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RESEARCH ARTICLE                       

On ignoring the heterogeneity in spatial autocorrelation: 
consequences and solutions

Zehua Zhanga , Ziqi Lib and Yongze Songa 

aSchool of Design and the Built Environment, Curtin University, Bentley, Australia; bDepartment of 
Geography, Florida State University, Tallahassee, Florida, USA 

ABSTRACT 
Spatial autoregressive (SAR) models are often used to explicitly 
account for the spatial dependence underlying geographic phe-
nomena. However, traditional SAR models are specified using a 
single SAR coefficient, assuming constant spatial dependence 
over space. This assumption oversimplifies the situation where 
the true spatial autoregressive process varies in strength; the con-
sequences of ignoring heterogeneous autocorrelation remain to 
be discussed. This study proposes a heterogeneous spatial auto-
correlation model by extending the spatial lag model (SLM). 
The new model includes change point detection for identifying 
patterns of spatially varying autocorrelation strengths, a SAR coef-
ficient matrix for representing heterogeneous spatial autocorrel-
ation, and maximum likelihood estimation for determining 
multiple SAR coefficients. Monte Carlo simulations demonstrate 
that the proposed method is effective in modeling SAR processes 
with heterogeneous autocorrelation patterns, while traditional 
SLM inflates uncertainties in the regression coefficients when a 
heterogeneous autocorrelation structure is not accounted for. We 
further applied the new method to an empirical analysis of traffic 
crashes in the Greater Perth Area, Australia. The heterogeneous 
spatial autocorrelation model reduces model RMSE by 42% (com-
pared with traditional SLM). Results from both simulation and 
empirical studies indicate that spatially varying autocorrelation 
strengths should be considered for SAR processes and relevant 
applications.
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1. Introduction

Spatial dependence refers to the phenomenon in which observations across space are 
interdependent, and their degree is often measured by spatial autocorrelation (Anselin 
1988, Anselin 2010). Spatial autoregressive (SAR) models are often used to explicitly 
account for spatial dependence, and the model’s spatial impacts underlie geographic 
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phenomena (Fischer and Wang 2011). Models within the SAR class include a series of 
revised model specifications such as the spatial lag model (SLM), spatial error model 
(SEM) and spatial Durbin model, with additional spatial lagged effects from geograph-
ical proximity (Fotheringham 2009, Anselin et al. 2010). Spatially lagged effects in SAR 
models are represented by the matrix product of a SAR coefficient indicating spatial 
autocorrelation strength and direction, a spatial weights matrix defining spatial con-
nectivity among locations, and the values of spatial variables (Anselin and Griffith 
1988, Anselin and Rey 2010). The development of SAR models is pivotal in spatial 
econometrics (Baltagi et al. 2007, Arbia and Baltagi 2009), and their applications 
extend to various research domains that require the interpretation of geographical 
information. These fields encompass, but are not limited to, transport planning (Rhee 
et al. 2016), urban analysis (Gao et al. 2020), social science (Lambert et al. 2010) and 
environmental modeling (Yin et al. 2018).

Traditional SAR models assume that the strength and direction of spatial autocorrel-
ation are homogeneous within a geographical space because of the estimation of a 
single SAR coefficient value (Harris 2019). However, this assumption ignores the vari-
ation in spatial autocorrelation strength, in which case multiple autoregressive coeffi-
cients should be estimated to reflect this complexity and avoid potential model 
misspecification. There have been several developments in this direction, and research 
efforts have been made to re-estimate the spatial autocorrelation strength with its 
spatial variation using geographically weighted regression (GWR) (Brunsdon et al. 
1998, Geniaux and Martinetti 2018).

The nonstationarity of spatial autocorrelation can be modeled by two categories of 
spatial processes in general, including second-order variance-based models and SAR 
models. Previous discussions on nonstationary spatial autocorrelation effects for spatial 
modeling have been extensively explored, but primarily through second-order vari-
ance-based methods (Fouedjio 2016). Within these Kriging models, the spatial depend-
ence structure or understanding of spatial autocorrelation, is typically represented in 
semi-variograms or spatial covariances (Goovaerts 1997). The nonstationarity of spatial 
autocorrelation, which reflects a feature of second-order variance effects, requires care-
ful consideration to avoid misidentifying first-order trend effects (Schabenberger and 
Gotway 2005). In large or complex study domains, the spatial dependence structure 
may remain stationary only within local regions, while exhibiting nonstationarity from 
a global perspective (Sampson et al. 2001). To more accurately model nonstationary 
spatial dependence, a range of techniques have been proposed, including partitioning 
(Stein et al. 1988), moving windows (Haas 1990), kernel-based models (Fuentes 2001, 
Harris et al. 2010), basis functions (Holland et al. 1999) and convolution methods 
(Higdon 1998, Higdon et al. 1999, Paciorek and Schervish 2006), among others 
(Lindgren et al. 2011).

However, the effects of nonstationary spatial dependence in SAR models or spatial- 
weight-matrix-based indicators remain underexplored. The variation in spatial autocor-
relation, as reflected by the Local Indicator of Spatial Association (LISA) or the spatial 
lag term in SAR models, is heavily influenced by the values of geographic neighbors 
(Anselin 1988, Anselin 1995). The strength of spatial autocorrelation for each individual 
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geographic unit is not fully accounted for. Further investigation is needed to compre-
hensively understand and model these effects within SAR frameworks.

