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ABSTRACT: Macrocyclic peptides are an important class of
therapeutic agents for the biological targets that are difficult to
modulate by small-molecule compounds. Meanwhile, DNA-encoded
library technology (DELT) provides a powerful platform for hits
discovery. The unity of both fields has proven highly productive in
finding cyclic peptide hits against diverse pharmaceutical proteins.
Many researchers have extended the chemical toolbox for
constructing head-to-tail macrocyclic DNA-encoded libraries with
various ring sizes. However, the linear peptides of different lengths necessitate tuning the distance between closing sites and DNA-
linked sites to perform the macrocyclization process, presumably due to the constrained conformation of linear precursors. To tackle
this issue and streamline the synthetic workflow, we report a two-directional synthesis strategy. This method starts from a
trifunctional reagent and prepares DNA-linked macrocyclic peptides of ring size between 15 (5-mer) and 24 (8-mer) via amide bond
formation reaction, a common method to create macrocyclic peptides.

Cyclic peptides are frequently exhibited in many bioactive
natural products as well as therapeutic candidates for

modulating the challenging protein−protein interactions with
high affinity and specificity.1−4 Compared to their linear
counterparts, the peptide macrocycles have increased resist-
ance to proteolysis with decreased conformational freedom
and therefore stabilize their three-dimensional assemblies.
Modern drug discovery commonly adopts screening chemical
compound collections by the high-throughput screening
platform (HTS),5,6 which is commonly followed by a general
work flow of library production, separate biological assay, and
hits optimization. However, HTS is flawed by high operational
cost and time-intensive labor, making it only suitable to big
pharmaceutical companies.
Delightedly, DNA-encoded library technology (DELT)7

offers an alternative and efficient small molecule selection
platform for hits identification. DELT is an organized
campaign containing the preparation of DNA-encoded libraries
(DEL), affinity selection against protein targets, data analysis,
and off-DNA hit confirmation, enabling a streamlined
workflow to easily assemble and interrogate billions of DNA-
tagged compounds and successfully identifying numerous hits
against various disease-relevant protein targets. Since the very
early days of DELT, scientists have made enormous efforts to
sample various DNA-encoded cyclic peptide libraries to
accelerate the development of cyclic peptide hits8 (Figure 1).
Zhu et al. in GSK9 reported a DNA-encoded macrocyclic
library synthesized by six cycles of chemistry and cyclized via a
CuAAc reaction, resulting in a library size of 2.4 × 1012 which
is the largest DNA-encoded library ever reported. From this
DEL, several hits were identified and confirmed against two

protein−protein interaction targets, VHL and RSV N protein.
Neri, Scheuermann, and co-workers10 also published a DNA-
encoded macrocyclic library cyclized by the CuAAc reaction.
This encoded library utilized a single-stranded DNA coding
strategy, allowing it to be screened by both affinity capture and
photo-cross-linking methods. The selections yielded specific
binders against serum albumins, carbonic anhydrases, and
NKp46. Researchers from Ensemble Therapeutics and Bristol-
Myers Squibb designed and synthesized a DNA-programmed
library of 160,000 cyclic peptidomimetics and identified
macrocyclic XIAP antagonists through affinity selection
screening.11 The Gillingham group12 synthesized a macrocyclic
library using the amide bond formation reaction to complete
the macrocyclization. Its affinity selection against AGP
generated a binder with a micromolar dissociation constant
(7 μM). The Liu lab revealed their second-generation DNA-
templated macrocycle libraries via Wittig cyclization, and the in
vitro selections against various targets resulted in several potent
inhibitors with nanomolar activities.13−16 In 2021, Lu, Chen,
and co-workers17 developed an efficient palladium-catalyzed
intramolecular S-arylation reaction for preparing an 8-million-
member tetrameric cyclic peptide DNA-encoded library. An
affinity selection of this library against p300 identified two
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potential inhibitors with single-digit micromolar activity. In
addition, the on-DNA Ru-promoted ring-closing metathe-
sis18,19 and thioether cyclization reaction20 are also viable to be
employed to prepare DNA-encode macrocyclic libraries.
The overall goal in DEL campaigns is to obtain as much

selection information as possible to understand the structure-
binding relationship (SBR) for hits identification and further
optimization. It necessitates construction of the libraries with
different ring sizes and various monomers. Our lab has been
devoted to the macrocyclization of DNA-encoded libraries and
has studied various cyclization methods, including the
commonly used amide bond formation reaction. Convention-
ally, the DNA tag was linked to the “head” amino acid, and the
linear peptide was constructed via one-directional workflow,
followed by cyclization by cross-linking the functional side
chains of both the “head” and “tail” amino acids. However,
during the investigation, we found that some cyclic precursors
with certain lengths failed to proceed in this way, presumably

due to the improper conformations caused by the DNA tag. To
address this issue, adjusting the conformation of the cyclic
precursors by tuning the distance between closing sites and the
DNA tag is necessary. It is going to be a tedious process for
ensuring cyclic efficiency via a one-directional synthesis
workflow. Herein, we revealed a two-directional synthesis
strategy in this paper, in which the DNA tag was linked to a
trifunctional reagent, followed by linking the monomers to
either the N-terminal or C-terminal purposefully to build the
linear precursors for macrocyclization (Scheme 1).
We commenced our study by treating the double-strand

DNA “headpiece” with azidoacetic acid to produce DNA-
linked azide 1 under the standard HATU/DIPEA acylation
condition. Further transformation proceeded smoothly with
the critical trifunctional reagent propargylglycine to generate
the essential DNA-linked compound 2 with excellent
conversion (Scheme 2A). 2 was then used as a common
starting point to grow the peptide sequence from C/N

Figure 1. Reported DNA-encoded macrocyclic libraries and DNA-compatible ring-closure reactions.

