (normal stage) 04-01 to 10-27 163,608

Test set (fault stage) 10-28 to 11-17 21,100

TABLE IV
DISTRIBUTIONS OF PARAMETERS IN DIFFERENT STAGES

Variable Unit

Test set
(normal stage)

Test set
(fault stage)

Mean
value

Standard
deviation

Mean
value

Standard
deviation

P1 r/min 14.37 2.92 16.99 2.09

P2 ℃ 24.73 6.68 10.81 7.39

P3 bar 3.03 0.13 2.84 0.13

P4 bar 4.80 0.37 4.66 0.35

P5 ℃ 67.24 4.17 72.66 4.22

P6 ℃ 62.67 3.56 68.11 4.53

P7 ℃ 58.30 2.00 63.35 3.75

After the data segmentation, the distributions of the seven
parameters in the normal stage and the fault stage are shown in
Tab. IV. As shown in the table, there are significant
differences in the distributions between the normal stage and
fault stage, especially for the three temperature parameters
P5~P7 acquired from the gearbox. Compared to the normal
stage, the mean values of P5~P7 in the fault stage increase by
about 5 ℃, which is consistent with the overheating fault. The
differences in the distributions can prove the rationality of the
data segmentation point provided by the professional.

V. EXPERIMENTS AND ANALYSIS

A. FD models used in experiments
Four typical FD algorithms are used to verify the proposed

method, and they are based on different principles as follows.
1) Gaussian kernel regression (GKR) is one of the typical

multiple-input single-output parametric regression algorithms,
which have been used in some FD tasks [32].
2) Multivariate state estimation technique (MSET) is one of

the typical multiple-input multiple-output non-parametric
regression algorithms, and MSET has been used in many FD
tasks such as air compressors [33], WT [34], industrial fans
[35], and aircraft [36].
3) FD tasks can be considered as a one-class classification

problem, and one-class support vector machine (OCSVM) is
one of the typical one-class classification algorithms [37].
4) Multivariate statistics process monitoring algorithms are

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3458051

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on September 18,2024 at 02:09:27 UTC from IEEE Xplore.  Restrictions apply. 



5
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

widely used in FD tasks and principal component analysis
(PCA) is one of the typical algorithms [38].

(1) Gaussian kernel regression (GKR)

The function @fitrkernel in MATLAB is used to train the
GKR model. The independent variables of the GKR model are
P1~P6, and the dependent variable is P7. On the test set, the
function @predict is used to calculate the predicted values of
the dependent variable.
Residuals between the measured values and predicted

values of the dependent variable P7 are used as the FD index
of GKR and are defined as follows.

�(�) = �(�) − ��(�) (1)

where � is the residual, � is the measured value of the
dependent variable and �� is the predicted value. When the
absolute value of residual � is greater than the designed
threshold, the data is classified as fault data.
GKR's model updating strategy is incremental updating.

Specifically, the function @incrementalLearner is used to
convert the GKR model to an incremental learner defined in
MATLAB and @updateMetricsAndFit is used to update the
parameters in the model based on the incremental training data.
The hyperparameters of GKR models are set to the default
settings of the related functions in MATLAB.

(2) Multivariate state estimation technique (MSET)

The essential part of MSET is the memory matrix �, which
is defined as follows.

� = �1 �2 … �� =

�1 1 �1 2 … �1 �
�2 1 �2 2 … �2 �

⋮ ⋮ ⋱ ⋮
�� 1 �� 2 … �� �

(2)

where �� is column vector constructed of training data, � is
the number of training data, � is number of parameters and all
seven parameters are used. The redundant data in � will
weaken the computation speed and accuracy of MSET. In this
paper, a processing method for the redundant data in MSET
proposed in [19] is used.
The observed vector �obs and the estimated vector �est are

the input and output of MSET, respectively. �obs is the real-
time data and �est is the estimated result of �obs . The
estimated vector �est is calculated as follows.