In the SAR process, the spatial nonstationarity of spatial autocorrelation was initially 
explored and quantified through spatially varying autoregressive models, where SAR coef-
ficients were re-estimated using a geographically weighted approach (Brunsdon et al. 
1998). Despite the lack of discussion on model assumptions and the necessity of analyzing 
variations in spatial autocorrelation strength, spatially varying autoregressive models 
proved the feasibility of geographically weighted approaches for quantifying the variability 
of SAR coefficients. With further exploration of the SAR processes, a new spatial data gen-
eration process involving nonstationary spatial autocorrelation strength, known as Mixed 
GWR-SAR, was proposed (Geniaux and Martinetti 2018). However, an ultimate conclusion 
on the consequences of ignoring heterogeneous spatial autocorrelation, which could be 
solid evidence proving the necessity of considering the nonstationary spatial autocorrel-
ation strength for SAR processes, was not clearly presented in this research. Furthermore, 
how MGWR-SAR could assist in informative decision advice from the variation in spatial 
autocorrelation strength, or a discussion of its association with geographic proximity or 
feature interactions, was not shown. In the latest investigation of SAR models using geo-
graphically weighted approaches (Mei and Chen 2022), knowledge gaps on the essential-
ity of considering heterogeneous spatial autocorrelation and its spatial decision-making 
potential are still skipped.

Table 1 summarizes the representation of spatial dependence for two categories of 
spatial processes, together with corresponding techniques to reflect nonstationary spa-
tial dependence. Research progress on nonstationary spatial dependence within 
second-order-variance-based spatial models is comparatively mature, while SAR mod-
els mainly relies on geographically weighted approaches to demonstrate nonstationary 

Table 1. A summary of nonstationary spatial dependence for spatial processes.
Second-order-variance-based 

(Kriging) spatial process Spatial autoregressive process

The representation of spatial 
dependence

Semi-variogram, Spatial covariance 
(Fouedjio 2016)

Spatial autocorrelation coefficient, 
Spatial weight matrix (Anselin 
1988)

Fundamental models with stationary 
spatial dependence

Ordinary Kriging, Simple Kriging, 
etc. (Goovaerts 1997)

Spatial lag model, Spatial error 
model, etc. (Anselin 1988)

Further techniques to reflect 
nonstationary spatial dependence

� Category or strata based 
partitioning model (Stein et al. 
1988) 

� Moving window based 
nonstationary model (Haas 
1990) 

� Smoothing and kernel-based 
methods (Fuentes 2001, Harris 
et al. 2010) 

� Basis functions from Gaussian 
random function (Holland et al. 
1999) 

� Spatial deformation models 
(Sampson and Guttorp 1992) 

� Convolution (Higdon 1998, 
Higdon et al. 1999, Paciorek and 
Schervish 2006) 

� Stochastic partial differential 
equations (Lindgren et al. 2011)

� Geographically weighted 
approach (Brunsdon et al. 1998, 
Geniaux and Martinetti 2018) 

� Heterogeneous spatial 
autocorrelation model (category 
or strata based) – this study
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spatial autocorrelation strength at current stage. Previous geographically weighted- 
based SAR processes assume continuous variability in spatial autocorrelation. 
Alternatively, we addressed the issue of heterogeneous spatial autocorrelation through 
residual analysis. Our heterogeneous spatial autocorrelation model is the extension of 
traditional SAR models proposed by Anselin (1988) and assumes that the variation of 
spatial autocorrelation strength can be stratified or categorized.

This study aims to explore the impact of heterogeneous spatial autocorrelation 
strength and develop methods to capture this feature of spatial nonstationarity 
through simulation studies and empirical spatial analysis of transport geography. In 
this study, we designed a series of Monte Carlo simulations to demonstrate (1) the 
consequences of ignoring heterogeneous spatial autocorrelation in the traditional SLM 
and (2) the capability of our proposed method to capture heterogeneous autocorrel-
ation patterns. We further applied the new method to an empirical analysis of traffic 
crashes in the Greater Perth Area of Australia. The remainder of the article is organized 
as follows: Section 2 presents our developed method to handle the existence of het-
erogeneous spatial autocorrelation patterns. Section 3 demonstrates the consequences 
of ignoring heterogeneous spatial autocorrelation using the traditional SLM and our 
model’s capability through a series of Monte Carlo simulations. Section 4 presents the 
results of applying our adjusted SLM to a traffic crash study, followed by a discussion 
and conclusion in Sections 5 and 6, respectively.

2. Modeling the heterogeneity of spatial autocorrelation

Figure 1 shows the framework illustrating our proposed strategy for extracting pat-
terns of heterogeneous autocorrelation and re-estimating the varying spatial 

Figure 1. Framework of extracting and re-estimating heterogeneous spatial autocorrelation from 
residuals.
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autocorrelation strength. Traditional SAR models assume that the strength of spatial 
dependence is homogeneous across space by estimating a single value of the SAR 
coefficient as a global indicator. Uncaptured heterogeneity in the autocorrelation will 
be left over as residuals. Thus, the proposed analytical approach was designed to cap-
ture heterogeneous autocorrelation patterns through additional residual analysis and 
to re-estimate the SAR processes using an adjusted generalized SAR coefficient matrix. 
The following two subsections present the details of the framework, including pattern 
extraction and model re-estimation using SLM.

2.1. Extracting patterns of heterogeneous spatial autocorrelation from residuals

Residuals from models that ignore heterogeneous autocorrelation may have remaining 
statistical associations with the dependent variables. Regions with different spatial 
autocorrelation strengths may have different degrees of association between the resid-
uals and the dependent variable. Analysis of this statistical association can help to 
identify areas where different SAR processes occur. To this end, we propose the use of 
a change point detection algorithm from a Robust Geographical Detector (RGD) as a 
candidate method for extracting heterogeneous autocorrelation patterns from trad-
itional SLM residuals when heterogeneous autocorrelation is overlooked.

The geographical detector is effective in exploring the statistical associations 
between variables according to the least-squared costs of the dependent variable 
categorized by statistical groups, which are determined through the discretization of 
the rank of the independent variable (Song et al. 2020, Guo et al. 2022). A higher 
sum of the least-squared costs from all statistical groups indicates a lower statistical 
association between the variables. The RGD has been proven to be a more effective 
method for indicating the association between variables than other geographical- 
detector-based approaches because of the introduction of an optimization algorithm 
for detecting changing points (Zhang et al. 2022). This optimization algorithm returns 
the specified number of breaking points that guarantee the highest level of associ-
ation between variables after searching and comparing the least-squared costs for all 
possible combinations of subseries from the dependent variable values sorted by the 
independent variable values (Zhang et al. 2024). We keep the general algorithm struc-
ture identical to previous RGD research because the change point detection algorithm 
fits the need to identify statistical associations between the dependent variable and 
the residual (Zhang et al. 2022). 

