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A B S T R A C T   

The increasing deployment of renewable energy sources necessitates peak regulation services from thermal 
power plants, impacting their energy efficiency. Central to these plants, the steam turbine system significantly 
influences their operational efficiency. A digital twin model of this system was developed, integrating 
mechanism-driven and data-driven modeling methods. The neural network data-driven approach was specif
ically utilized for parameters such as feedwater pump speed and steam flow rate to the pump turbine. Other 
parameters were modeled with mechanism data hybrid driven modeling method. This model computes vital 
metrics such as low-pressure turbine exhaust steam enthalpy, work done and heat absorption per unit mass of 
steam, system efficiency, feedwater mass flow rate, and water-coal ratio—key for evaluating and enhancing the 
system’s energy efficiency. An investigation into a reference case showed a decline in efficiency below design 
levels due to aging. By optimizing the live steam pressure and the cold-end system, relative improvements in 
energy efficiency of 0.35 % and 0.14 %, respectively, were achievable.   

1. Introduction 

To attain sustainable development, the global energy supply is 
transitioning from fossil fuel dominance to a prevalence of low-carbon 
energy sources, with a notable surge in the development of renewable 
energy sources, particularly wind and solar power [1]. In many devel
oping nations, coal power serves as the primary source for electricity 
generation [2–4]. Consequently, coal power plants are increasingly 
tasked with providing peaking shaving services to accommodate the 
intermittent and variable output of renewable power sources [5,6]. 
Furthermore, advancements in energy-saving technologies for thermal 
power plants are crucial to reduce carbon emissions [7]. Consequently, 
optimizing the operation of thermal power plants to achieve reliability, 
cost efficiency, and flexibility represents a pivotal facet of thermal 
power technology advancement [8]. 

Digitization has emerged as an efficacious avenue for optimizing the 
operation of thermal power plants, with the concept of “smart power 
plants” playing a crucial role in enhancing operational reliability, cost 
efficiency, and flexibility [9]. The digital twin technique facilitates the 
connection between the physical power plant and its digital counterpart 
[10]. It serves as a foundational technique for the construction of smart 
power plants. Originating in 2003 through the work of Professor 

Michael Grieves, the digital twin concept represents an advanced tech
nique that integrates attributes spanning multiple physical aspects, 
scales, and disciplines [11,12]. Leveraging digital tools, physical entities 
are replicated or twinned in a virtual environment [13]. Digital twin 
modeling is based on the concept of digital twin, using a variety of 
data-driven modeling methods, combined with the physical mechanism 
of each equipment, to accurately model the simulation object. The 
digital power plant model enables real-time monitoring of essential 
performance parameters, economic metrics, and safety indicators for 
thermal power plants, thereby enhancing the flexibility of thermal units 
to swiftly respond to the demands of peak and frequency regulation 
within the power grid. This leads to increased load change rates, 
decreased steady-state loads, and improved thermal efficiency under 
variable loads. Consequently, the application of digital twin modeling to 
thermal power plants proves both beneficial and essential [14]. 

Regarding the digital twin modeling of thermal power plants, 
research primarily follows a three-phase progression including big data 
analysis, digital modeling, and operation optimization. Data analysis 
constitutes the foundational phase of digital twin modeling. Mao et al. 
[15] conducted significant research on the optimization of thermal 
power plants using big data, culminating in the development of a 
multisource heterogeneous data integration model for power plant 
performance information. This model supports both online and offline 
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distributed analyses. Huang et al. [16] introduced a high-performance 
distributed computing platform for power systems, enabling knowl
edge discovery related to power system security through extensive big 
data analysis. Wang et al. [17] employed the fuzzy rough set method to 
focus on data-driven modeling of thermal power units. 

The development of a reliable, robust, and expeditious simulation 
model constitutes the central phase of digital twin modeling. Zhao et al. 
[18,19] established a dynamic simulation model for coal-fired power 
plants, facilitating an assessment of the effect of various measures on 
power plant operational flexibility. Alobaid et al. [20] created a dy
namic simulation model for a waste heat steam generator, ensuring a 
dependable response to flue gas transients. Tian et al. [21] devised an 
online performance monitoring platform grounded in a comprehensive 
process model of a coal-fired power plant. This platform offers real-time 
feedback monitoring capabilities and can be employed for offline 

operational reviews. Numerous comprehensive studies have also been 
conducted on dynamic modeling, including coal-fired power stations 
[22], feedwater pump (FP) systems [23–25], condensers [26,27], and 
water‒wall tubes in supercritical boilers [28]. 

Operation optimization constitutes the ultimate objective of digital 
twin modeling. Zhang et al. [29] proposed an online optimization 
method reliant on variable speed pump condenser pressure with circu
lating water mass flow serving as the control variable, ultimately leading 
to heightened energy efficiency. Runvik [30] harnessed the JModelica. 
org platform for the simulation of coal-fired power plants to optimize 
the startup process. A plethora of comprehensive studies have also been 
conducted pertaining to the operation optimization of gas-steam com
bined cycle units [31,32], control strategies based on boiler heat storage 
characteristics [33], and superheated steam temperature control sys
tems [34]. 

Nomenclature 

Abbreviations 
B-MCR boiler maximum continuous rating 
BP booster pump 
CP condensate pump 
DCS distributed control system 
FP feedwater pump 
FPT feedwater pump turbine 
HPT high-pressure turbine 
IPT intermediate pressure turbine 
LPT low-pressure turbine 
PCA principal component analysis 
RH regenerative heater 
STS steam turbine system 

Parameters 
H work done per unit mass of live steam, kJ/kg 
Hbp BP head, MPa 
Hfp FP head, MPa 
Hg pressure of height difference between deaerator and FP, 

MPa 
Hi, Hr equivalent enthalpy drop of extraction steam of the No.i/ 

No.r regenerative heater, kJ/kg 
N FP relative rotary speed 
Q heat absorption per unit mass of live steam, kJ/kg 
Tcwi circulating water inlet temperature, ◦C 
We generated power, MW 
Wp FP power consumption rate, kW 
Wt output power of steam turbine, MW 
c1, c2, c3, c4, c5, c6 coefficients fitted by the performance 

characteristic curves 
hc enthalpy of LPT exhaust steam, kJ/kg 
hcs isentropic enthalpy of LPT exhaust steam, kJ/kg 
hept steam enthalpy at the FPT outlet, kJ/kg 
hin,1 enthalpy of feedwater of boiler, kJ/kg 
hin,2 enthalpy of cold reheat steam, kJ/kg 
hout,1 enthalpy of live steam, kJ/kg 
hout,2 enthalpy of hot reheat steam, kJ/kg 
hs,i enthalpy of the No.i steam extraction, kJ/kg 
hspt steam enthalpy at the FPT inlet, kJ/kg 
k1, k2, k3, k4, k5, k6, k7, k8, k9 coefficients obtained by data fitting of 

mechanism data hybrid driven modeling 
mc interspace extraction water flow rate of the FP, kg/s 
mco mass flow rate of coal to the boiler, kg/s 
mfw feedwater mass flow rate at the FP outlet, t/h 
mfw1 feedwater mass flow rate at the FP inlet, t/h 

mixi the nearest mixing heater with extraction pressure lower 
than No.i extraction 

