Supporting Information

Novel Conversion of 1,2-Disubstituted *cis*-Epoxides to One Carbon Homologated Allylic Alcohols Using Dimethyl Sulfonium Methylide

Lilian Alcaraz*, Andrew Cridland, Elizabeth Kinchin

Department of Medicinal Chemistry, AstraZeneca R&D Charnwood, Bakewell Road, Loughborough LE12 5HY, Leics

Lilian.Alcaraz@astrazeneca.com

General

ⁿBuLi solutions and anhydrous THF were purchased from Aldrich. All reactions were conducted in heatdried glassware under an atmosphere of high purity nitrogen. Solvent removal was carried out using a rotary evaporator connected to a dry ice condenser. Column chromatography was performed on silica cartridges. ¹H and ¹³C NMR spectra were obtained from either a 300 MHz (¹H: 300 MHz, ¹³C: 75 MHz) or 400 MHz (¹H: 400 MHz, ¹³C: 100 MHz) Varian Unity Inova spectrometer. ¹H and ¹³C shifts are given in ppm, δ scale and are measured relative to tetramethylsilane as standard. Mass spectra were recorded on a Hewlett Packard HP 6890 or HP5973 MSD instrument. Optical rotation were recorded on an Optical Activity Ltd AA-1000 polarimeter.

3-methyl-3-buten-2-ol¹

Colorless liquid; 91% yield; ¹H NMR (300 MHz, CDCl₃): δ_{ppm} 4.97 (s, 1H, C=CH*H*), 4.80 (s, 1H, C=C*H*H), 4.25 (apparent quintet, 1H, *J* = 5.8 Hz, C*H*OH), 1.75 (s, 3H, CCH₃), 1.45 (d, 1H, *J* = 4.0 Hz, OH), 1.29 (d, 3H, *J* = 6.5 Hz, CHC*H*₃); ¹³C NMR (CDCl₃, 100 MHz): δ_{ppm} 148.9, 109.5, 71.5, 21.7, 17.8.

In agreement with reference 1.

8-methylene tetradecan-7-ol

Colorless oil; 88% yield; ¹H NMR (300 MHz, CDCl₃): δ_{ppm} 5.00 (s, 1H, C=CH*H*), 4.83 (d, 1H, *J* = 1.3 Hz, C=C*H*H), 4.06 (dt, 1H, *J* = 7.2 and 4.7 Hz, C*H*OH), 2.02 (apparent nontuplet, 2H, *J* = 8.0 Hz, C*H*₂C=CH₂), 1.62-1.40 (m, 6H, 3CH₂), 1.34-1. 29 (m, 12H, 6CH₂), 0.89-0.86 (m, 6H, 2CH₃); ¹³C NMR (CDCl₃, 75 MHz): δ_{ppm} 152.4, 109.0, 75.5, 35.5, 31.8, 31.76, 31.4, 29.2(2C), 28.0, 25.7, 22.6(2C), 14.1(2C). MS (EPCI) *m/z* (rel %) 226 (1), 208 (1), 141 (54), 71 (100). Anal. Calc. for C₁₅H₃₀O C, 79.58; H, 13.36. Found: C, 79.65; H, 13.39.

Colorless oil; 90% yield; ¹H NMR (300 MHz, CDCl₃): δ_{ppm} 7.38-7.28 (m, 10H, Ar-H), 5.32 (s, 1H, C=CH*H*), 5.24 (s, 1H, C=C*H*H), 4.56 (s, 2H, ArCH₂), 4.49 (s, 2H, ArCH₂), 4.45 (app. quint., 1H, *J* =4.1 Hz, *CH*OH), 4.06 (s, 2H, CH₂C=CH₂), 3.64 (dd 1H, J = 3.6 and 9.5 Hz, CH*H*CHOH), 3.49 (dd, 1H, *J* = 9.5 and 8.7 Hz, *CH*HCHOH), 2.70 (d, 1H, J = 2.4 Hz, OH); ¹³C NMR (CDCl₃, 75.4 MHz): δ_{ppm} 144.4, 138.0, 137.9, 128.5 (2C), 128.4 (2C), 127.8 (3C), 127.8 (2C), 127.7, 114.9, 73.5, 73.4, 72.3, 72.0, 71.3. HRMS Calcd. for C₁₉H₂₃O₃ *m/z* 299.1647, found: 299.1654.