Algorithm 1: Change point detection from RGD (Zhang et al. 2022) for the statistical 
association between the dependent variable and the residuals from the SLM.

1 function Change Point Detection (minimal group size: r, number of changing 
points: k, input data: y-values and corresponding residual values from SLM)

Note: The number of different groups of spatial autocorrelation strength is kþ 1.
# Preparation: compute the least cost for all pairs of sub-series

2     Reorder y-values according to the corresponding rank of residuals from SLM
3     Store the reordered y-values as a 1-dimensional series, and note as ySLM−resi

4     for all sub-series with acceptable length (length > r) do
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5        store all sub-series and corresponding least squared costs
6     end for
7     for all possible sub-series pairs with acceptable length (length > r) do
8        record these sub-series pairs and their least costs
9     end for

# Using Dynamic Programming to find changing points starting with the head or 
the tail of the ySLM−resi

10     while not all changing points are found do
11         find two sub-series pairs with the least costs for the remaining y-series
12         store this changing point to the list L
13         set this last found changing point as the next starting point
14     end while
15     categorize ySLM−resi according to the list L, and save it as a new attribute to 

the file CPD_by_k
16     return CPD_by_k

The change point detection algorithm operates on a one-dimensional series of y-values, 
initially sorted by the SLM residual, along with two user-defined parameters: number of 
intervals and minimum size of the statistical group. The Algorithm 1, spanning Lines 2 to 
7, starts by computing and storing the least-squared cost values for all possible subseries. 
Subsequently, from Lines 8 to 16, the algorithm uses dynamic programming to identify 
potential change points. Starting from the ascending or descending peaks of the residual, 
it iteratively seeks the change point that partitions the current subseries of the y-values 
with the least cost. This process continues until all change points are found, with each 
newly identified change point serving as the starting point for the next iteration. Typically, 
the minimum size of the statistical group is set to one, enabling change point detection 
on all subseries when the number of observations is not substantial. The number of inter-
vals initially begins at two, indicating the requirement of one change point to delineate a 
binary pattern of variation. The capability of change point detection in identifying spatial 
autocorrelation patterns hinges on the statistical association between residuals and the y- 
value within the context of the SAR data generation process. Observations exhibiting 
higher spatial autocorrelation strength may receive additional values from their geograph-
ical neighbors, resulting in a higher y-value compared to others. Traditional SLM, which 
assumes constant spatial autocorrelation, tends to leave larger residuals for such observa-
tions. In other words, observations with higher spatial dependence values will also exhibit 
greater estimation errors when modelled by stationary spatial dependence models. This 
statistical association between spatial dependence and estimation error can be captured 
by change point detection.

In this study, we applied the change point detection algorithm to the y-variable 
and residuals from the SLM, as an example of an SAR model. The SLM is expressed by 
Eq. (1) (Anselin 1988).

y ¼ qWy þ Xbþ e (1) 

where qWy is the spatial term with q as the SAR coefficient, W as a spatial weights 
matrix and y as the dependent variable; X is a matrix of independent variables; b are 
coefficients of independent variables; and e is the error term.
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2.2. Re-estimation on the heterogeneity of spatial autocorrelation

Change point detection has the potential to identify heterogeneous autocorrelation 
patterns, but the strength of spatial autocorrelation with variations from different stat-
istical groups still needs to be re-estimated. In a traditional SLM, the strength of the 
spatial autocorrelation can be represented by the SAR coefficient (rho) as a constant 
value. As demonstrated in the matrix representation, the constant value of rho can 
also be equivalently transformed into a diagonal matrix, where all nonzero elements 
are equivalent to the value of rho, as shown in Eq. (2).

y ¼

q � � � 0
..
. . .

. ..
.

0 � � � q

2

6
4

3

7
5Wy þ Xbþ e (2) 

If the strength of spatial autocorrelation varies from place to place, the diagonal 

matrix of the SAR coefficient can be maximally extended to the form 

q1 � � � 0

..

. . .
. ..

.

0 � � � qn

2

6
4

3

7
5, 

where SAR coefficients from q1 to qk (k< n) are different from each other and the 
number of different SAR coefficient ‘k’ is no greater than the number of total observa-
tions minus the number of parameters to be estimated, as restricted by the degrees 
of freedom.

To simplify the problem, we start with the impact of heterogeneous autocorrel-
ation, shown as a binary difference, in which regions with variations in spatial autocor-
relation strength can be roughly categorized into two groups. A binary difference in 
spatial autocorrelation strength is the simplest representation of variation, and this 
research conducts a pilot investigation on the consequences of ignoring the variation 
in spatial autocorrelation strength resulting from this simple representation.

y ¼
q1In1 0

0 q2In2

� �

Wy þ Xbþ e (3) 

The SAR coefficient matrix in Eq. (3) is shown as 
q1In1 0

0 q2In2

� �

, where q1In1 and 

q2In2 represent two sets of areas with different strengths of spatial autocorrelation 
(with n1 þ n1 ¼ n, and n is the number of observations). These two sets of areas were 

disjointed and the union was the entire study area. Thus, in Eq. (3), 
q1In1 0

0 q2In2

� �

Wy 

is the spatial lag term with patterns of heterogeneous autocorrelation; X is a matrix of 
independent variables; b are coefficients, and e is the error term. Equation (3) can be 
converted into Eq. (4) when re-estimating the values of the beta and SAR coefficients. 
For a heterogeneous autocorrelation with binary differences, an extra degree of free-
dom must be allocated to estimate the additional SAR coefficient. The terms 

q1
In1 0
0 0

� �

Wy and q2
0 0
0 In2

� �

Wy in Eq. (4) represent the spatial impacts from the first 

and the second groups of areas respectively. Eqs. (3) and (4) are extensions of the 
SLM, and the SLM with the heterogeneous autocorrelation assumption remains a 
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nonlinear model. Thus, we re-estimate the values of the beta and SAR coefficients 
using maximum likelihood estimation (MLE) rather than ordinary least squares.