mspt mass flow rate of steam to the FPT, t/h 
mw feedwater mass flow rate of the boiler, kg/s 
mw1, mw2 feedwater mass flow rates of different circulating water 

inlet temperatures, kg/s 
mwh feedwater mass flow rate under the cold end condition of 2 

circulating pumps in service, kg/s 
pc pressure of LPT exhaust steam, kPa 
pde deaerator pressure, MPa 
pept FPT exhaust steam pressure, kPa 
pfw feedwater pressure at the FP outlet, MPa 
pie interspace extraction pressure of the FP, MPa 
pobp BP outlet pressure, MPa 
ps,6 No.6 extraction pressure, MPa 
qnet net calorific value of coal, kJ/kg 
qr heat release per unit mass of extracted steam of the No.r 

regenerative heater, kJ/kg 
α2 proportion of reheat steam to live steam 
γr heat release of the drain water of the No. r regenerative 

heater, kJ/kg 
η6-c isentropic efficiency of LPT pressure stages from the No. 6 

steam extraction point to the condenser 
ηb boiler efficiency 
ηfp FP efficiency 
ηfptm FPT mechanical efficiency 
ηg generator efficiency 
ηm mechanical efficiency 
ηsts efficiency of STS 
λ water-coal ratio 
λ1, λ2 water-coal ratio of different circulating water inlet 

temperatures 
λh water-coal ratio under the cold end condition of 2 

circulating pumps in service 
σ heat absorption of the reheated steam in the boiler 

reheater, kJ/kg 
τr enthalpy rise of feedwater in the No. r regenerative heater, 

kJ/kg 
∑∏

amount of work capacity reduction per unit mass of live 
steam caused by losses, kJ/kg 

Subscripts 
ept exhaust steam at the FPT outlet 
ie interspace extraction 
obp outlet of booster pump 
spt steam at the FPT inlet  
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The steam turbine system (STS) comprises components such as steam 
turbines, regenerative heaters, FPs, and others, and it plays a pivotal role 
in determining the energy efficiency of thermal power plants. Numerous 
comprehensive studies have been conducted to optimize the system [17, 
30,35], evaluate its performance both offline and online [21,36], and 
enhance its operational flexibility [18,19,33,37]. However, digital twin 
modeling of the STS, a method that can assess performance using 
operational big data and offer guidance for closed-loop control, remains 
inadequately addressed. To address this research gap, rooted in the 
principles of digital twin modeling, an STS digital twin model has been 
developed utilizing a hybrid modeling approach based on mechanisms 
and data-driven techniques for different digital twin parameters, 
enabling a comprehensive obtaining of STS energy efficiency and other 
critical parameters. This study introduces several novel contributions: 
(1) Two distinct digital twin simulation methods are presented for pa
rameters related to STS energy efficiency: a mechanism data hybrid 
driven modeling method and a neural network data-driven modeling 
method. (2) An online energy efficiency analysis model for the STS has 
been developed through a hybrid modeling approach that combines 
mechanism-driven and data-driven techniques. This model can evaluate, 
diagnose, and optimize the energy efficiency of the STS. (3) The STS 
digital twin model facilitates live steam pressure optimization and cold 
end optimization, offering valuable guidance for closed-loop control. 

In this paper, we commence by collecting and cleansing operational 
big data from thermal power plants. Subsequently, we provide two 
digital twin modeling methods, namely, the mechanism data hybrid 
driven modeling method and the neural network data-driven modeling 
method, tailored to the characteristics of different parameters associated 
with STS energy efficiency. Using the mechanism data hybrid driven 
modeling method, we obtain simulation data for six crucial digital twin 
parameters, including booster pump (BP) outlet pressure, feedwater 
mass flow rate of the FP, FP outlet pressure, FP efficiency, FP power, and 
exhaust steam pressure of the feedwater pump turbine (FPT). 

Meanwhile, the neural network data-driven modeling method is 
employed to simulate the FP’s relative rotary speed and the mass flow 
rate of steam to the FPT, ensuring high accuracy. 

Next, we develop an online energy efficiency analysis model for the 
STS through a hybrid modeling approach that integrates mechanism- 
driven and data-driven methods. This energy efficiency analysis model 
yields simulation data for six vital parameters that influence or reflect 
STS energy efficiency. These parameters include exhaust steam enthalpy 
of low-pressure turbine(LPT), work done per unit mass of working me
dium, heat absorption per unit mass of working medium, STS energy 
efficiency, feedwater mass flow rate, and water-coal ratio. Additionally, 
we examine the effect of varying circulating water inlet temperatures on 
STS energy efficiency. 

Finally, after diagnosing the STS energy efficiency, we conduct live 
steam pressure optimization and cold end optimization, taking into ac
count different live steam pressures and the number of circulating 
pumps in service. 

2. Model development 

In this section, we outline the digital twin modeling procedure uti
lizing a hybrid approach that combines mechanism-driven and data- 
driven methods. Subsequently, we will investigate the specific digital 
twin parameters of the FP subsystem, which exert a significant influence 
on the energy efficiency of the STS. Finally, we will develop an online 
energy efficiency analysis model for the STS and derive an online water- 
coal ratio curve. This curve serves as a valuable tool for guiding oper
ational optimization based on the STS digital twin model. 

2.1. Digital twin modeling procedure of the STS 

Fig. 1 illustrates the temperature-entropy (T-S) diagram for the ultra- 
supercritical Rankine cycle of the reference unit. This reference unit 

Fig. 1. The T-S diagram of the ultra-supercritical Rankine cycle. 
1-b adiabatic expansion at high pressure turbine; b-a reheating; a-2 adiabatic expansion at intermediate pressure turbine and low pressure turbine; 01, 02, 03, 04, 05, 
06, 07, 08 steam turbine extraction; 2-3 isobaric heat release; 3-0′1 heat absorption at regenerative heaters; 0′4-4 adiabatic compression; 0′1, 0′2, 0′3, 0′4, 0′5, 0′6, 0′7, 0′8 
feedwater in regenerative system; 0′1-1 isobaric heat absorption at the boiler. 
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boasts a capacity of 1030 MW and operates as an ultra-supercritical, 
once-through, intermediate reheating system equipped with eight 
regenerative heaters. It maintains a rated main steam pressure of 25 MPa 
and a rated reheated steam pressure of 4.366 MPa. Both the rated main 
steam temperature and reheated steam temperature are set at 600 ◦C. 
The feedwater system is powered by two 50 % Base Maximum Contin
uous Rating (B-MCR) steam-driven FPs, complemented by one 30 % B- 
MCR standby electric pump. 

Fig. 2 outlines the modeling scope of the STS. The STS includes 
several key components, including steam turbines (comprising the high 
pressure turbine (HPT), intermediate pressure turbine (IPT), low pres
sure turbine (LPT), and feedwater pump turbine (FPT), regenerative 
heaters (denoted as No.1 to No.8 Regenerative Heaters), and pumps 
(comprising the condensate pump, booster pump, and FP). The opera
tional sequence involves the live steam entering the HPT to perform 
work, subsequently proceeding to the boiler reheater for reheating. The 
hot reheat steam then enters the IPT to perform additional work before 
ultimately being discharged into the condenser. The condensate water 
undergoes successive heating stages facilitated by the regenerative 
heaters, progressing from No. 8 to No. 1 Regenerative Heaters. 