�est = � ⋅ �T ⊗ � −1 ⋅ �T ⊗ �obs (3)

where ⊗ is a nonlinear operator and Euclidean metric is used
in this paper.
According to the similarity principle, if �obs is normal,

there will be high similarities between �obs and some vectors
in � , which leads to the small difference between �obs and
�est . By contrast, the difference will be larger if �obs is fault
data. The square prediction error (SPE) between �obs and �est
is used as the FD index of MSET and is defined as follows.

SPE(�) = �=1
� �est

� (�) − �obs
� (�)

2
� (4)

where �est
� and �obs

� are the elements in vector �est and �obs ,
respectively. When SPE is greater than the designed threshold,
the data is classified as fault data.
MSET's model updating strategy is incremental updating.

Specifically, the incremental data is added into � , and the
sample selection method is used to delete the redundant data.
The hyperparameter in MSET models is the threshold of the
redundant data and it takes 0.3 in this paper.

(3) One-class support vector machine (OCSVM)

The function @fitcsvm in MATLAB is used to train the
OCSVM model and all seven parameters are used. On the test
set, the function @predict is used to calculate the score of
OCSVM. If score ≥ 0 , the data is classified as the positive
class (normal), and if score < 0, it is classified as the negative
class (fault). The value of score indicates the confidence level
of the classification result. In this paper, the FD index scoreFD
of OCSVM is defined as follows.

scoreFD(�) =
0, score(�) ≥ 0
−score(�), score(�) < 0 (5)

where only the negative class is considered in the FD index
and greater scoreFD(�) means higher probability of being fault
data. When scoreFD is greater than the designed threshold, the
data is classified as fault data.
OCSVM's model updating strategy is retraining the entire

model online. Firstly, the entire training set is stored, and the
incremental data is added to the training set when the buffer is
full. Secondly, the new training set and @fitcsvm are used to
train a new OCSVM model. The hyperparameters of OCSVM
models are set to the default settings of the related functions in
MATLAB.

(4) Principal component analysis (PCA)

For the training of PCA model, firstly, the training data is
constructed as the matrix �tr and the covariance matrix � of
�tr is calculated. Secondly, calculate the eigenvalues �� and
eigenvectors �� of covariance matrix �, and arrange �� and ��
in descending order. Thirdly, �� of the first � eigenvalues are
used to construct the load matrix � = [�1, �2, ⋯, ��] . In this
paper, hyperparameter of PCA � = 3.
On the test set, the reconstructed vector �re of the input

vector �in is calculated as follows.

�re = �in��T (6)

Like MSET in (4), SPE between �in and �re is used as the FD
index of PCA.
PCA's model updating strategy is retraining the entire

model like OCSVM. Specifically, the new training set is used
to calculated a new load matrix �.

B. Comparative experiments
On the test set, the FD results of different FD algorithms are

shown in Fig. 7 to Fig. 10. The black dashed lines in the
figures are used to distinguish between normal and fault stages.
The red lines represent the FD thresholds. For fault alarms,
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considering the noise in SCADA data, if 30 consecutive FD
indexes exceed the threshold, it will issue a fault alarm.
As shown in Fig. 7 and Fig. 8, for both GKR and MSET,

after using the proposed IL method, the FD indexes become
more stable and there are fewer fault alarms in the normal
stage. When false negatives are not processed, although there
are fewer false alarms, the alarms in the fault stage also
decrease. As shown in Fig. 9, for OCSVM, the amplitude and
sensitivity of the FD indexes are improved after using the IL
method, which leads to fewer false alarms. As shown in Fig.
10, the FD results show little difference between the three
PCA models. As shown in the results of the fault alarms,
MSET and OCSVM models have better robustness to noise, as
they send fewer false alarms. On the other hand, GKR and
PCA models have poorer robustness to noise.

Following indicators are used to quantitatively evaluate the
performance of different FD models. ��� is used to evaluate
the performance in the normal stage and ��� is used to
evaluate the performance in the fault stage. ��� and ��� are
calculated as follows.