y ¼ q1
In1 0
0 0

� �

Wy þ q2
0 0
0 In2

� �

Wy þ Xbþ e (4) 

Algorithm 2 illustrates the computational process for estimating regression coeffi-
cients within the heterogeneous spatial autocorrelation model. The ‘Heterogeneous 
Spatial Autocorrelation Model’ function estimates the coefficients for categories of spa-
tial autocorrelation and independent variables using the MLE estimation and PORT 
routines method for optimal parameter search. In the MLE process, the objective of 
maximizing the log-likelihood values derived from residuals is transformed into mini-
mizing the negative log-likelihood values. The steps from Lines 1 to 7 detail the com-
putation of the log-likelihood values of residuals, which serve as the cost function for 
identifying optimal regression coefficients. The ‘Heterogeneous Spatial Autocorrelation 
Model’ function is initiated at Line 8, and the spatial lag values for different groups of 
spatial autocorrelation are computed between Lines 9 and 14. Subsequently, regres-
sion coefficients are determined using the PORT routines via the ‘nlminb’ function in 
R. The algorithm concludes by returning the estimated coefficients along with the 
mean square error (MSE) of the estimator. 

Algorithm 2: Computation of Log-Likelihood and estimation of spatial regression 
coefficients.

Input: data[Y_value, X_variables, Category of spatial autocorrelation], spatial 
weight matrix (SWM)

Note: The column of variable ‘Category of spatial autocorrelation’ can be gener-
ated through Change Point Detection or other method that can identify the hetero-
geneity of spatial autocorrelation.

1  function Log-Likelihood (parameters[1:k], data)
Note: there are k parameters to be estimated with p (p< k) parameters for coef-

ficients of X_variables, (k-1-p) parameters for coefficients of spatial autocorrelation, and 
the remaining one for r; the number of observation is n.

2        coef  parameters[1:k-1]
3        sigma  parameters[k]

4        predicted_Y  
Pp

i¼1 Xi
�coef[i] þ

Pk−1−p
j¼1 Lag y Categoryj

�coef[j]

5        residuals  Y_value - predicted_Y
6        log-likelihood  

Pn
m¼1 logðfðresidualmj0, rÞÞ

(where log f zj0, rð Þð Þ ¼ − 1
2 log 2pr2ð Þ − z2

2r2)
7       return -log-likelihood
8   function Heterogeneous Spatial Autocorrelation Model (data, SWM)

# Compute spatial lag values for each category
9       full_lag_y  SWM %�% Y_value
10      append full_lag_y to the data
11        for all categories of spatial autocorrelation do
12          lag_category_j  full_lag_y

8 Z. ZHANG ET AL.



13         lag_category_j[category !¼ “category_j”]  0
14       end for

# Find optimal parameters and get coefficients using PORT routines
15     initial_parameters  (1, 1, 1, … … , 1)
16     para_estimated  nlminb(initial_parameters, Log-Likelihood, data)
17     coef  para_estimated[1:k-1]

18     predicted_Y  
Pp

i¼1 Xi
�coef[i] þ

Pk−1−p
j¼1 Lag y Categoryj

�coef[j]

19     MSE  mean(ðY value − predicted YÞ2)
20     return (coef, MSE)

3. Monte Carlo simulation: extracting and re-estimating binary 
heterogeneous spatial autocorrelation

In this research, we conducted a series of Monte Carlo simulations to demonstrate (1) 
the consequences of ignoring heterogeneous spatial autocorrelation in the traditional 
SLM and (2) the capability of our proposed method to capture heterogeneous auto-
correlation patterns under different heterogeneous autocorrelation patterns. Each pat-
tern under each scenario was tested using 1,000 random sequences of independent 
variables and errors. Estimations of beta values for independent variable coefficients 
and SAR coefficients from both the traditional SLM and our adjusted SLM are summar-
ized and compared. We designed a series of heterogeneous autocorrelation patterns 
under different ranges of spatial autocorrelation strength, as described in six scenarios:

� Scenario 1: Spatial autocorrelation is generally very weak, with rho ¼ 0.1, whereas 
in some local areas, spatial autocorrelation is very strong, with rho ¼ 0.7.

� Scenario 2: Spatial autocorrelation is generally very strong, with rho ¼ 0.7, whereas 
in some local areas, spatial autocorrelation is very weak, with rho ¼ 0.1.

� Scenario 3: Spatial autocorrelation is generally comparatively weak, with rho ¼ 0.2, 
whereas in some local areas, spatial autocorrelation is comparatively strong, with 
rho ¼ 0.6.

� Scenario 4: Spatial autocorrelation is generally comparatively strong, with rho ¼
0.6, whereas in some local areas, spatial autocorrelation is comparatively weak, 
with rho ¼ 0.2.

� Scenario 5: Spatial autocorrelation is generally slightly weak with rho ¼ 0.3, 
whereas in some local areas, spatial autocorrelation is slightly strong, with rho 
¼ 0.5.

� Scenario 6: Spatial autocorrelation is generally slightly strong, with rho ¼ 0.5, 
whereas in some local areas, spatial autocorrelation is slightly weak, with rho ¼ 0.3.