Energy efficiency is a pivotal concern in the operation of STSs and is 
inherently reflected in operational parameters, which necessitate digital 
modeling. The FP subsystem, comprising the FPT, BP, and FP, plays a 
central role in supplying feedwater to the boiler while consuming a 
substantial amount of power. Consequently, the energy efficiency of this 
subsystem significantly impacts the overall energy efficiency of the STS. 

Key parameters of the FP subsystem that exert a substantial influence 
on the energy efficiency of the STS include the following: deaerator 
pressure (pde), BP outlet pressure (pobp), feedwater mass flow rate of the 
FP (mfw), feedwater pressure at the FP outlet (pfw), FP relative rotary 
speed (N), FP efficiency (ηfp), FP power consumption rate (Wp), mass 
flow rate of steam to the FPT (mspt) and FPT exhaust steam pressure 
(pept). Additionally, several pivotal parameters serve as indicators of the 
energy efficiency of the STS, including the enthalpy of LPT exhaust 
steam (hc), work done per unit mass of live steam (H), absorption per 
unit mass of live steam (Q), energy efficiency of STS (ηsts), mass flow rate 
of feedwater (mw), and water-coal ratio (λ). 

Henceforth, the crucial parameters governing the energy efficiency 
of the STS will be subjected to digital twin modeling methods. The 
digital twin modeling procedure is elucidated in Fig. 3. In the process of 
selecting measurement data, we strictly followed the criterion of the 
power variation rate below 0.25 % per minute to meet the requirements 
of steady-state modeling. And all data needed for digital twin modeling 
are acquired from the distributed control system of the thermal power 

plant, facilitating the development of an energy efficiency analysis 
model for the STS. A Distributed Control System (DCS) is an automated 
control system widely used in the thermal power plants, which consists 
of distributed controllers, central control room, data acquisition and 
processing, alarm and event logging and data storage. 

The pertinent digital twin parameters of the FP subsystem, which 
significantly influence the STS energy efficiency, are extracted using the 
mechanism data hybrid modeling method. Parameters including the 
deaerator pressure (pde), feedwater mass flow rate of the FP (mfw), 
feedwater pressure at the FP outlet (pfw), FP efficiency (ηfp), FP power 
consumption rate (Wp), mass flow rate of steam to the FPT (mspt) and 
others are supplied to the energy efficiency analysis model of the STS. 

Subsequently, the energy efficiency analysis model of the STS com
putes parameters such as the enthalpy of LPT exhaust steam (hc), the 
work done per unit mass of live steam (H), the heat absorption per unit 
mass of live steam (Q), the energy efficiency of STS (ηsts), and the 
feedwater mass flow rate (mw), which are obtained by the energy effi
ciency analysis model of the STS. Ultimately, the water-coal ratio (λ) 

Fig. 2. Modeling scope of the steam turbine system. 
HPT-high pressure turbine, IPT-intermediate pressure turbine, LPT-low pressure turbine, FPT-feedwater pump turbine, RH-regenerative heater, FP-feedwater pump, 
CP-condensate pump, BP-booster pump. 

Fig. 3. Digital twin modeling procedure of the STS.  
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under varying output power conditions of the thermal power plant can 
be determined and relayed to the distributed control system for precise 
control, thereby enhancing the overall energy efficiency of the STS. 

2.2. Modeling methods for digital twin parameters 

The significant digital twin parameters of the FP subsystem, which 
wield substantial influence over the energy efficiency of the STS, are 
derived through a hybrid modeling method combining mechanism data 
hybrid driven and neural networks. This section will elucidate the 
modeling methods employed in obtaining these crucial parameters. 

2.2.1. Mechanism data hybrid driven modeling 
The mass flow rate of live steam maintains an approximately linear 

relationship with the unit’s power output, so the feedwater mass flow 
rate is almost linearly correlated with the unit’s power output. The 
feedwater mass rate of the FP can be computed as follows: 

mfw = k1We + k2 (1)  

where mfw is the feedwater mass rate of the FP, t/h; We is the output 
power of the thermal power plant, MW; and the coefficients k1 and k2 are 
determined through fitting with historical data between mfw and We. In 
Eq. (1), the primary determinants for k1 and k2 are the unit’s steam 
consumption rate. This rate, in turn, is contingent upon the specific 
structural and parameter design of both the boiler and steam turbine, in 
addition to the unit’s operational load. 

Considering the essentially linear association between the feedwater 
pressure at the FP outlet and the feedwater mass flow rate, the relation of 
the feedwater pressure at the FP outlet with the unit’s power output is 

pfw = k3We + k4 (2)  

where pfw is the outlet pressure of the FP, MPa. The coefficients k3 and k4 
are determined through fitting with historical data of pfw and We. In Eq. 
(2), k3 and k4 describe the relationship between the unit’s load and the 
FP outlet pressure. Therefore, k3 and k4 are mainly associated with the 
live steam pressure control strategies during load variations. 

In accordance with the actual performance characteristic curve of 
the FP, the relationship between the FP head and the mass flow rate at 
the rated rotary speed can be represented as follows [38]: 

Hfp = c1 + c2mfw + c3mfw
2 (3)  

where Hfp is the FP head, MPa; The parameters c1, c2, and c3 in Eq. (3) 
are primarily derived from fitting the performance characteristics of the 
FP provided by the pump manufacturer, which is obtained at its rated 
speed. These parameters are closely associated with the design of pump, 
and can also be utilized for head calculations at different speeds due to 
the similarity law of pump as 

Hfp = c1N2 + c2Nmfw + c3mfw
2 (4)  

where N is the FP relative rotary speed. 
The FP relative rotary speed can be evaluated with: 

N = k5

(

− c2mfw +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
c2mfw

)2
− 4c1

(
c3mfw

2 − Hfp
)√ )

2c1
(5)  

where k5 is the performance attenuation correction coefficient of FP. In 
Eq. (5), the parameter k5 describes the degradation of the FP perfor
mance. This coefficient is associated with the FP performance design 
data and its degradation condition. 

Similar to the relationship between the FP head and the feedwater 
flow rate of the FP, based on the actual performance characteristic curve 
of the FP and the water pump similarity law, the correlation between FP 
efficiency, feedwater mass flow rate, and rotational speed can be artic

ulated as follows [39]: 

ηfp = c4 + c5

(mfw

N

)
+ c6

(mfw

N

)2
(6)  

where ηfp is the FP efficiency; Eq. (6) involves c4, c5, and c6, which depict 
the relationship between the feedwater mass flow rate and the FP effi
ciency. These coefficients are determined by fitting the relationship 
between ηfp and mfw at the rated speed provided by the FP manufacturer. 
c4, c5, and c6 are primarily linked to the FP inherent performance. 

Below are characteristic curves illustrating the relationship between 
FP efficiency and flow rate for FP relative rotary speeds of 1.0, 0.8, 0.6, 
and 0.4, as depicted in Fig. 4. To sustain a high efficiency across a range 
of feedwater mass flow rates, the FP must operate at different rotary 
speeds. 

The coefficients within Eq. (6) remain applicable even as the relative 
rotary speed of the FP varies, thanks to the principles governed by pump 
similarity laws. However, it is crucial to acknowledge that Eq. (6) holds 
true under the assumption that the FP has not experienced significant 
performance degradation since its initial commissioning. In cases where 
the pump undergoes substantial performance degradation or significant 
alterations to its physical structure, adjustments become necessary. 