2-methylene cyclopentanol²

Colorless oil; 91% yield; ¹H NMR (300 MHz, CDCl₃): δ_{ppm} 5.14 (d, 1H, *J* = 2.4 Hz, C=C*H*H), 5.02 (d, 1H, *J* = 2.4 Hz, C=CH*H*), 4.42 (app. q, 1H, *J* = 4.8 Hz, C*H*OH), 2.56-2.41 (m, 1H, CH*H*C=CH₂), 2.38-2.25 (m, 1H, C*H*HC=CH₂), 2.01-1.75 (m, 2H, C*H*₂CHOH), 1.74-1.50 (m, 2H, CH₂C*H*₂CH₂), 1.42 (d, 1H, J=5.4Hz, OH); ¹³C NMR (CDCl₃, 100 MHz): δ_{ppm} 155.3, 107.5, 75.1, 35.6, 30.3, 21.7.

In agreement with reference 2.

Tetrahydro-4-methylene-3-furanol

Colorless oil; 92 % yield; ¹H NMR (300 MHz, CDCl₃): δ_{ppm} 5.35-5.33 (m, 1H, C=CH*H*), 5.15 (app. q, 1H, *J* = 2.0 Hz, C=C*H*H), 4.62-4.56 (m, 1H, *CH*OH), 4.50 (dt, 1H, *J* = 13.5 and 2.0 Hz, CH*H*C=CH₂), 4.28 (dt, 1H, *J* = 13.5 and 2.4 Hz, C*H*HC=CH₂), 3.93 (dd, 1H, *J* = 5.0 and 9.9 Hz, CH*H*CHOH), 3.78 (dd, 1H, *J* = 9.9 and 3.3 Hz, C*H*HCHOH), 1.74 (d, 1H, *J* = 6.5 Hz, OH); ¹³C NMR (CDCl₃, 75 MHz): δ_{ppm} 150.4, 107.9, 75.1, 72.7, 70.0. Anal. Calc. for C_sH_sO₂ C, 59.98; H, 8.05. Found: C, 60.14; H, 8.21.

tert-butyl 3-hydroxy-4-methylene-1-pyrrolidinecarboxylate

Colorless oil; 83% yield; ¹H NMR (300 MHz, D_6 -DMSO): δ_{ppm} 5.34 (d, 1H, J = 5.2 Hz, OH), 5.13 (s, 1H, C=CHH), 5.05 (s, 1H, C=CHH), 4.44 (app. q, 1H, J = 6.5 Hz, CHOH), 3.94-3.82 (m, 2H, $CH_2C=CH_2$), 3.57-3.51 (m, 1H, CHHCHOH), 3.04-2.98 (m, 1H, CHHCHOH), 1.40 (s, 9H, C(CH₃)₃); ¹³C NMR (D_6 -DMSO (90°C), 75 MHz): δ_{ppm} 153.7, 148.6, 107.3, 78.5, 70.3, 53.2, 48.8, 28.2(3C). MS (EPCI) *m/z* (rel %) 199 (1), 143 (22), 126 (19), 82 (19), 57 (100). Anal. Calc. for $C_{10}H_{17}NO_3$ C, 60.28; H, 8.60; N, 7.03. Found: C, 60.11; H, 8.64; N, 6.99.

2-methylene cyclohexanol³

Colorless oil; 86% yield; ¹H NMR (300 MHz, CDCl₃): δ_{ppm} 4.89 (s, 1H, C=CH*H*), 4.76 (s, 1H, C=C*H*H), 4.09-4.07 (m, 1H, C*H*OH), 2.41-2.39 (m, 1H, CH₂), 2.03-2.00 (m, 2H, CH₂), 1.83-1.79 (m, 1H, CH₂), 1.68-1.64 (m, 1H, CH₂), 1.55 (d, 1H, J = 4.2 Hz, OH), 1.51-1.27 (m, 3H, CH₂); ¹³C NMR (CDCl₃, 100 MHz): δ_{ppm} 151.6, 105.0, 72.6, 36.6, 33.5, 27.7, 23.7. MS (EPCI) *m/z* (rel %) 112 (54), 97 (94), 83 (100).

In agreement with reference 3.