To simulate the SAR processes, we designed 10-by-10 grids as the study area, and 
two independent variables ‘x1’ and ‘x2’ were randomly drawn from a uniform distribu-
tion U (4, 8), where independent variables are all valued positive. The coefficient val-
ues for both independent variables were designed and equivalent to 1. The random 
error term followed a normal distribution of N (0, 0.5), with a mean value of 0 and 
standard deviation of 0.5. The spatial weights matrix followed the geometric contiguity 
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of the queen on grids and was row-standardized. As explained in Eqs. (2) and (3), the 
heterogeneous autocorrelation patterns can be controlled by the values of the diag-
onal elements of the SAR coefficient matrix. Taking Scenario 1 as an example, the 
majority of the diagonal elements of the SAR coefficient matrix were set to 0.1, and in 
some local areas, the corresponding diagonal elements were set to 0.7. The dependent 
variable y can be generated using Eq. (5) once the SAR coefficient matrix with speci-
fied heterogeneous autocorrelation patterns, spatial weight matrix, error, independent 
variables and their coefficients are determined.

y ¼ I − q1In1 0
0 q2In2

� �

W

� �−1

ðb1X1 þ b2X2 þ eÞ (5) 

The residuals as an input of change point detection refer to the residuals after the 
traditional SLM generation, which contain information on the ignorance of heteroge-
neous autocorrelation patterns. The following subsections demonstrate the perform-
ance of change point detection in identifying heterogeneous autocorrelation patterns 
and compare SLM with heterogeneous and homogeneous spatial autocorrelation 
assumptions in estimating the value of beta and rho when facing the occurrence of 
heterogeneous autocorrelation.

3.1. Extracting patterns of heterogeneous spatial autocorrelation

Figures 2–4 show the results of change point detection for extracting different hetero-
geneous autocorrelation patterns under different scenarios. Scenario 1 in Figure 2(a), 
Scenario 3 in Figure 3(a) and Scenario 5 in Figure 4(a) have similar globally lower SAR 
coefficients; and Scenario 2 in Figure 2(b), Scenario 4 in Figure 3(b) and Scenario 6 in 
Figure 4(b) have similar higher SAR coefficients in more areas. Scenarios 1 and 2, 3 
and 4 and 5 and 6 are three groups of cases with inversely designed global and local 
spatial dependencies.

In general, change point detection can identify heterogeneous autocorrelation pat-
terns, and the algorithm’s performance is influenced by the pattern geometry, level of 
difference between spatial autocorrelation strengths, and differences in both the over-
all and local spatial dependence (global-lower autocorrelation or global-higher auto-
correlation). Regarding pattern geometry, the change point detection algorithm excels 

Figure 2. Extracting heterogeneous spatial autocorrelation patterns with rho from 0.1 to 0.7 for 
(a) Scenario 1 and (b) Scenario 2.

10 Z. ZHANG ET AL.



in extracting geographical structures, particularly in identifying regions with variations 
in transmitting and receiving spatial impacts from neighbors. These geographical 
structures included line and ring structures with a single unit, as shown in Patterns (2), 
(3) and (5), and the boundary where the clustered regions with two different SAR coef-
ficients met, as shown in Patterns (1), (4) and (6). For both global-lower and global- 
higher SAR processes, the level of difference between spatial autocorrelation strengths 
can affect the performance of change point detection. The greater the differences 
in the strength of spatial autocorrelation, the easier the change point detection in 
extracting structures with SAR coefficient variations, which is especially evident in 
Pattern (6) for all scenarios and Patterns (1) and (4) for the three global-lower autocor-
relation scenarios. By comparing each pair of inversely designed spatial dependence 
scenarios, change point detection can extract geographical structures with variations 
in transmitting and receiving spatial impacts for all scenarios, and it performs better in 
global-lower but local-higher cases when identifying a clustering structure of regions 
with higher spatial autocorrelation.

3.2. Re-estimation on the coefficients of independent variables

Distributions from Monte Carlo simulations of the re-estimated beta based on our 
adjusted SLM are shown in Figures 5–7, together with comparisons of beta 

Figure 3. Extracting heterogeneous spatial autocorrelation patterns with rho from 0.2 to 0.6 for 
(a) Scenario 3 and (b) Scenario 4.

Figure 4. Extracting heterogeneous spatial autocorrelation patterns with rho from 0.3 to 0.5 for 
(a) Scenario 5 and (b) Scenario 6.
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Figure 5. A comparison between beta values estimated by homogeneous and heterogeneous 
autocorrelation assumptions for Scenarios 1 and 2.

Figure 6. A comparison between beta values estimated by homogeneous and heterogeneous 
autocorrelation assumptions for Scenarios 3 and 4.
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estimations by the traditional SLM with the homogeneous autocorrelation assumption. 
These results answer (1) the extent to which our adjusted SLM precisely returns the 
values of beta once the geographical structure showing variations in spatial autocor-
relation strength is captured and (2) the model performance of the traditional SLM 
when facing heterogeneous autocorrelation patterns.

The results in Figures 5 and 6 show that our SLM with a generalized SAR coefficient 
matrix can easily re-estimate the beta values for both independent variables with high 
reliability when the difference between spatial autocorrelation strength is no less than 
0.4, despite minor disturbances on Pattern (1) under Scenarios 2 and 4 and Pattern (6) 
under Scenario 4, where the geographical structure of heterogeneous autocorrelation 
is not fully extracted by change point detection. For patterns under these four scen-
arios, the vast majority of the estimated beta values for both independent variables 
fell into the value range of 0.9 to 1.1. However, when there is heterogeneous autocor-
relation, the traditional SLM estimates beta values with higher uncertainties. The 
ranges of the estimated beta values for both independent variables using the trad-
itional SLM were much wider than those from the adjusted SLM. In other words, the 
beta values estimated by the traditional SLM are not precise when the difference 
between the two SAR coefficients in the SAR process is greater than 0.4.