Taking into account the unit conversion and standardization of both 
the FP head and feedwater mass flow rate, we can provide the following 
equation for calculating the power consumed by the FP [40]: 

Wp =
103Hfp

ρg
×

mfwg
3.6

×
1

ηfp
=

103Hfpmfw

3.6ρηfp
(7)  

where Wp is the power consumed by the FP, kW; ρ is the fluid density, 
kg/m3; g is the acceleration of gravity, m/s2; and 1/3.6 is the unit 
conversion factor from kg/s to t/h. 

Then, the mass flow rate of steam to the FPT [41] is 

mspt =
Wp(

hspt − hept
)
ηfptm

× 3.6 (8)  

where mspt is the mass flow rate of steam to the FPT, t/h; hspt is the steam 
enthalpy at the FPT inlet, kJ/kg; hept is the steam enthalpy at the FPT 
outlet, kJ/kg; ηfptm is the FPT mechanical efficiency; and 3.6 is the unit 
conversion factor from kg/s to t/h. 

The FPT exhaust pressure is the sum of the condenser pressure and 
the pressure loss of the exhaust pipe. The relationship between pressure 
loss and exhaust flow rate is linearly simplified. Therefore, the FPT 
exhaust pressure can be represented as 

pept = k6mspt + k7 + pc (9)  

where pept is the FPT exhaust steam pressure, kPa. The coefficients k6 
and k7 are determined through fitting with historical data of pept and 
mspt. In Eq. (9), k6 and k7 describe the relationship between the pressure 
loss in the FPT exhaust pipe and the exhaust steam mass flow rate. These 
two coefficients are influenced by the geometric dimensions of the 
exhaust pipe, fluid viscosity, and length of the pipe. 

The FP is divided into two parts by interspace water extraction, and 
the relationship of flows between the two parts is: 

mfw =mfw1 − mc (10)  

where mfw1 is the inlet water mass flow rate of the FP, t/h; mc is the 
interspace extraction water flow rate of the FP, t/h. 

The relationship of the BP head with the mass flow rate can be ob
tained according to the BP design data with 

Hbp = f
(
mfw1

)
(11)  

where Hbp is the BP head, MPa. 
The BP outlet pressure is related to the deaerator pressure and the BP 

head as: 
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pobp = pde + Hbp + Hg (12)  

where pobp is the BP outlet pressure, MPa; pde is the deaerator pressure, 
MPa; and Hg is the height difference between the deaerator and FP, MPa. 

The live steam mass flow rate exhibits an approximately linear 
relationship with the generated power of the thermal power plant, and 
the steam extraction pressure demonstrates a similar relationship with 
the live steam mass flow rate. Consequently, the deaerator pressure can 
be assessed based on the output power of the thermal power plant as 
follows: 

pde = k8We + k9 (13)  

where the coefficients k8 and k9 are determined through fitting with 
historical data of pde and We. Eq. (13) contains k8 and k9, which are 
related to the structural design of the steam turbine and the live steam 
pressure control strategies during load changes in the power plant. 

2.2.2. Neural network data-driven modeling 
The FP relative rotary speed, steam mass flow rate to the FPT, and 

FPT exhaust pressure are important parameters that influence the secure 
and efficient operation of the FP subsystem. High simulation accuracy 
for these parameters is important to optimize the operation of the FP 
subsystem and the STS. The mechanism-driven modeling method relies 
on the physical mechanisms of each device, and utilizes on-site data as 

input for simulation. Its accuracy is constrained by both measurement 
data and equipment performance degradation. In contrast, the neural 
network data-driven modeling leverages machine learning with exten
sive on-site measurement data for multiple parameters. This approach 
effectively identifies performance degradation in various devices and 
mitigates the error accumulation issues that may arise in the 
mechanism-driven modeling process. Therefore, it is necessary to 
employ the neural network data-driven modeling method to model these 
three parameters. As illustrated in Fig. 5, the process begins with the 
compilation of input parameters related to the parameters to be pre
dicted, forming the original dataset after data preprocessing. Subse
quently, the original dataset undergoes dimensionality reduction 
through principal component analysis (PCA). The resulting dataset, 
post-dimensionality reduction, along with the data pertaining to the 
output parameters, serves as the input and output parameters, respec
tively, for training the neural network. 

The simulation of FP relative rotary speed involves three input pa
rameters: generated power, mass flow rate and pressure of interspace 
water extraction. Meanwhile, the simulation of the mass flow rate of 
steam to the FPT includes six input parameters: generated power, the 
mass flow rate and pressure of interspace water extraction, measured 
rotary speed of the FP, and enthalpies of the inlet and outlet of the FPT. 
In the case of simulating the FPT exhaust steam pressure, an additional 
input parameter, condenser pressure, is included, along with the 

Fig. 4. FP efficiency with different FP relative rotary speeds.  

Fig. 5. Flow chart of neural network data-driven modeling.  

C. Chen et al.                                                                                                                                                                                                                                    



Energy 290 (2024) 129969

7

aforementioned parameters. It is noteworthy that apart from parameters 
lacking measurement data, the input and target parameters used for 
neural network training were derived from actual measurements 
collected at the power plant. 

Many of these input parameters are interrelated with the mass flow 
rate of steam to the FPT and the FPT exhaust steam pressure, which 
results in substantial data storage requirements and computational 
complexity during neural network training. To mitigate this, dimen
sionality reduction of the input parameter dataset through PCA is 
essential to accelerate neural network training [42]. 

PCA is a widely employed dimensionality reduction algorithm in the 
domains of data mining and machine learning. It streamlines datasets, 
reducing their size and processing complexity, while preserving essen
tial characteristics and meaningful information from the original high- 
dimensional data. In the PCA process, principal components are 
selected based on the requirement of data dimension reduction, 
considering the cumulative contribution of eigenvalues from largest to 
smallest of the covariance matrix. A transformation matrix is derived 
based on the number of selected principal components, and in the final 
step, a new data matrix composed of principal components is obtained 
by multiplying the original data matrix (after mean subtraction) with 
the transformation matrix. For the datasets related to the mass flow rate 
of steam to the FPT and FPT exhaust steam pressure, the top 5 principal 
components, which make the most significant contributions, are 
selected. Consequently, the new data matrix is formed using these 
principal components, effectively achieving data dimension reduction. 

Machine learning has been widely applied to optimize thermal sys
tems [43–45]. The back propagation neural network, a multilayer 
feedforward neural network trained using the error backpropagation 
algorithm, offers key advantages such as broad applicability, nonlinear 
modeling capabilities, adaptive learning, a multilayer structure, high 
parallel processing capability, and a degree of robustness [46]. 

The back propagation neural network is selected in this study. After 
applying PCA to reduce data dimensionality, a new data matrix is 
created with 200,000 datasets, which serves as the training dataset. 
Within this dataset, 70 % of the data are allocated for training, 15 % for 
validation, and the remaining 15 % for testing. The neural network ar
chitecture features a hidden layer with ten neurons. Three separate 
neural networks are trained, each with FP relative rotary speed, the mass 
flow rate of steam to the FPT, and FPT exhaust steam pressure as targets, 
corresponding to their respective influencing parameters as inputs. The 
objective is to predict these three parameters as outputs. 