6-methylene-1,3-dioxepan-5-ol

Colorless oil; 81% yield; ¹H NMR (300 MHz, CDCl₃): δ_{ppm} 5.16 (s, 1H, C=CH*H*), 5.04 (s, 1H, C=C*H*H), 4.99 (d, 1H, *J* = 6.7 Hz, OCH*H*O), 4.64 (d, 1H, *J* = 6.7 Hz, OC*H*HO), 4.54 (d, 1H, *J* = 14.0 Hz, CH*H*C=CH₂), 4.33 (bd, 1H, *J* = 4.0 Hz, C*H*OH), 4.26 (dd, 1H, *J* = 1.5 and 14.0 Hz, C*H*HC=CH₂), 3.95 (dd, 1H, *J* = 4.0 and 11.9 Hz, CH*H*CHOH), 3.66 (dd, 1H, J = 1.7 and 11.9 Hz, C*H*HCHOH), 2.66 (bs, 1H, OH); ¹³C NMR (CDCl₃, 75 MHz): δ_{ppm} 148.1, 114.3, 95.6, 74.6, 72.7, 70.5. Anal. Calc. for C₆H₁₀O₃ C, 55.37; H, 7.74. Found: C, 55.48; H, 7.79.

1,2-dihydro-2-anthracenol4

White crystals; 75% yield; ¹H NMR (300 MHz, CDCl₃): δ_{ppm} 7.79-7.73 (m, 2H, Ar-H), 7.62 (s, 1H, Ar-H), 7.56 (s, 1H, Ar-H), 7.48-7.38 (m, 2H, Ar-H), 6.73 (d, 1H, *J* = 9.6 Hz, ArC*H*=CH), 6.21 (dd, 1H, *J* = 4.2 and 9.6 Hz, ArCH=C*H*), 4.60 (app. quint., 1H, *J* = 6.0 Hz, C*H*OH), 3.20 (d, 2H, *J* = 6.0 Hz, CH₂).

See reference 4.

4-(benzyloxy)-2-methylene-1,3-butanediol (±-1) and 3-[(benzyloxy)methyl]-3-butene-1,2-diol (±)-2

Inseparable mixture of isomers in ratio 3:1 (based on crude NMR); 85% yield; **1**: ¹H NMR (300 MHz, $CDCI_3$): δ_{ppm} 7.37-7.29 (m, 5H, Ar-H), 5.19 (s, 1H, C=CH*H*), 5.17 (s, 1H, C=C*H*H), 4.59 (s, 2H, PhCH₂), 4.55-4.45 (m, 1H, *CH*OH), 4.21-4.18 (m, 2H, *CH*₂OH), 3.63 (dd, 1H, *J* = 9.6 and 3.8 Hz, BnOCH*H*), 3.55 (dd, 1H, *J* = 9.6 and 7.7 Hz, BnOC*H*H), 2.73 (d, 1H, *J* = 3.8 Hz, OH), 2.21 (t, 1H, *J* = 6.2 Hz, OH); and **2**: ¹H NMR (300 MHz, CDCI₃): δ_{ppm} 7.37-7.29 (m, 5H, Ar-H), 5.31 (s, 1H, C=CH*H*), 5.25 (s, 1H, C=C*H*H), 4.54 (s, 2H, PhCH₂), 4.33 (app. q, 1H, *J* = 6.0 Hz, C*H*OH), 4.11 (dd, 1H, *J* = 11.7 and 1.8, CH*H*C=CH₂), 4.03 (dd, 1H, *J* = 11.7 and 1.8 Hz, C*H*HC=CH₂), 3.73-3.64 (m, 2H, CH₂OH), 2.66 (d, 1H, *J* = 5.6 Hz, OH), 2.36 (t, 1H, *J* = 6.0 Hz, OH). HRMS Calcd. for C₁₂H₁₇O₃ *m/z* 209.1178, found: 209.1164.

1-(benzyloxy)-3-[(trityloxy)methyl]-3-buten-2-ol 3 and 3-[(benzyloxy)methyl]-1-(trityloxy)-3-buten-2-ol 4

Two isomers in ratio 1:5 (based on crude NMR). Purification yielded two thick yellow oils:

3 (11% yield): ¹H NMR (300 MHz, CDCl₃): δ_{ppm} 7.42 (d, 6H, *J* = 8.4 Hz, Ar-H), 7.31-7.24 (m, 14H, Ar-H), 5.36 (s, 1H, C=CH*H*), 5.30 (s, 1H, C=C*H*H), 4.48 (s, 2H, PhCH₂), 4.41-4.37 (m, 1H, C*H*OH), 3.68 (d, 1H, *J* = 11.0 Hz, CH*H*C=CH₂), 3.61 (d, 1H, *J* = 11.0 Hz, C*H*HC=CH₂), 3.50 (dd, 1H, *J* = 9.9 and 3.7 Hz, BnOCH*H*), 3.36 (dd, 1H, *J* = 9.9 and 7.9 Hz, BnOC*H*H), 2.57 (d, 1H, *J* = 3.8 Hz, OH); ¹³C NMR (CDCl₃, 100 MHz): δ_{ppm} 144.1, 143.9 (3C), 138.9, 128.6 (6C), 128.4 (2C), 127.8 (6C), 127.7 (2C), 127.1, 127.0 (3C), 113.1, 87.2, 73.4, 73.2, 71.9, 64.9. Anal. Calc. for C₃₁H₃₀O₃ C, 82.64; H, 6.71. Found: C, 82.58; H, 6.72.

4 (57% yield): ¹H NMR (300 MHz, CDCl₃): δ_{ppm} 7.42 (d, 6H, *J* = 8.4 Hz, Ar-H), 7.31-7.20 (m, 14H, Ar-H), 5.25 (s, 1H, C=CH*H*), 5.19 (s, 1H, C=C*H*H), 4.37 (s, 2H, PhCH₂), 4.38-4.32 (m, 1H, C*H*OH), 3.94 (s, 2H, BnOCH₂), 3.32 (dd, 1H, *J* = 9.4 and 4.4 Hz, CH*H*OTr), 3.24 (dd, 1H, *J* = 9.4 and 7.1 Hz, C*H*HOTr), 2.71 (d, 1H, *J* = 4.6 Hz, OH); ¹³C NMR (CDCl₃, 75 MHz): δ_{ppm} 144.5, 143.8 (3C), 137.9, 128.7 (6C), 128.4 (2C), 127.9 (6C), 127.7, (2C), 127.6, 127.1 (3C), 114.9, 86.8, 72.6, 72.3, 71.3, 66.7. Anal. Calc. for C₃₁H₃₀O₃ C, 82.64; H, 6.71. Found: C, 82.73; H, 6.78.

2-({[*tert*-butyl(dimethyl)silyl]oxy}methyl)-1-penten-3-ol 5 and 1-{[*tert*-butyl(dimethyl)silyl]oxy}-3-ethyl-3-buten-2-ol 6

Purification yielded two colourless oils in ratio 1:2 (based on crude NMR):

5 (24% yield): ¹H NMR (300 MHz, CDCl₃): δ_{ppm} 5.10 (s, 1H, C=CH*H*) 5.05 (s, 1H, C=C*H*H), 4.30 (d, 1H, J = 13.1, CH*H*O), 4.19 (d, 1H, J = 13.1 Hz, C*H*HO), 4.08 (dt, 1H, J = 5.4 and 6.0 Hz, C*H*OH), 2.43 (d, 1H, J = 5.4 Hz, OH), 1.65 (app. quintet, 2H, J = 7.3 Hz, CH₂CH₃), 0.91 (s, 9H, C(CH₃)₃), 0.85 (t, 3H, J = 6.4 Hz, CH₃), 0.09 (s, 6H, Si(CH₃)₂; ¹³C NMR (CDCl₃, 100 MHz): δ_{ppm} 149.2, 111.3, 75.7, 64.5, 28.5, 25.8(3C), 18.2, 10.0, -5.5(2C). Anal. Calc. for C₁₂H₂₆O₂ Si C, 62.55; H, 11.37. Found: C, 62.76; H, 11.25.

6 (53% yield): ¹H NMR (300 MHz, CDCl₃): δ_{ppm} 5.10 (s, 1H, C=CH*H*), 4.92 (s, 1H, C=C*H*H), 4.14 (dt, 1H, *J* = 8.2 and 4.1 Hz, C*H*OH), 3.70 (dd, 1H, *J* = 10.0 and 3.5 Hz, CH*H*CHOH), 3.46 (dd, 1H, *J* = 10.0 and 8.3 Hz, C*H*HCHOH), 2.64 (d, 1H, *J* = 2.9 Hz, OH), 2.18-1.95 (m, 2H, C*H*₂CH₃), 0.91 (s, 9H, C(CH₃)₃), 0.85 (t, 3H, *J* = 6.3 Hz, CH₃), 0.10 (s, 3H, SiCH₃), 0.08 (s, 3H, SiCH₃). ¹³C NMR (CDCl₃, 100 MHz): δ_{ppm} 150.8, 108.5, 74.1, 68.7, 25.0, 25.8(3C), 18.3, 12.7, -5.5(2C). Anal. Calc. for C₁₂H₂₆O₂ Si C, 62.55; H, 11.37. Found: C, 62.5; H, 11.36.