As shown in Figure 7, with the decrease in the difference between the two SAR 
coefficients to 0.2, our adjusted SLM can still accurately re-estimate the beta values for 
both independent variables for all patterns, excluding Pattern (6) with smaller average 

Figure 7. A comparison between beta values estimated by homogeneous and heterogeneous 
autocorrelation assumptions for Scenarios 5 and 6.
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estimated values, where the entire geographical structure of heterogeneous autocor-
relation cannot be fully captured. With more minor parts not fully extracted in 
Scenarios 5 and 6, the distributions of the estimated beta for both independent varia-
bles are slightly negatively skewed. On the other hand, the traditional SLM with a 
homogeneous autocorrelation assumption has less uncertainty in beta estimations 
when the SAR coefficient difference declines, despite the overall performance paling 
in comparison to that of SLM with the heterogeneous assumption in a majority of the 
cases. The ranges of the estimated beta values for both independent variables using 
the traditional SLM are still somewhat wider than our adjusted SLM in the majority of 
cases.

3.3. Re-estimation on heterogeneous spatial autocorrelation

Figures 8–10 show the re-estimated values of the SAR coefficients for the six scenarios 
based on SLM with a generalized SAR coefficient matrix. It is clear that, by costing an 
extra degree of freedom, our adjusted SLM can re-estimate the SAR coefficients well 
once a real heterogeneous autocorrelation structure is captured. The estimation of the 
SAR coefficients may be slightly skewed when a minority of the heterogeneous auto-
correlation structure is not extracted, with Patterns (1) and (4) in Scenario 2 as an 
example. The overall value ranges for the estimated SAR coefficients are small in the 
majority of cases when the difference in the SAR coefficients is 0.4 or greater. With 
the difference in SAR coefficients dropping to 0.2, a greater part of the estimated rho 
values can still be estimated with an approximation to the designed values, even 
though the overall estimated value range is wider than those under Scenarios 1 to 4. 
In contrast to the estimations of beta, with minor unidentified heterogeneous 

Figure 8. A comparison between rho estimated by homogeneous and heterogeneous autocorrel-
ation assumptions for Scenarios 1 and 2.
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autocorrelation structures, the estimated values of rho are slightly positively skewed, 
and this phenomenon is more evident under Scenarios 5 and 6, as shown in 
Figure 10. The accuracy of the estimation of the SAR coefficients also relies on the 
identification of heterogeneous autocorrelation patterns. With more heterogeneous 
autocorrelation structures not captured in Pattern (6) under Scenarios 5 and 6, the 

Figure 9. A comparison between rho estimated by homogeneous and heterogeneous autocorrel-
ation assumptions for Scenarios 3 and 4.

Figure 10. A comparison between rho estimated by homogeneous and heterogeneous autocorrel-
ation assumptions for Scenarios 5 and 6.
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values of the two designed SAR coefficients were underestimated. The traditional SLM 
estimates the strength of spatial autocorrelation for various heterogeneous autocorrel-
ation cases, as shown in these figures. Intuitively, the traditional SLM may return an 
SAR coefficient that indicates the overall averaged strength of the spatial autocorrel-
ation for the entire study area. In some cases, with Patterns (2) and (5) under global- 
lower SAR strength scenarios, in particular, the traditional SLM would return a value 
that falls between the two designed SAR coefficients. However, in other cases, the 
traditional SLM provides an overestimated rho value, representing an extremely high 
overall autocorrelation that does not indicate the true scenario.

3.4. The impact of heterogeneous spatial autocorrelation on model 
performance

This section further demonstrates the impact of heterogeneous spatial autocorrelation 
on spatial autoregressive processes, focusing on the mean squared error (MSE) of esti-
mators and the statistical significance of regression coefficients. Figure 11 provides a 
summary of the MSE of estimators for the heterogeneous spatial autocorrelation 
model and the traditional SLM under six scenarios. Although spatial dependence struc-
tures may not be fully captured by change point detection in some cases, as discussed 
in Subsection 3.1, the heterogeneous spatial autocorrelation model demonstrates 
robust performance and stability despite variations in spatial autocorrelation strength 
and patterns. The model consistently exhibits a better goodness of fit than traditional 
SLM across all 36 cases, evidenced by much lower MSE values.

Heterogeneous spatial autocorrelation also has impacts on the statistical signifi-
cance of regression coefficient, especially for independent variables in specific cases. 
Both the heterogeneous spatial autocorrelation model and the SLM yield statistically 
significant spatial autocorrelation coefficients. However, the significance of the regres-
sion coefficients for independent variables estimated by the SLM is affected by differ-
ent spatial autocorrelation patterns. As presented in Table 2, the heterogeneous 
spatial autocorrelation model consistently estimates statistically significant regression 
coefficients across all patterns, whereas the SLM cannot guarantee statistical signifi-
cance, especially in Scenarios 2 and 4.

4. Case study: traffic crash factor analysis in Perth

The heterogeneous autocorrelation assumption was applied to a case study involving 
traffic crash analysis in Perth. The Greater Perth Area is the functional geographical 
extent of the capital city of Western Australia. The capital city area has a population of 
over 80% of all statewide residents (Australian Bureau of Statistics 2023). 
Transportation plays a key role in modern urban systems (Zou et al. 2012), and Perth 
is no exception. From 2016 to 2021, the number of residents choosing to drive to 
work in Perth increased from 656,000 to 728,000 and the number of residents using at 
least one means of transport increased from 784,000 to 850,000 (Australian Bureau of 
Statistics 2022). Detailed transportation and road asset information was recorded by 
the Australian Bureau of Statistics (ABS) and the local road authority (Main Roads, 
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Western Australia). Traffic crash data in Perth are managed by the road information 
system of Main Roads, Western Australia and are updated at a frequency of at least 
once a year. There are approximately 22,000 reported traffic crashes in the Greater 
Perth Area each year, and approximately one-fifth of these are severe traffic crashes 
with damaged property and injured people (Main Roads Western Australia 2023a).

A detailed spatial analysis of the factors associated with traffic crashes can aid in 
smart transport planning and data-driven decision-making for road safety. Thus, in this 
study, we undertook a spatial analysis of traffic crashes in Perth at Statistical Area 
Level 2 (SA2) for 2021 from the perspective of heterogeneous spatial autocorrelation 
to assist local transport decision-making.