As demonstrated in Fig. 6, the regression values (R) of the training 
data, validation data, and test data of the neural network with different 

parameters are close to 1, indicating a strong correlation between the 
predicted output and the target output. These results signify the effec
tiveness of the training process, yielding accurate predictions. 

2.3. Energy efficiency analysis model of the steam turbine system 

In this section, we will develop the energy efficiency analysis model 
for the STS. One crucial parameter for monitoring the energy efficiency 
is the enthalpy of the LPT exhaust steam. To calculate the enthalpy of the 
LPT exhaust steam, which is in a saturated steam state, we employ the 
cubic spline interpolation method to fit the efficiency with the pressure 
ratio. η6− c is the isentropic efficiency of the LPT pressure stages from the 
No. 6 steam extraction point to the condenser, as depicted in Fig. 1. We 
utilize the ratio pc/ps,6, where pc is the LPT exhaust steam pressure and 
ps,6 is the pressure at extraction point No. 6, to establish a fitting rela
tionship for the isentropic efficiency η6− c. Then, the enthalpy of the LPT 
exhaust steam can be derived from the operational parameters as 
follows: 

hc = hs,6 − η6− c
(
hs,6 − hcs

)
(14)  

where hc is the LPT exhaust steam enthalpy, kJ/kg; hs,6 is the enthalpy of 
the No. 6 steam extraction, kJ/kg; and hcs is the isentropic enthalpy of 
the LPT exhaust steam, kJ/kg. 

Then, the work done per unit mass of live steam is: 

H = hout,1 + σ − hc −
∑8

r=1
τr

Hr

qr
−
∑∏

(15)  

where hout,1 is the live steam enthalpy, kJ/kg; σ is heat absorption of the 
reheated steam in the boiler reheater, kJ/kg; τr is the enthalpy rise of 
feedwater in the No. r regenerative heater, kJ/kg; Hr is the equivalent 
enthalpy drop of extraction steam of the No. r regenerative heater, kJ/ 
kg; qr is heat release per unit mass of extracted steam of the No. r 
regenerative heater, kJ/kg; and 

∑∏
is the amount of work capacity 

reduction per unit mass of live steam caused by losses, kJ/kg. 
The calculation method of the equivalent heat drop H of the 

extraction steam to the regenerative heater after reheating is: 

Hi =
(
hs,i − hc

)
−

(
∑mixi

r=i

γr

qr
Hr +

∑8

r=mixi+1

τr

qr
Hr

)

(16)  

and before reheating, it is: 

Fig. 6. Regression values R of each neural network dataset.  
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Hi =
(
hs,i + σ − hc

)
−

(
∑4

r=i

γr

qr
Hr +

∑8

r=5

τr

qr
Hr

)

(17)  

where hs,i is the enthalpy of the No. i steam extraction, kJ/kg; γr is the 
heat release of the drain water of the No. r regenerative heater, kJ/kg; 
and mixi is the nearest mixing heater with an extraction pressure lower 
than the No. i extraction. 

The total heat absorption per unit mass of live steam in boiler Q is: 

Q= hout,1 − hin,1 + α2
(
hout,2 − hin,2

)
(18)  

where α2 is the proportion of the reheat steam to the live steam; hout,2 is 
the enthalpy of hot reheat steam, kJ/kg; and hin,1, hin,2 is the enthalpy of 
feedwater and cold reheat steam, kJ/kg. 

Then, the energy efficiency of STS can be obtained with the following 
operation parameters: 

ηsts =
H
Q

(19) 

The feedwater mass flow rate mw can be calculated with the work 
done per unit mass of live steam H as: 

mw =
We

ηmηgH
(20)  

where We is the generated power of the power plant, MW; ηm is the 
mechanical efficiency; and ηg is the generator efficiency. 

The water-coal ratio is very important for power plant high- 
efficiency operation and can be calculated with: 

λ=
mw

mco
=

mw
mwQ
ηbqnet

=
ηbqnet

Q
(21)  

where mco is the mass flow rate of coal to the boiler, kg/s; ηb is the boiler 
efficiency; and qnet is the net calorific value of coal, kJ/kg. 

Considering the challenge associated with accurately measuring the 
coal supply mass flow rate in Eq. (21), this challenge is translated into 
the calculation of boiler efficiency. By utilizing parameters such as the 
boiler flue gas temperature, boiler efficiency can be determined using a 
reverse-balancing approach. This, in turn, facilitates the calculation of 
the coal-to-water ratio. 

The water-coal ratio λ and feedwater mass flow rate (mw) under 
various power generation conditions of the power plant can be 
computed using the aforementioned equations. Subsequently, a curve 
illustrating the relationship between the water-coal ratio λ and the 
generated power (We) of the power plant can be generated based on 
operational parameters. This curve serves as a valuable tool for 
enhancing the efficient operation of power plants as follows: 

λ= f (We) (22)  

3. Results and discussion 

In this section, we will compare and select digital twin modeling 
methods for the parameters to be predicted. Subsequently, we will 
proceed to model the digital twin parameters related to the energy ef
ficiency of the STS. Following this, we will conduct an energy efficiency 
evaluation of the STS using the digital twin parameters under varying 
circulating water inlet temperatures. Finally, we will undertake opera
tion optimization based on the digital twin parameters, including live 
steam pressure optimization and cold end optimization. 

3.1. Modeling on digital twin parameters 

The digital twin parameters can be accurately predicted using 
various modeling methods. Specifically, the BP outlet pressure, feed
water mass flow rate of the FP, feedwater pressure at the FP outlet, FP 

efficiency, and FP power are predicted using mechanism data hybrid 
driven modeling methods. Fig. 7 illustrates a comparison between the 
model-predicted data and the measured data for two digital twin pa
rameters. As depicted in Fig. 7, the mechanism data hybrid driven 
models exhibit a high level of prediction accuracy. When comparing the 
simulation values to the measured values for the feedwater mass flow 
rate and feedwater pressure at the FP outlet across 500,000 data points, 
it becomes evident that the simulation values closely align with the 
measured values, with relative errors of 1.67 % and 1.11 %, respectively. 
These results underscore the high accuracy of the developed models. 

The prediction of the FP relative rotary speed, mass flow rate of 
steam to the FPT, and FPT exhaust steam pressure is accomplished 
through a combination of mechanism data hybrid driven modeling and 
neural network data-driven modeling methods. Fig. 8 provides a com
parison between the model simulation data and the measured data for 
these three parameters. The simulation results from both the mechanism 
data hybrid driven models and the neural network data-driven models 
closely align with the measured data, with average relative errors of 1.7 
% and 1.06 %, respectively. These results underscore the high accuracy 
of both modeling approaches. 

An analysis of the deviations between the two modeling methods is 
conducted, as shown in Fig. 9. Additionally, Table 1 presents the mean 
absolute error, root mean square error, and determination coefficient of 
simulation data obtained from both modeling methods. 

The average absolute errors for all parameters are significantly 
smaller than the 3 % of measured values, indicating a robust alignment 
between the simulated values and the measurements across the load 
range of the measured data. Furthermore, the low root mean square 
error and the determination coefficient, which is very close to 1, provide 
further evidence of the models’ exceptional accuracy. 