��� = �� �1 (7)

��� = �� �2 (8)

where �1 and �2 are the number of samples in the normal
and fault stage of test set, respectively. As shown in Tab. III,
�1 = 30,434 and �2 = 184,708 . �� is the number of false
positives that normal samples are misclassified as fault
samples, and �� is the number of true positives that fault
samples are correctly classified as fault samples.

(a) Conventional model (GKR) (b) Proposed IL method (GKR) (c) Do not process false negatives (GKR)

Fig. 7. Fault detection results of different GKR models.

(a) Conventional model (MSET) (b) Proposed IL method (MSET) (c) Do not process false negatives (MSET)

Fig. 8. Fault detection results of different MSET models.
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(a) Conventional model (OCSVM) (b) Proposed IL method (OCSVM) (c) Do not process false negatives (OCSVM)

Fig. 9. Fault detection results of different OCSVM models.

(a) Conventional model (PCA) (b) Proposed IL method (PCA) (c) Do not process false negatives (PCA)

Fig. 10. Fault detection results of different PCA models.

TABLE V
COMPARATIVE EXPERIMENTAL RESULTS OF DIFFERENT FD MODELS

Algorithm IL method Threshold C N ��� ��� T Calculation time
on test set

GKR

None 1.5 —— —— 6.66% 43.18% —— 0.6 s

Proposed method 0.6 6,000 20 4.16% 43.18% 20 13.5 s

Do not process false negatives 0.6 6,000 —— 3.59% 32.63% 28 14.5 s

MSET

None 0.19 —— —— 1.48% 45.26% —— 4.5 s

Proposed method 0.02 200 30 0.46% 45.26% 844 3058.1 s

Do not process false negatives 0.02 200 —— 0.35% 31.24% 887 3445.4 s

OCSVM

None 80 —— —— 2.04% 41.14% —— 5.5 s

Proposed method 80 5,000 30 1.20% 48.79% 28 4457.6 s

Do not process false negatives 80 5,000 —— 0.85% 46.18% 34 6462.1 s

PCA

None 2.1 —— —— 6.41% 41.61% —— 0.5 s

Proposed method 2.1 5,000 110 6.20% 43.18% 7 1.0 s

Do not process false negatives 2.1 5,000 —— 6.02% 35.11% 33 1.8 s
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The evaluation indicators of different FD models are shown
in Tab. V. In the table, C is the capacity of the data buffer and
N is the identification scope of false negatives. T is the
updating times of FD models and is used to evaluate the
updating frequency. For the GKR models, the median of these
indicators in 500 repeated experiments are shown. The
runtime of the experiments is MATLAB 2023b, i7-10700
CPU and 16GB RAM.
As shown in Tab. V, for GKR and MSET, models with IL

have lower ��� than the conventional models when they have
the same ��� . For OCSVM and PCA, the IL method can
improve both the ��� and ��� . If false negatives are not
processed, the ��� of GKR, MSET, OCSVM, and PCA
slightly decrease by 0.57% (4.16%-3.59%), 0.11% (0.46%-
0.35%), 0.35% (1.20%-0.85%), and 0.18% (6.20%-6.02%),
respectively. However, the ��� of the four models decrease a
lot by 10.55% (43.18%-32.63%), 14.02% (45.26%-31.24%),
2.61% (48.79%-46.18%), and 8.07% (43.18%-35.11%),
respectively, which proves that the processing of false
negatives has a significant improvement on ��� . Under the
noise shown in Fig. 6, MSET and OCSVM models show
better robustness, as their ��� is below 2.1%. On the other
hand, GKR and PCA models show poorer robustness, as their
��� is above 3.5%.
For the computational complexity, when the IL method is

not used, the calculation time of the four models is short
because model updating is not needed. When using the IL
method, the calculation time of GKR and PCA models is still
short, because of the low update frequency and the fast
incremental updating or re-training speed. On the other hand,
the calculation time of MSET and OCSVM models with IL
increases a lot, because the update frequency of MSET is high
and the re-training speed of OCSVM is slow. Besides the
effect on ��� and ���, processing false negatives can lower
the updating frequency of models to lower the calculation time.
Besides the real-time curves of FD indexes and fault alarms,