2-[(trityloxy)methyl]-1-penten-3-ol (7) and 3-ethyl-1-(trityloxy)-3-buten-2-ol 8

Purification yielded two colourless oils in ratio 1:3 (based on crude NMR):

7 (20 yield%): ¹H NMR (300 MHz, CDCl₃): δ_{ppm} 7.47 (d, 6H, J = 10 Hz, Ar-H), 7.33-7.22 (m, 9H, Ar-H), 5.30 (d, 1H, J = 1.3 Hz, C=CHH), 5.17 (s, 1H, C=CHH), 4.05 (dt, 1H, J = 5.0 and 6.0 Hz, CHOH), 3.69 (bs, 2H, CH₂OTr), 2.07 (d, 1H, J = 5.0 Hz, OH), 1.47 (apparent quin, 2H, J = 7.4 Hz, CH₂CH₃), 0.84 (t, 3H, J = 7.4 Hz,

CH₃); ¹³C NMR (CDCl₃, 75.4 Hz): δ_{ppm} 147.9, 143.8 (3C), 128.6 (6C), 127.9 (6C), 127.1 (3C), 112.4, 87.3, 75.5, 64.9, 28.4, 9.9. Anal. Calc. for C₂₅H₂₆O₂ C, 83.76; H, 7.31. Found: C, 83.54; H, 7.45.

8 (57 yield%): ¹H NMR (300 MHz, CDCl₃): δ_{ppm} 7.45 (d, 6H, J = 10 Hz, Ar-H) 7.34-7.24 (m, 9H, Ar-H), 5.06 (s, 1H, C=CH*H*), 4.88 (s, 1H, C=C*H*H), 4.18 (dt, 1H, J = 7.7 and 3.5 Hz, C*H*OH), 3.27 (dd, 1H, J = 9.6 and 3.7 Hz, CH*H*OTr), 3.15 (dd, 1H, J = 9.6 and 7.7 Hz, C*H*HOTr), 2.45 (d, 1H, J = 3.5 Hz, OH), 2.02-1.78 (m, 2H,C*H*₂CH₃), 0.97 (t, 3H, J = 7.4 Hz, CH₃); ¹³C NMR (CDCl₃, 75.4 MHz): δ_{ppm} 149.8, 143.9 (3C), 128.6 (6C), 127.9 (6C), 127.1 (3C), 109.6, 86.9, 73.9, 67.1, 25.0, 12.1. Anal. Calc. for C₂₅H₂₆O₂ C, 83.76; H, 7.31. Found: C, 83.63; H, 7.28.

2-{[tert-butyl(dimethyl)silyl]oxy}-6-methylenecyclohexanol

Purification yielded a pale yellow oil; 80% yield; ¹H NMR (300 MHz, CDCl₃): δ_{ppm} 5.06 (q, 1H, *J* = 1.8 Hz, C=CH*H*), 4.83 (q, 1H, *J* = 1.8 Hz, C=C*H*H), 3.84 (dd, 1H, *J* = 1.8 and 8.5 Hz, C*H*OH), 3.32 (ddd, 1H, *J* = 4.4, 8.5 and 10.4 Hz, CHOSi), 2.52 (d, 1H, *J* = 1.8 Hz, OH), 2.36-2.28 (m, 1H, CH₂), 2.04-1.98 (m, 1H, CH₂), 1.96-1.87 (m, 1H, CH₂), 1.78-1.69 (m, 1H, CH₂), 1.53-1.40 (m, 1H, CH₂CH*H*CH₂), 1.36-1.21 (m, 1H, CH₂C*H*HCH₂), 0.91 (s, 9H, C(CH₃)₃), 0.11 (s, 3H, SiCH₃), 0.09 (s, 3H, SiCH₃); ¹³C NMR (CDCl₃, 75.4 MHz): δ_{ppm} 146.8, 106.4, 77.6, 77.5, 33.7, 33.5, 25.8(3C), 24.3, 18.0, -4.2, -4.4. HRMS Calcd. for C₁₃H₂₇O₂ Si *m/z* 243.1780, found: 243.1796.