It is noteworthy that in the simulation of the FP relative rotary speed 
and the mass flow rate of steam to the FPT, the neural network data- 
driven modeling demonstrates an advantage over the mechanism data 
hybrid driven modeling. However, in the simulation of the exhaust 
steam pressure of the FPT, the reverse holds true, indicating that each 
modeling method has strengths in specific parameter predictions. 

In light of the previous discussion, in the ultimate digital twin 
parameter simulation model, it is advisable to predict the FP relative 
rotary speed and the mass flow rate of steam to the FPT using the neural 
network data-driven modeling method, while other parameters can be 
reliably obtained through the mechanism data hybrid driven modeling 
method. 

3.2. Energy efficiency diagnosis based on digital twin parameters 

From a thermodynamic perspective, the energy efficiency of the STS 
is influenced by both external irreversibilities (heat source and heat 
sink) and internal exergy irreversibilities. In Section 3.1, we successfully 
modeled the digital twin parameters that influence exergy destruction 
due to internal irreversibilities. Now, we can proceed to diagnose the 
energy efficiency of the STS based on the inlet parameters of the steam 
turbines and the parameters of steam exhaust. 

The energy efficiency of the STS under varying cold end parameters, 
specifically different circulating water inlet temperatures (Tcwi), is pre
sented in Fig. 10. The inlet temperature of the circulating water has a 
notable effect on the thermal parameters of the LPT exhaust steam, 
which in turn affects the energy efficiency of the STS. To facilitate 
analysis, the operation data were divided into two groups, one with a 
circulating water inlet temperature of 4.5 ± 1 ◦C and the other with a 
circulating water inlet temperature of 6.5 ± 1 ◦C, as shown in Fig. 10 (a). 

The changes in LPT exhaust steam pressure, exhaust steam enthalpy, 
and work done per unit mass of live steam are illustrated in Fig. 10 (b), 
(c), and (d), respectively. The LPT exhaust steam mass flow rate in
creases with the unit load, and the cooling capacity of the cold-end 
system varies due to changes in the scheduling of the circulating 
water pumps. As a result, the exhaust pressure initially decreases and 
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then increases, and the enthalpy of the LPT exhaust steam decreases 
initially and then increases. Consequently, the work done per unit mass 
of live steam follows a pattern of initial increase and subsequent 
decrease. Comparing the two datasets, a higher circulating water inlet 
temperature leads to higher exhaust steam pressure and, consequently, 
higher exhaust steam enthalpy. While other parameters exhibit minor 
differences, the higher exhaust steam enthalpy results in a decrease in 
the work done per unit mass of live steam. Overall, the trends in the 
exhaust steam enthalpy and work done per unit mass of live steam align 
with the design values. However, the exhaust steam enthalpy in oper
ation surpasses the design value, while the work done per unit mass of 
live steam is lower than the design value. On average, the LPT exhaust 
steam enthalpy is 3.13 % higher, and the work done per unit mass of live 
steam is 5.05 % lower than the design values. 

The heat absorption per unit mass of live steam and STS energy ef
ficiency are depicted in Fig. 10 (e) and (f). The enthalpy of the boiler 
feedwater increases with the unit load, so the heat absorption per unit 
mass of live steam decreases with the increase of the unit load. Within 
the load range of 30 %–75 %, the increase in work done per unit mass of 
live steam, coupled with the decrease in heat absorption per unit mass of 
live steam, leads to a rapid improvement in STS energy efficiency. 

However, when the load exceeds 75 %, the increase in exhaust enthalpy 
results in a slight decrease in STS energy efficiency. There is minimal 
difference between the two datasets in terms of heat absorption per unit 
mass of live steam, so the lower work done per unit mass of live steam in 
the green dataset also contributes to lower efficiency. Overall, both 
parameters exhibit the same variation pattern as the design values but 
fall short of the design values. The heat absorption per unit mass of live 
steam is 1.19 % less than the design value, and the STS energy efficiency 
is relatively 3.89 % lower than the design value. The efficiency is lower 
than the design value due to performance degradation. 

Fig. 11 illustrates the relative deviations from the design values for 
key parameters, including LPT exhaust steam enthalpy, work done, heat 
absorption per unit mass of live steam, and STS energy efficiency. These 
deviations become more significant as the unit load increases. Regard
less of the load range, the operational STS energy efficiency is consis
tently lower than the design value. The maximum deviation of − 5.00 % 
occurs at 1039.37 MW, while the minimum deviation of − 3.02 % is 
observed at 779.51 MW. These deviations highlight the real-world 
challenges in achieving idealized design performance, particularly as 
the unit load varies. 

Fig. 12 displays the parameter deviations under different cold-end 

Fig. 7. Parameters only predicted by the mechanism data hybrid driven modeling method.  

Fig. 8. Parameters predicted by both the mechanism data hybrid driven models and neural network data-driven model.  
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conditions characterized by circulating water inlet temperatures of 4.5 
± 1 ◦C and 6.5 ± 1 ◦C. Comparing the two conditions, it is observed that 
the LPT exhaust steam enthalpy is 0.41 % lower at the lower circulating 
water inlet temperature, while the work done per unit mass of live steam 
is 0.44 % higher. Consequently, the STS energy efficiency is 0.45 % 
higher under the lower circulating water inlet temperature condition. 
Notably, there is no significant difference in the heat absorption per unit 
mass of live steam between the two conditions. 

As the operational time of the unit increases, the system and equip
ment of the unit naturally experience aging, leading to the degradation 
of unit performance. Consequently, there is a discernible difference 
between the operational values and the design values. In summary, 
when comparing different circulating water inlet temperatures, the 
lower circulating water inlet temperature results in a lower LPT exhaust 

steam pressure, assuming the same number of circulating pumps are in 
service. This lower exhaust steam pressure leads to reduced exhaust 
steam enthalpy. Under equivalent heat absorption conditions, a lower 
exhaust steam enthalpy allows for greater work done per unit mass of 
live steam, signifying higher steam turbine efficiency. 

3.3. Operation optimization based on digital twin models 

The improvement of STS energy efficiency can be achieved through 
the judicious adjustment of heat source and heat sink parameters. In the 
context of the heat source, the analysis in this section will focus on the 
effect of live steam pressure on the heat absorption process. Regarding 
the heat sink, the optimization of circulating pump scheduling will be 
explored to attain optimal operation of the cold end. 

3.3.1. Live steam pressure optimization 
The analysis in this section further explores the effect of different 

circulating water inlet temperatures, as discussed in Section 3.2, on the 
feedwater mass flow rate and water-coal ratio. The comparisons of these 
parameters are illustrated in Fig. 13 (a) and (b). It is observable that the 
feedwater mass flow rate increases with the rise in unit load. In accor
dance with Eq. (21), the water-coal ratio decreases with the increase of 
the heat absorption per unit mass of live steam. The heat absorption per 
unit mass of live steam decreases with the increase of the unit load, 
resulting in an increase in the water-coal ratio. 

In summary, the trends in the variation of both parameters align with 
the design values. However, it should be noted that the calculated 
feedwater mass flow rate is, on average, 6.99 % higher than the design 
value, and the water-coal ratio is 1.35 % higher than the design value. 
There are several factors contributing to the larger water-coal ratio 
observed in actual operation, including equipment aging and higher 
condenser back pressure, among others. 