daily reports of fault alarms are often used in practical
applications, which record the ��� within one day. For
MSET models, the daily reports of fault alarms in the fault
stage of the test set are shown in Fig. 11. In the figure, there
are no records from 11-13 to 11-15 because less than 10% of
SCADA data remains after data pre-processing.
As shown in Fig. 11, for the MSET model using the IL

method, the ��� at 11-07, 11-10, 11-12 and 11-17 exceed
75%, which means the gearbox fault can be detected at least 5
to 10 days earlier than the recorded fault start time 11-17.
However, when false negatives are not processed, ���
decreases a lot on all days.

C. FD threshold selection
For the conventional FD models, their FD thresholds are

selected based on the receiver operating characteristic (ROC)
curves, where the horizontal axis is the ��� on the test set and
the vertical axis is the ���. The ROC curves used are drawn
based on the variations of the ��� and ��� with different FD
thresholds. For example, the ROC curves of MSET and
OCSVM models are shown in Fig. 12.

Fig. 11. Daily reports of fault alarms for MSET models.

(a) ROC curve of MSET model

(b) ROC curve of OCSVM model

Fig. 12. ROC curves and FD threshold selections of MSET
model and OCSVM model.

According to the properties of the ROC curve, the better the
model performance, the closer the points on the curve are to
(0,1). Additionally, considering the difficulty in accepting
high FAR in practical applications, the optimal regions shown
in Fig. 12 are determined. The FD thresholds are selected in
the optimal regions, with the threshold of MSET being 0.19
and the threshold of OCSVM being 80, which leads to lower
FAR and acceptable FDR.
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For the FD models with IL, firstly thresholds used in the
conventional models are selected, and the ��� and ��� of
the IL models are calculated. Compared to the conventional
model, if the ��� of the IL model decreases and the ���
increases, the threshold used in the conventional model still
will be selected for the IL model, like OCSVM and PCA. If
the ��� and ��� of the IL model both decrease compared to
the conventional model, the threshold will be adjusted until
the IL model and the conventional model have the same ���
to compare the performance on the same baseline, like GKR
and MSET.

D. Hyperparameter experiments
There are two hyperparameters in the proposed IL method:

the capacity of the data buffer C and the identification scope
of false negatives N. The two hyperparameters can affect the
performance of FD models in different ways. Therefore,
hyperparameter experiments and sensitivity analysis are
performed on two different FD algorithms, GKR and MSET.
The experimental results on GKR models are shown in Tab.
VI and Tab. VII.

TABLE VI
EXPERIMENTAL RESULTS OF HYPERPARAMETER C ON GKR

C ��� ��� T

15,000 6.75% 53.03% 7

12,000 4.42% 43.03% 10

8,000 4.23% 42.35% 15

6,000 (baseline) 4.16% 43.18% 20

5,000 4.20% 42.01% 25

4,000 4.18% 38.07% 31

2,000 4.27% 24.77% 64

TABLE VII
EXPERIMENTAL RESULTS OF HYPERPARAMETER N ON GKR

N ��� ��� T

80 6.48% 51.12% 8

60 5.16% 43.98% 12

40 4.73% 41.85% 16

30 4.33% 42.49% 18

20 (baseline) 4.16% 43.18% 20

10 3.61% 41.11% 24

5 3.86% 33.48% 25

As shown in Tab. VI, on the whole, greater C means a
lower update frequency, higher ���, and higher ���. And as
shown in Tab. VII, greater N means more data will be
classified as false negatives during updating, which leads to a
lower update frequency, higher ���, and higher ���.

For the sensitivity analysis of GKR, when C is within the
range of 5,000 to 12,000, ��� is within the range of 4.16% to
4.42% and ��� is within the range of 42.01% to 43.18%,
which are relatively stable. When N is within the range of 10
to 40, ��� is within the range of 3.61% to 4.73% and ��� is
within the range of 41.11% to 43.18%, which are relatively
stable.
The experimental results on MSET models are shown in

Tab. VIII and Tab. IX.