Figure 11. MSE of estimators for the SLM with heterogeneous spatial autocorrelation assumption 
(HSA-SLM) compared to traditional SLM.
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4.1. Datasets

Traffic crashes are complex incidents that are influenced by various factors. Commonly 
associated factors include road infrastructure (Mane and Pulugurtha 2018, Siuhi et al. 
2021), traffic conditions (Ahmed et al. 2021) and regional commuting patterns (Hu and 
Wang 2020). The occurrence of traffic crashes on roads can be influenced by road 
speed limits, traffic volume and congestion, traffic signal location, road design and 
commuting patterns (Mane and Pulugurtha 2018, Di Stasi et al. 2022). This data-driven 
study considered five transport variables associated with the occurrence of traffic 
crashes, summarized in medium-level statistical areas. These independent variables 
included road speed at crash sites, estimated traffic volume, distance from the crash 
site to the nearest traffic signal and the percentage of residents choosing to drive or 
walk to work.

The Main Roads Western Australia release open-access transportation information 
including traffic crashes, road speed limits and traffic volume. In this research, we 
focused on severe traffic crashes that caused property damage and reported injuries 
that occurred in 2021 (Main Roads Western Australia 2023a). Information on road 
speed limits at each crash site can be inferred from the spatial layers of traffic crashes 
and road networks with road speed attributes (Main Roads Western Australia 2023b). 
Information on the distance from the crash site to the nearest signal and regional 
average traffic volume can be obtained from government-released spatial data on traf-
fic signals and volumes (Main Roads Western Australia 2018, Main Roads Western 
Australia 2022).

SA2 is a medium-sized geographic boundary that indicates local communities with 
social interactions within local government areas or significant urban areas (Australian 

Table 2. A summary on the percentage of coefficients with statistical significance using z-test for 
all patterns from Monte Carlo simulations.

Percentage of significant coefficients (p-value <0.05)

x1 (HSA-SLM / SLM) x2 (HSA-SLM / SLM) x1 (HSA-SLM / SLM) x2 (HSA-SLM / SLM)

Scenario 1 Scenario 2
Pattern (1) 100% / 99.9% 100% / 99.8% Pattern (1) 99.9% / 92.9% 99.9% / 92.6%
Pattern (2) 100% / 98.7% 100% / 98.2% Pattern (2) 100% / 67.1% 100% / 65.3%
Pattern (3) 100% / 84.8% 100% / 85.4% Pattern (3) 100% / 59.9% 100% / 59.5%
Pattern (4) 100% / 90.3% 100% / 92.2% Pattern (4) 99.9% / 72.8% 100% / 71.4%
Pattern (5) 100% / 81.9% 100% / 84% Pattern (5) 100% / 47.8% 100% / 46.5%
Pattern (6) 100% / 74.1% 100% / 76.1% Pattern (6) 99.6% / 68% 99.9% / 66.7%

Scenario 3 Scenario 4
Pattern (1) 100% / 100% 100% / 100% Pattern (1) 100% / 100% 100% / 99.9%
Pattern (2) 100% / 100% 100% / 100% Pattern (2) 100% / 98.5% 100% / 97.1%
Pattern (3) 100% / 99.2% 100% / 99.2% Pattern (3) 100% / 94.8% 100% / 95.7%
Pattern (4) 100% / 99.9% 100% / 99.9% Pattern (4) 100% / 98.3% 100% / 98.4%
Pattern (5) 100% / 98.4% 100% / 97.9% Pattern (5) 100% / 86.4% 100% / 85.8%
Pattern (6) 100% / 98% 100% / 98.1% Pattern (6) 100% / 96.5% 100% / 96.6%

Scenario 5 Scenario 6
Pattern (1) 100% / 100% 100% / 100% Pattern (1) 100% / 100% 100% / 100%
Pattern (2) 100% / 100% 100% / 100% Pattern (2) 100% / 100% 100% / 100%
Pattern (3) 100% / 100% 100% / 100% Pattern (3) 100% / 100% 100% / 100%
Pattern (4) 100% / 100% 100% / 100% Pattern (4) 100% / 100% 100% / 100%
Pattern (5) 100% / 100% 99.9% / 100% Pattern (5) 99.9% / 100% 100% / 100%
Pattern (6) 100% / 100% 100% / 100% Pattern (6) 100% / 100% 100% / 100%

Note: HSA-SLM refers to the SLM with heterogeneous spatial autocorrelation assumption. SLM refers to trad-
itional SLM.
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Bureau of Statistics 2021a, 2021b). In this study, we analyzed the spatial relationship 
between the traffic crash occurrence count and its influential variables at the granular-
ity of SA2 to support data-driven analysis for decision-making. Traffic crashes causing 
property damage and injury, as the dependent variable, were counted and summed 
for the SA2 areas. We used the SA2 areas to obtain a regional summary through the 
spatial average of independent variables, including road speed at each crash site, 
regional traffic volume and distance from the crash site to its nearest traffic signal, to 
estimate the regional level of the crash-associated variables. The percentage of resi-
dents driving or walking to work can be estimated from the total number of residents 
and residents choosing different commuting patterns using ABS census data. The 
details of the variables and raw datasets are summarized in Table 3. Traffic crashes 
and independent variables at the SA2 level are spatially visualized in Figure 12.

4.2. Data preprocessing and preparation

In the data preprocessing stage, the spatial data accessed from the Main Roads and 
ABS were processed and transformed into variables at SA2 for further analysis. Traffic 
crash points, which happened in the year 2021 and categorized into ‘medical’, 
‘hospital’ and ‘fatal’, are extracted from raw datasets and summed up at each SA2 
region.

The original regional traffic crash count values followed a long-tailed distribution, 
and the y-variable was logarithmically transformed to fulfill the normality assumption 
of the regression. The independent variable ‘average road speed at crash site’ is gener-
ated by spatial joining the road network with the speed attribute to the crash site 
points in GIS, and averaging road speed at crash sites by SA2 regions. The variable 
‘average distance from crash site to the nearest traffic signal’ is generated by calculat-
ing the distance between each traffic crash point to the nearest traffic signal location 

Table 3. A summary of traffic crash and independent variables.