The feedwater mass flow rate fitting curves for the two datasets are 
depicted in Fig. 13(c) and (d), respectively, and the analytical formula is 
as follows: 

mw1 = 0.0004314We
2 + 0.2093We + 171, Tcwi = 4.5 ± 1◦C (23) 

Fig. 9. Deviation between measured and simulation values of two models.  

Table 1 
Model accuracy analysis.  

Simulation 
parameters 

Model type Mean 
absolute 
error 
(MAE) 

Root- 
mean- 
square 
error 
(RMSE) 

Determinate 
coefficient (R2) 

FP relative 
rotary speed 

Neural network 
data-driven 
model 

0.0026 0.0048 0.9972 

Mechanism 
data hybrid 
driven model 

0.0069 0.0101 0.9878 

Mass flow rate 
of steam to 
the FPT 

Neural network 
data-driven 
model 

1.0809 t/h 1.8573 0.9873 

Mechanism 
data hybrid 
driven model 

1.7397 t/h 2.3682 0.9793 

Exhaust steam 
pressure of 
the FPT 

Neural network 
data-driven 
model 

0.1367 kPa 0.2141 0.9841 

Mechanism 
data hybrid 
driven model 

0.1165 kPa 0.1395 0.9933  
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Fig. 10. STS energy efficiency diagnosis with different circulating water inlet temperatures.  

Fig. 11. The deviation from the design value of different parameters.  
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mw2 = 0.0003741We
2 + 0.3072We + 133.2,Tcwi = 6.5 ± 1◦C (24) 

The water-coal ratio should be precisely regulated to facilitate the 
efficient operation of the unit. The water-coal ratio fitting curves for the 
two datasets are presented in Fig. 13(e) and (f), respectively, and the 
analytical equation is as follows: 

λ1 = 6.995 × 10− 7We
2 + 0.0009158We + 8.771, Tcwi = 4.5 ± 1◦C (25)  

λ2 = 6.498 × 10− 7We
2 + 0.0009023We + 8.831, Tcwi = 6.5 ± 1◦C (26) 

As one of the crucial thermal parameters of the STS, optimizing the 
live steam pressure can maximize energy efficiency. The live steam 
pressure optimization is carried out while maintaining unchanged 
external operating conditions, the STS cold-end system’s operating 
scheme, and the configuration of the STS feedwater regenerative ther
mal system. The primary objective of this optimization is to identify the 
live steam pressure that yields the highest STS energy efficiency within 
different load ranges. Consequently, determining the optimal live steam 
pressure for each load range is essential for achieving maximum effi
ciency. This determination is accomplished with the assistance of the 
feedwater mass flow rate curve and water-coal ratio curve, as illustrated 
in Fig. 14. Fig. 14(a) depicts the STS energy efficiency corresponding to 
different load ranges and various live steam pressures. By comparing the 
STS energy efficiency values associated with different live steam pres
sures within the same load range in the figure, we can identify the 
optimal live steam pressure for each load range. The resulting optimi
zation curve for live steam pressure is presented in Fig. 14(b). 

Following the optimization of live steam pressure, there is a notable 
improvement in STS energy efficiency. Fig. 15 illustrates the relative 
increase in STS energy efficiency resulting from live steam pressure 
optimization. Considering the four load points with the most historical 
operating data and comparing them with the minimum efficiency and 
average efficiency of the same load range, the efficiency after opera
tional optimization exhibits an average increase of 0.78 % and 0.35 %, 
respectively. 

3.3.2. Cold end system optimization 
The core of cold end optimization lies in determining the number of 

circulating pumps in operation to achieve the highest STS net efficiency. 
The optimization of the cold end system is based on constant constraints, 

including the operating mode of live steam pressure in the STS and the 
configuration of the STS feedwater regenerative thermal system. The 
optimization objective remains to attain the highest STS energy effi
ciency. The method employed involves exploring the most suitable cold 
end system circulating pump scheduling schemes for different load 
ranges to correspond with the optimum STS energy efficiency. The data 
used for the circulating water inlet temperature ranges from 3.5 to 
7.5 ◦C, and during this range, only one circulating pump is in service. 
Data for a circulating water inlet temperature of 15–17 ◦C are included 
for comparison, where two circulating pumps are in service. The 
following is an energy efficiency comparative analysis of circulating 
pump numbers under different circulating water inlet temperatures and 
different loads. 

The comparisons of the circulating water inlet temperature, LPT 
exhaust steam pressure, exhaust steam enthalpy, and work done per unit 
mass of live steam are shown in Fig. 16(a), (b), (c), and (d). Lower 
exhaust pressure and enthalpy can be achieved for the cold end system 
with two circulating pumps compared with that with one circulating 
pump, which leads to a higher work done per unit mass of live steam. 

The heat absorption per unit mass of live steam, steam turbine effi
ciency, and equivalent steam turbine efficiency, accounting for the 
power consumption deviation of the circulating pump, are illustrated in 
Fig. 16(e), (f), and (g). There is no significant difference in heat ab
sorption between them. Regardless of whether the circulating pump 
power consumption is considered, because of the higher work done per 
unit mass of live steam, the STS energy efficiency of the data with two 
circulating pumps in service is higher at high loads than the data with 
only one circulating pump in service. Nevertheless, when compared to 
the design efficiency, a certain discrepancy persists. 

Utilizing various scheduling schemes for circulating pumps, we 
selected four load points ranging from 700 MW to 1100 MW to assess the 
STS energy efficiency deviation between the two datasets within the 
same load range. As depicted in Fig. 17, the deviation in the overall 
dataset escalates with increasing load. The operation optimization of 
cold end system is to balance the tradeoff between the energy con
sumption of circulating pumps and the steam turbine output power. 
When the power load is 740 MW, the STS energy efficiency is higher for 
the cold end system with one circulating pump. However, when the 
power load is over 840 MW, the STS energy efficiency is higher for the 
cold end system with two circulating pumps, because the increase of 

Fig. 12. The parameter deviations under different cold end conditions.  
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steam turbine output power is over the energy consumption of an added 
circulating pump. 

The comparisons between the feedwater mass flow rate and the 
water-coal ratio in the two datasets are elucidated in Fig. 18(a) and (b). 
Under high load conditions, the heightened cooling efficiency results in 
a reduction in the LPT exhaust steam enthalpy, consequently enhancing 
the work done per unit mass of live steam. Consequently, the green 
dataset necessitates a lower feedwater mass flow rate for the same power 
output. It is essential to highlight that the water-coal ratio curves for 
both datasets exhibit almost indistinguishable profiles, and both surpass 
the designated values. 

In Fig. 18(c) and (d), the fitting curves for the feedwater mass flow 
rate and water-coal ratio are presented for the dataset with two circu
lating pumps in operation. The analytical formulations for these curves 
are as follows: 

mwh = 0.0003128We
2 + 0.3963We + 98.15 (27)  

λh = 5.871 × 10− 7We
2 + 0.00103We + 8.761 (28) 

Following the aforementioned analysis, it is evident that the energy 
efficiency of the two datasets varies across distinct load ranges, 
emphasizing the existence of an optimal circulating pump scheduling 
scheme. Consequently, we focus on the load range of 600 MW–1100 
MW, which is common to both datasets, to evaluate the equivalent STS 

energy efficiency within this range. As illustrated in Fig. 19, two curves 
intersect at STS output power of 780 MW. When the load is below 780 
MW, running a single circulating pump results in higher STS energy 
efficiency, while when the load surpasses 780 MW, operating two 
circulating pumps yields greater equivalent STS energy efficiency. 
Notably, it is worth mentioning that in actual operation, the load 
intersection point will be further advanced due to the lower circulating 
water inlet temperature observed in the single pump scheme employed 
in this study. 