TABLE VIII
EXPERIMENTAL RESULTS OF HYPERPARAMETER C ONMSET

C ��� ��� T

5,000 0.77% 48.09% 32

2,000 0.56% 46.45% 83

1,000 0.51% 45.81% 168

400 0.49% 44.15% 422

200 (baseline) 0.46% 45.26% 844

100 0.43% 44.12% 1696

50 0.38% 44.67% 3400

TABLE Ⅸ
EXPERIMENTAL RESULTS OF HYPERPARAMETER N ONMSET

N ��� ��� T

80 0.60% 47.84% 797

60 0.56% 45.79% 811

40 0.48% 45.21% 836

30 (baseline) 0.46% 45.26% 844

20 0.48% 44.60% 852

10 0.44% 41.71% 865

5 0.39% 40.24% 871

As shown in Tab. VIII, compared with GKR, the effect of C
on the performance of MSET models is the same, but a higher
update frequency is needed for MSET. As shown in Tab. IX,
the effect of N on the ��� and ��� of MSET models is the
same as that of GKR, but the effect on the update frequency is
relatively less.
For the sensitivity analysis of MSET, when C is within the

range of 50 to 2,000, ��� is within the range of 0.38% to
0.56% and ��� is within the range of 44.12% to 46.45%,
which are relatively stable. When N is within the range of 20
to 80, ��� is within the range of 0.46% to 0.60% and ��� is
within the range of 44.60% to 47.84%, which are relatively
stable. Compared to GKR, the optimal ranges of
hyperparameters are wider for MSET, which shows better
adaptability in practical applications.
According to the above results, the two hyperparameters

have similar effects on the performance of FD models, that is,
greater values lead to a lower update frequency, higher FAR,
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and higher FDR. The recommended selection strategy of the
hyperparameters is to first choose a greater C to lower
calculation time under the premise that the FAR and FDR are
acceptable, and then optimize N to improve the FAR and FDR.

E. Early stopping experiments
In the above experiments, the FD models with IL will keep

updating online until WT is shut down for maintenance due to
the gearbox fault at 11-17. After the potential faults are
detected, if the FD models can stop updating earlier than
passive stopping, their performance will be improved because
of less error accumulation caused by false negatives.
The results of early stopping experiments on different FD

models are shown in Tab. X, which stops updating instantly
when potential faults are detected at 10-28. In the table, ���
and T are the results without stopping updating, and ��� ∗
and T* are the results with stopping updating. PCA is not
included because it is not updated after 10-28.
As shown in Tab. X, stopping updating earlier can

higher ��� and lower the computational costs. However,
instantly stopping is infeasible in practical applications,
because it may lead to unexpected stopping in the normal
stage. The recommended early stopping timing is to stop
updating after obtaining reliable FD results, which leads to
inevitable delay compared with instantly stopping and will
weaken its positive effect. For MSET, the experimental results
of the different delays in early stopping are shown in Tab. XI.
As shown in Tab. XI, the longer the delay, the greater the

decrease in ��� , and the result of a delay of less than two
days is close to that of instantly stopping, while the result of a
delay of four days is close to that of no stopping.

TABLE X
RESULTS OF DIFFERENT FD ALGORITHMS WHEN EARLY

STOPPING

Algorithm ��� ��� ∗ T T*

GKR 43.18% 46.99% 20 19

MSET 45.26% 48.62% 844 799

OCSVM 48.79% 51.09% 28 20

TABLE XI
RESULTS OF DIFFERENT DELAYS OF EARLY STOPPING FOR

MSET
Delay of early stopping ��� T

No delay 48.62% 799

One day-delay 47.98% 800

Two days-delay 47.36% 803

Four days-delay 45.52% 811

Based on the above experimental results, for the early
stopping of FD models with IL in practical applications, the
recommended strategy is to use the daily reports of the FDR
shown in Fig. 11. For example, if the FDR exceeds 40% for

two consecutive days, the FD models will automatically stop
updating.