Scheme 1. Schematic Workflows of One-Directional Synthesis and Two-Directional Synthesis
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terminals which was followed by macrocyclization to furnish
the DNA-conjugated cyclic peptides. The different distances
between N/C terminals and DNA-linked site were achieved by
BBs attached to the N/C terminals. The general on-DNA
synthetic protocols were outlined in Scheme 2B through the
production of an exemplary DNA-linked cyclic peptide 7g. The
linear peptide growing from the N-terminal was achieved by
iterative acylation with Fmoc-protected amino acids under the
standard HATU/DIPEA coupling−Fmoc deprotection proto-
col, which is marked in red. These synthetic reactions
proceeded smoothly with excellent conversion. However, the
acylation of the C-terminal presented inherent challenges for
activating the DNA-linked acid functional group. Conse-
quently, a large excess of reagents (1000 equiv of amino acid
ester marked in blue, 1000 equiv of DMTMM, and 2100 equiv
of NMM) with dilute reaction concentration (70 μM) were
performed to completely modify the acid group. Hydrolysis of

both the methyl ester and de-Fmoc could be achieved by
piperidine, and the resulting primary amine and the carboxylic
acid were used to close the peptide ring (marked in green)
with large excess DMTMM (6000 equiv) at a highly diluted
reaction concentration (52 μM). It is worth noting that the
excess DMTMM reagent reacted with the 5′-OH of the
headpiece to give a side product (Scheme 2C, +139), which
was subsequently eliminated with 10% piperidine solution.
Having established the streamlined peptide construction

procedure, we next explored the cyclization efficiency of DNA-
linked cyclic peptides with ring sizes from 12 to 24 containing
different distances between N/C terminals and DNA-linked
site. As illustrated in Scheme 3, five exemplary DNA-linked
cyclic peptides were initially prepared in which the trifunc-
tional reagent provided both the DNA-linked site and the C
terminal. Unexpectedly, the cyclic peptides 7a, 7c, and 7d, with
ring sizes 12, 18, and 21, respectively, failed to be produced.

Scheme 2. (A) Synthesis of the Starting Point 2. (B) Streamlined Synthesis for an Exemplary DNA-Linked Cyclic Peptide 7g.
(C) Final Treatment with 10% Piperidine to Yield the Final Product 7g

Scheme 3. Cyclization of the DNA-Linked Linear Peptides in Which All the Building Blocks Were Introduced from the N-
Terminal
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Scheme 4. Cyclization of a Wide Range of Model Macrocycles

Scheme 5. Proof-of-Concept Synthesis with Functionalized Amino Acids
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These cyclic precursors necessitated fine-tuning the distance by
transferring at least one AA monomer from the N terminal to
the C terminal.
As illustrated in Scheme 4, the exemplary linear peptides

were prepared with at least one monomer linked to the C
terminal. No desired tetrameric cyclic peptide 7f was observed,
presumably due to the constrained conformation of the small
ring. To our delight, the macrocycles 7g−7x of different ring
sizes and distance between closing and DNA-linked sites were
prepared with moderate to good yields. We believe both the
ring size and the conformation of linear peptide precursors
influenced the macrocyclization efficiency. These proof-of-
concept results demonstrated the practical potential for
preparing a wide range of DNA-encoded cyclic peptide
libraries via a two-directional synthetic workflow.
Furthermore, we conducted a scope study for functionalized

amino acids based on the skeleton of 7g (Scheme 5). When
changing the Gly to Ile, Leu, and Phe, 8a−8c were prepared
separately with moderate conversions. By contrast, 8d−8f were
produced with higher conversions when translating Ala to
functionalized amino acids. This result inspired us to
incorporate diverse amino acids into N-terminal for the design
of macrocyclic DNA-encoded libraries. Meanwhile, the side
chain indole in Trp (8d) was tolerated in the synthetic
workflow, whereas nucleophilic groups such as carboxylic acid
(Glu in 8e), primary amine (Lys in 8f), and guanidine (Arg in
8f) need to be protected.
Finally, a proof-of-concept experiment was carried out to

ensure its applicability in DEL synthesis (Scheme 6). An 8-bp

double-stranded headpiece DNA was used as starting material
to construct 7g via optimized conditions. The product was
then sequentially tagged with bar-coding DNA sequences
(primer, tag 1, tag 2, tag 3, and closing primer) by enzymatic
ligation to achieve a 52-bp-long DNA-linked product 10. Each
step afforded conversion of 90% by mass spectrometric analysis
(see Figures S75−S83). The ligation product was then
identified by Sanger sequencing, and no mutated base was
found. Altogether, these results confirmed the feasibility of our
on-DNA macrocyclization for DELs synthesis.

■ CONCLUSION
In summary, we have successfully demonstrated an operation-
ally simple methodology to assemble macrocyclic peptide

DNA-encoded libraries via two-directional synthesis. This
strategy circumvents the issue caused by DNA tags and then
enables the macrocyclization of linear precursors of different
lengths. The scope exploration also showed that the reported
protocol was reasonably broad, supporting its feasibility for
library preparation. Our exploration exhibited here provides
another tool to further expand the accessible chemical space by
DNA-encoded libraries, with the potential to afford more
comprehensive structure-binding information. Furthermore,
we expect to expand this strategy to other fields, such as
peptide optimization and PROTACs, and the corresponding
work is currently ongoing.
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