Fig. 20 depicts the relative enhancement of STS energy efficiency 
resulting from cold end optimization. Across the five load points ranging 
from 640 MW to 1040 MW, the maximum observed relative increase in 
energy efficiency post-optimization is 0.34 %, while the minimum 
observed relative increase stands at 0.01 %. On average, there is a 0.14 
% increase in energy efficiency. 

Consequently, in the practical operation of thermal power plants, 
optimizing the circulating pump scheduling scheme across the entire 
load range, including loads below 600 MW, and implementing this 
optimized scheme (which is highly feasible) can result in a more sub
stantial enhancement in STS energy efficiency across the entire load 
spectrum, surpassing an average relative improvement of 0.14 %. 

Fig. 13. Feedwater mass flow rate and water-coal ratio with different Tcwi.  
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Fig. 14. Live steam pressure optimization.  

Fig. 15. The relative increase in STS energy efficiency by live steam pressure optimization.  
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4. Conclusion 

Due to the increasing prevalence of renewable power sources, ther
mal power plants experience a reduction in energy efficiency, especially 
when providing peak regulation services. Among the vital components 
of a thermal power plant, the STS holds primary importance, comprising 
steam turbines (HPT, IPT, LPT, and FPT), regenerative heaters (No.1 to 
No.8 RHs), and pumps (CP, BP, and FP). It significantly influences the 
energy efficiency of the entire thermal power plant. Consequently, 
digital twin modeling has been employed to assess the energy efficiency 
of STSs, utilizing both mechanism-driven and data-driven modeling 
methods. 

The digital twin parameters for STS are primarily developed within 
the FP subsystem, which serves as the core of STS. Subsequently, 
essential digital twin parameters are simulated following the selection of 
appropriate modeling methods. Among these parameters, the BP outlet 
pressure, feedwater mass flow rate of the FP, feedwater pressure at the 
FP outlet, FP efficiency, FP power, and FPT exhaust steam pressure are 
simulated using the mechanism data hybrid driven modeling method, 
ensuring precision. Additionally, the FP relative rotary speed and the 
mass flow rate of steam to the FPT are simulated using neural network 
data-driven modeling methods to achieve high accuracy. 

Based on these digital twin parameters, an energy efficiency analysis 
model for STS with varying cold end parameters is developed through 

Fig. 16. STS energy efficiency diagnosis with different numbers of circulating pumps in service.  
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the mechanism-driven modeling method. This model includes critical 
factors such as LPT exhaust steam enthalpy, work done per unit mass of 
live steam, heat absorption per unit mass of live steam, STS energy ef
ficiency, feedwater mass flow rate, and water-coal ratio. The analysis 
reveals that, on average, a lower circulating water inlet temperature 
results in a 0.45 % increase in STS energy efficiency relative to a higher 
circulating water inlet temperature. However, the operational energy 
efficiency remains, on average, 3.89 % lower than the design value. 
Additionally, the relationship curve between the water-coal ratio and 
load, obtained from the energy efficiency analysis model of STS, holds 

significant value for guiding unit operation optimization. 
Subsequently, optimizations in live steam pressure and the cold end 

system of the thermal power plant are executed, leading to the deriva
tion of optimal operation curves for live steam pressure and optimal 
scheduling schemes for circulating water pumps. Following these opti
mizations, the STS energy efficiency can be improved by 0.35 % and 
0.14 % relatively on average. 

In summary, leveraging the digital twin parameters of the FP sub
system, the energy efficiency digital twin analysis model of STS devel
oped in this study proves to be a valuable tool for accurately evaluating 

Fig. 17. The deviation from the design STS energy efficiency under different cold end conditions.  

Fig. 18. Feedwater mass flow rate and water-coal ratio with different circulating pump numbers.  
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and diagnosing STS energy efficiency. It also facilitates the analysis of 
how the circulating water inlet temperature influences the STS energy 
efficiency and contributes to optimizing the live steam pressure and the 
cold end system. The on-line self-learning should be considered in future 
study, which is also the limitations of the applied approach in this paper. 
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[28] Zima W, Nowak-Ocoń M, Ocoń P. Novel online simulation-ready models of 
conjugate heat transfer in combustion chamber waterwall tubes of supercritical 
power boilers. Energy 2018;148:809–23. 

[29] Xiang Z, Yuan J, Xu L, Tian Z, Wang J. Pseudo-online optimization of condenser 
pressure for the cold-end system with variable speed pumps. Appl Therm Eng 
2017;126:339–49. 

[30] Runvik H. Modelling and start-up optimization of a coal-fired power plant. 
Technology & Engineering; 2014. 

[31] Liu Z, Karimi IA. Simulation and optimization of a combined cycle gas turbine 
power plant for part-load operation. Chem Eng Res Des 2018;131:29–40. 

[32] Anjum H, Ul-Haq A, Mahmood I. Dynamic modeling and heat flow study of a 
thermal power plant using OpenModelica. IEEE Access 2020;8:178614–26. 

[33] Wang Z, Liu M, Yan J. Flexibility and efficiency co-enhancement of thermal power 
plant by control strategy improvement considering time varying and detailed 
boiler heat storage characteristics. Energy 2021:232. 

[34] Wang Q, Pan L, Lee KY, Wu Z. Deep-learning modeling and control optimization 
framework for intelligent thermal power plants: a practice on superheated steam 
temperature. Kor J Chem Eng 2021;38:1983–2002. 

[35] Wang C, Zhao Y, Liu M, Qiao Y, Chong D, Yan J. Peak shaving operational 
optimization of supercritical coal-fired power plants by revising control strategy 
for water-fuel ratio. Appl Energy 2018;216:212–23. 

[36] Yin J, Liu M, Zhao Y, Wang C, Yan J. Dynamic performance and control strategy 
modification for coal-fired power unit under coal quality variation. Energy 2021; 
223:120077. 

[37] Liu M, Wang S, Zhao Y, Tang H, Yan J. Heat–power decoupling technologies for 
coal-fired CHP plants: operation flexibility and thermodynamic performance. 
Energy 2019;188:116074. 

[38] Liangyu M, Xinhui D, Xian G, Jin M. A study on real-time simulation mathematical 
model of variable speed boiler feedwater pump. JOURNAL OF NORTH CHINA 
ELECTRIC POWER UNIVERSITY; 1998. 

[39] Jianqun X, Runtian G, Keyi Z. A new type of universal mathematical model of feed 
water pump. TURBINE TECHNOLOGY; 1999. 

[40] Liu MF, Lu GL. The efficiency analysis of steam turbine-driven feed water pump. 
Appl Mech Mater 2013;401–403:312–5. 
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[43] Strušnik D, Avsec J. Exergoeconomic machine-learning method of integrating a 

thermochemical Cu–Cl cycle in a multigeneration combined cycle gas turbine for 
hydrogen production. Int J Hydrogen Energy 2022;47:17121–49. 
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