VI. CONCLUSION
A novel IL method is proposed to improve the performance

of WT FD models under TVOC. A data buffer is built to cache
some new data used in model updating. A processing strategy
for false negatives is proposed to weaken the error
accumulation, which leads to a continuous decrease in the
FDR of FD models during online updating.
Using a real-world SCADA dataset of WT, the results show

that the proposed IL method can lower the FAR of FD models
and can work on different FD algorithms. Additionally, the
processing of false negatives can significantly improve the
FDR of FD models. The results of hyperparameter and early
stopping experiments show that the proposed IL method has
good potential for practical applications.
Future research will focus on optimizing the update

frequency of WT FD models with IL, such as event-triggered
updating, to improve computational efficiency.

REFERENCES
[1] H. Badihi, Y. Zhang, B. Jiang, P. Pillay, and S. Rakheja, "A

Comprehensive Review on Signal-Based and Model-Based Condition
Monitoring of Wind Turbines: Fault Diagnosis and Lifetime Prognosis,"
Proc. IEEE, vol. 110, no. 6, pp. 754-806, 2022.

[2] X. Jin, Z. Xu, and W. Qiao, "Condition Monitoring of Wind Turbine
Generators Using SCADA Data Analysis," IEEE Trans. Sustain. Energy,
vol. 12, no. 1, pp. 202-210, 2021.

[3] Q. Lu, W. Ye, and L. Yin, "ResDenIncepNet-CBAM with principal
component analysis for wind turbine blade cracking fault prediction with
only short time scale SCADA data," Measurement, vol. 212, p. 112696,
2023.

[4] L. Xiang, P. Wang, X. Yang, A. Hu, and H. Su, "Fault detection of wind
turbine based on SCADA data analysis using CNN and LSTM with
attention mechanism,"Measurement, vol. 175, p. 109094, 2021.

[5] Q. He, Y. Pang, G. Jiang, and P. Xie, "A Spatio-Temporal Multiscale
Neural Network Approach for Wind Turbine Fault Diagnosis With
Imbalanced SCADA Data," IEEE Trans. Ind. Inform., vol. 17, no. 10, pp.
6875-6884, 2021.

[6] S. Sun, W. Hu, Y. Liu, T. Wang, and F. Chu, "Matching contrastive
learning: An effective and intelligent method for wind turbine fault
diagnosis with imbalanced SCADA data," Expert Syst. Appl., vol. 223, p.
119891, 2023.

[7] M. Schlechtingen, I. F. Santos, and S. Achiche, "Wind turbine condition
monitoring based on SCADA data using normal behavior models. Part 1:
System description," Appl. Soft. Comput., vol. 13, no. 1, pp. 259-270,
2013.

[8] M. Schlechtingen and I. F. Santos, "Wind turbine condition monitoring
based on SCADA data using normal behavior models. Part 2: Application
examples," Appl. Soft. Comput., vol. 14, pp. 447-460, 2014.

[9] G. Zhang, Y. Li, W. Jiang, and L. Shu, "A fault diagnosis method for
wind turbines with limited labeled data based on balanced joint adaptive
network," Neurocomputing, vol. 481, pp. 133-153, 2022.

[10]G. Liu, J. Si, W. Meng, Q. Yang, and C. Li, "Wind Turbine Fault
Detection With Multimodule Feature Extraction Network and Adaptive
Strategy," IEEE Trans. Instrum. Meas., vol. 72, pp. 1-13, 2023.

[11]Y. Zhang, Y. Han, C. Wang, J. Wang, and Q. Zhao, "A dynamic threshold
method for wind turbine fault detection based on spatial-temporal neural
network," J. Renew. Sustain. Energy, vol. 14, no. 5, p. 053304, 2022.

[12]X. Jin, H. Pan, C. Ying, Z. Kong, Z. Xu, and B. Zhang, "Condition
Monitoring of Wind Turbine Generator Based on Transfer Learning and
One-Class Classifier," IEEE Sens. J., vol. 22, no. 24, pp. 24130-24139,
2022.