2-{[tert-butyl(dimethyl)silyl]oxy}-6-methylenecyclohexanol

Pale yellow oil; 71% yield; ¹H NMR (300 MHz, CDCl₃): δ_{ppm} 4.94 (s, 1H, C=CH*H*), 4.86 (s, 1H, C=C*H*H), 4.02 (app t, 1H, *J* = 4.0 Hz, C*H*OH), 3.78 (dt, 1H, *J* = 8.3 and 3.8 Hz, SiOCH), 2.40 (d, 1H, *J* = 4.4 Hz, OH), 2.36-2.28 (m, 1H, CH*H*C=CH₂), 2.02 (dt, 1H, *J* = 5.4 and 13.6 Hz, C*H*HC=CH₂), 1.80-1.65 (m, 2H, CH₂), 1.63-1.56 (m, 1H, CH₂CH*H*CH₂), 1.36-1.28 (m, 1H, CH₂C*H*HCH₂), 0.90 (s, 9H, C(CH₃)₃), 0.08 (d, 6H, *J* = 3.1 Hz, Si(CH₃)₂); ¹³C NMR (CDCl₃, 100 MHz): δ_{ppm} 147.8, 110.5, 75.1, 73.3, 30.8, 30.0, 25.7(3C), 23.1, 18.1, -4.2, -4.4. HRMS Calcd. for C₁₃H₂₇O₂ Si *m/z* 243.1780, found: 243.1766.

Relevant signals for the TBS migrated compound (5 to 10 % unseparable): ¹H NMR (300 MHz, CDCl₃): δ_{ppm} 4.92 (s, 1H, C=CH*H*), 4.84 (s, 1H, C=C*H*H), 4.14 (d, 1H, *J* = 3.0 Hz, SiOCH), 3.78 (app sept, 1H, *J* = 3.0 Hz, C*H*OH), 2.20 (d, 1H, *J* = 6.0 Hz, OH); ¹³C NMR (CDCl₃, 100 MHz): δ_{ppm} 147.8, 109.8, 75.8, 72.4, 31.6, 30.1, 25.7(3C), 22.9, 18.1, -4.2, -4.4.

α-L-*ribo*-hexopyranoside, methyl 2-deoxy-2-methylene-4,6-*O*-(phenylmethylene)

Thick oil; 91% yield; $[\alpha]_{D}^{27}$ +62.4° (*c* 0.23, CHCl₃); ¹H NMR (300 MHz, CD₃OD): δ_{ppm} 7.55-7.51 (m, 2H, Ar-H), 7.38-7.33 (m, 3H, Ar-H), 5.66 (s, 1H, CHPh), 5.33 (d, 1H, *J* = 1.0 Hz, C=CH*H*), 5.27 (d, 1H, *J* = 1.0 Hz, C=C*H*H), 5.00 (s, 1H, C*H*OCH₃), 4.49 (d, 1H, *J* = 3.1 Hz, C*H*OH), 4.33-4.27 (m, 2H, C*H*CH₂ and CH*H*_{eq}), 3.75 (app t, 1H, *J* = 11.8 Hz, CH*H*_{ax}), 3.63 (dd, 1H, *J* = 3.1 and 9.0 Hz, C*H*CHOH), 3.42 (s, 3H, OCH₃); ¹³C NMR (CDCl₃, 75 MHz): δ_{ppm} 144.1, 139.3, 130.0, 129.1(2C), 127.7(2C), 119.5, 103.4, 103.2, 82.0, 71.8, 70.4, 59.3, 55.4. HRMS Calcd. for C₁₅H₁₉O₅ *m/z* 279.1232, found: 279.1238.

References:

- 1-Feeder, N.; Hutton, G.; Nelson, A.; Stuart, W. J. Chem. Soc. Perkin Trans. 1 1999, 23, 3413-3424.
- 2-Joshi, V.S. et al Tetrahedron 1968, 24, 5817-5830.
- 3- Eid, C.N.; Konopelski, J.P. Tetrahedron 1991, 47, 975-992.
- 4-Dehaen, W.; Corens, D.; L'abbe, G. Synthesis 1996, 201-203.