[13]W. Liu and H. Ren, "A novel wind turbine health condition monitoring
method based on common features distribution adaptation," Int. J. Energy
Res., vol. 44, no. 11, pp. 8681-8688, 2020.

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3458051

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on September 18,2024 at 02:09:27 UTC from IEEE Xplore.  Restrictions apply. 



4
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT
[14]G. Jiang, W. Li, W. Fan, Q. He, and P. Xie, "TempGNN: A Temperature-

Based Graph Neural Network Model for System-Level Monitoring of
Wind Turbines With SCADA Data," IEEE Sens. J., vol. 22, no. 23, pp.
22894-22907, 2022.

[15]X. Liu, J. Du, and Z. Ye, "A Condition Monitoring and Fault Isolation
System for Wind Turbine Based on SCADA Data," IEEE Trans. Ind.
Inform., vol. 18, no. 2, pp. 986-995, 2022.

[16]Y. Luo, L. Yin, W. Bai, and K. Mao, "An Appraisal of Incremental
Learning Methods," Entropy, vol. 22, no. 11, p. 1190, 2020.

[17]B. Chen, S. Yu, Y. Yu, and Y. Zhou, "Acoustical damage detection of
wind turbine blade using the improved incremental support vector data
description," Renew. Energy, vol. 156, pp. 548-557, 2020.

[18]J. Yuan, Z. Liang, R. Wang, Y. Li, Z. Wang, and J. Gao, "A novel self-
learning framework for fault identification of wind turbine drive
bearings," Proceedings of the Institution of Mechanical Engineers, Part I:
Journal of Systems and Control Engineering, vol. 237, no. 7, pp. 1296-
1312, 2023.

[19]Z. Wang, C. Liu, and F. Yan, "Condition monitoring of wind turbine
based on incremental learning and multivariate state estimation
technique," Renew. Energy, vol. 184, pp. 343-360, 2022.

[20]Y. Zhou, X. Tian, C. Zhang, Y. Zhao, and T. Li, "Elastic weight
consolidation-based adaptive neural networks for dynamic building
energy load prediction modeling," Energy Build., vol. 265, p. 112098,
2022.

[21]Y. Yang, B. Chen, and H. Liu, "Bayesian compression for dynamically
expandable networks," Pattern Recognit., vol. 122, p. 108260, 2022.

[22]J. Zheng, H. Xiong, Y. Zhang, K. Su, and Z. Hu, "Bearing Fault
Diagnosis via Incremental Learning Based on the Repeated Replay Using
Memory Indexing (R-REMIND) Method," Machines, vol. 10, no. 5, p.
338, 2022.

[23]J. Kirkpatrick et al., "Overcoming catastrophic forgetting in neural
networks," Proceedings of the National Academy of Sciences, vol. 114, no.
13, pp. 3521-3526, 2017.

[24]Z. Yang and Z. Ge, "On Paradigm of Industrial Big Data Analytics: From
Evolution to Revolution," IEEE Trans. Ind. Inform., vol. 18, no. 12, pp.
8373-8388, 2022.

[25]M. Zheng, J. Man, D. Wang, Y. Chen, Q. Li, and Y. Liu, "Semi-
supervised multivariate time series anomaly detection for wind turbines
using generator SCADA data," Reliab. Eng. Syst. Saf., vol. 235, p. 109235,
2023.

[26]Z. Wang, X. Jin, and Z. Xu, "An Adaptive Condition Monitoring Method
of Wind Turbines Based on Multivariate State Estimation Technique and
Continual Learning," IEEE Trans. Instrum. Meas., vol. 72, pp. 1-9, 2023.

[27]N. N. Smirnov, V. B. Betelin, V. F. Nikitin, L. I. Stamov, and D. I.
Altoukhov, "Accumulation of errors in numerical simulations of
chemically reacting gas dynamics," Acta Astronaut., vol. 117, pp. 338-
355, 2015.

[28]R. Eschbach and M. Pedersen, "On Large Local Error Accumulation in
Multilevel Error Diffusion," J. Imaging Sci. Technol., vol. 60, no. 6, pp.
060403-1-060403-9, 2016.

[29]X. Liu, Q. Zhou, X. Chen, L. Fan, and C. Cheng, "Bias-Error
Accumulation Analysis for Inertial Navigation Methods," IEEE Signal
Process. Lett., vol. 29, pp. 299-303, 2022.

[30]M. Qian, Y. Li, and T. Han, "Positive-Unlabeled Learning-Based Hybrid
Deep Network for Intelligent Fault Detection," IEEE Trans. Ind. Inform.,
vol. 18, no. 7, pp. 4510-4519, 2022.

[31]A. Wang, Z. Qian, Y. Pei, and B. Jing, "A de-ambiguous condition
monitoring scheme for wind turbines using least squares generative
adversarial networks," Renew. Energy, vol. 185, pp. 267-279, 2022.

[32]Z. Li, S. Bao, X. Peng, and L. Luo, "Fault detection and diagnosis in
multivariate systems using multiple correlation regression," Control Eng.
Practice, vol. 116, p. 104916, 2021.

[33]C. Cui, W. Lin, Y. Yang, X. Kuang, and Y. Xiao, "A novel fault measure
and early warning system for air compressor," Measurement, vol. 135, pp.
593-605, 2019.

[34]Z. Wang and C. Liu, "Wind turbine condition monitoring based on a
novel multivariate state estimation technique," Measurement, vol. 168, p.
108388, 2021.

[35]Y. Lv, F. Fang, T. Yang, and C. E. Romero, "An early fault detection
method for induced draft fans based on MSET with informative memory
matrix selection," ISA Trans., vol. 102, pp. 325-334, 2020.

[36]S. Su, Y. Sun, L. Li, C. Peng, H. Zhang, and T. Zhang, "Risk Warning for
Aircraft Bleed Air System with Multivariate State Estimation Technique,"
Journal of Aerospace Information Systems, vol. 19, no. 8, pp. 550-564,
2022.

[37]C. Li, D. Cabrera, F. Sancho, M. Cerrada, R. Sánchez, and E. Estupinan,
"From fault detection to one-class severity discrimination of 3D printers
with one-class support vector machine," ISA Trans., vol. 110, pp. 357-367,
2021.

[38]K. Zhang, B. Tang, L. Deng, and X. Yu, "Fault Detection of Wind
Turbines by Subspace Reconstruction-Based Robust Kernel Principal
Component Analysis," IEEE Trans. Instrum. Meas., vol. 70, pp. 1-11,
2021.

Ziqi Wang received the B.Eng. Degree
and Ph.D. degree in control science and
engineering from North China Electric
Power University, Beijing, China, in
2017 and 2022, respectively.
He is currently a Postdoctoral

Researcher with the College of Control
Science and Engineering, Zhejiang
University, Zhejiang, China. His research

interests include data analysis and data-driven modeling in
wind turbine condition monitoring.

Xiaohang Jin (Senior Member, IEEE)
received the Ph.D. degree in electronic
engineering from the City University of
Hong Kong, Hong Kong, China, in 2014.
Since 2014, he has been with the

Zhejiang University of Technology,
where he is currently an Associate
Professor with the College of Mechanical
Engineering. His research interests

include intelligent manufacturing, condition monitoring,
prognostics and health management.

Zhengguo Xu (Member, IEEE) received
the B.S. degree in electrical engineering
from Changsha Electric Power University,
Changsha, China, in 2002, and the M.S.
and Ph.D. degrees in control science and
engineering from Tsinghua University,
Beijing, China, in 2009.
He is currently a Professor with the

College of Control Science and
Engineering, Zhejiang University, Hang Zhou, Zhejiang,
China. His research interests include data analysis and
artificial intelligence applications in energy systems, fault
diagnosis and prediction, and reliability analysis.

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2024.3458051

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Science and Tech Beijing. Downloaded on September 18,2024 at 02:09:27 UTC from IEEE Xplore.  Restrictions apply. 