Variable name Unit
Primary raw datasets 

name Data type Data source

Traffic crash (Y- 
variable)

count Crash Information Spatial data: crash 
site point

Main Roads WA

Average road speed 
at crash sites

km/h Legal speed limits Spatial data: road 
network with 
speed limit as an 
attribute

Main Roads WA

Average distance 
from crash site to 
the nearest traffic 
signal

meter Traffic signal sites Spatial data: traffic 
signal point

Main Roads WA

Estimated averaged 
regional traffic 
volume

count/day Traffic digest Spatial data: traffic 
count sites with 
traffic volume as 
an attribute

Main Roads WA

Percentage of 
residents: Work 
by car

% Data by region: 
Family and 
community

Statistical data: 
Australian 
national census

ABS

Percentage of 
residents: Walk to 
work

% Data by region: 
Family and 
community

Statistical data: 
Australian 
national census

ABS
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using GIS, and taking an average on the attribute of distance by SA2 regions. The traf-
fic volume in each SA2 area was estimated using the mean traffic count at each moni-
toring site within that area. ABS surveyed the total number of residents and residents 
driving or walking to work at the SA2 granularity in the 2021 census, and the percent-
age of residents commuting on foot or by car was calculated as the number of resi-
dents following the commuting pattern divided by the total number of residents.

Prior to the regression, a multicollinearity test using the variance inflation factor 
(VIF) value was applied to validate the basic regression assumption, and the VIF 
threshold was set to 2.5 (Zhang et al. 2023). Explanatory variables with VIF greater 
than 2.5 will be filtered before the linear model computation. Spatial regression mod-
els can be executed once the independent variables pass the multicollinearity test.

4.3. Case study results

The five selected independent variables shown in Table 3 passed the multicollinearity 
test, with all VIF values less than 2.5. The results of the models with comparisons of 
goodness of fit are shown in Table 4, and the spatial distribution of the residuals from 
the SLM is shown in Figure 13(a). No evident improvement was made by the trad-
itional SLM by introducing a spatial lag term with a global SAR coefficient to a linear 
model, and the root mean squared error value changed from 0.283 using a linear 
model to 0.273 using the traditional SLM. By assuming the existence of heterogeneous 

Figure 12. Spatial distribution of traffic crashes and independent variables at Statistical Area Level 
2 (SA2). (a) Traffic crash in Perth; (b) Average road speed at crash sites; (c) Average distance from 
crash site to the nearest traffic signal; (d) Estimated averaged regional traffic volume; 
(e) Percentage of residents: work by car; and (f) Percentage of residents: walk to work.
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spatial autocorrelation strength in this transportation study, we further re-estimated 
regional traffic crashes using the SLM with a generalized SAR coefficient matrix. By re- 
ranking a series of regional traffic crash values following the order of SLM residuals, 
the change point detection algorithm returns potential change points that categorize 
the entire Greater Perth Area into two regions with different spatial autocorrelation 
strengths. Our preferred regional divisions, after comparing multiple changing points, 
for the heterogeneous spatial autocorrelation are shown in Figure 13(b). Our adjusted 
SLM shows that the majority of the SA2 units in Perth transmit comparatively strong 
spatial dependence, with rho values over 0.5, whereas spatial impacts from the rest of 
the region, located at the edge of the city, are weak, with rho values less than 0.2. 
Two different SAR coefficients, indicating the variation in the spatial dependence 
strength on traffic crashes in urban areas, were statistically significant at the level of at 
least 0.01. The entire road network of Perth is illustrated in Figure 13(c). Major roads 
with high speed limits are indicated by thick red lines. The variation in the spatial 
autocorrelation strength of traffic crashes was consistent with the distribution of urban 

Table 4. Summary of regression models for traffic crash analysis.
SLM – Heterogeneous 

assumption 
(p-value)

SLM – Homogeneous 
assumption 

(p-value)
Linear regression 

(p-value)

Average road speed at 
crash sites

6.79 e – 03 7.47 e – 03 8.19 e – 03
(p< 0.001) (p< 0.01) (p< 0.005)

Average distance from 
crash site to the nearest 
traffic signal

−6.49 e – 05 −8.89 e – 05 −1.09 e – 04
(p< 0.001) (p< 0.001) (p< 0.001)

Estimated averaged 
regional traffic volume

2.30 e – 06 2.62 e – 06 2.78 e – 06
(p> 0.05) (p> 0.05) (p> 0.05)

Percentage of residents: 
Work by car

7.77 e – 01 6.18 e – 01 6.57 e – 01
(p< 0.001) (p< 0.05) (p< 0.05)

Percentage of residents: 
Walk to work

1.03 eþ 01 7.96 8.80
(p< 0.001) (p< 0.001) (p< 0.001)

Rho value rho 1¼ 1.67 e – 01 NA
(p< 0.005)

rho 2¼ 5.28 e – 01 2.9 e – 01
(p< 0.001) (p< 0.005)

RMSE value 0.158 0.273 0.283
AIC value −130.9 60.2 68.3

Figure 13. Heterogeneous spatial autocorrelation assumption for traffic crash in Perth. (a) Residuals 
from spatial lag model and (b) Spatial variation of autocorrelation. (c) Road network in the Greater 
Perth Area.
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roads. The SA2 regions with high-level autocorrelation contain major roads or dense 
urban arterial roads. It is expected that car crashes are more likely to spill over along 
major road networks than across geographical neighbors. The heterogeneous spatial 
autocorrelation model demonstrates an expected improvement in goodness of fit by 
providing a deeper understanding of nonstationary spatial dependence effects. The 
heterogeneous SLM reduced the value of RMSE by 42% to less than 0.158 from both 
the traditional SLM and linear regression. Furthermore, the coefficients of the inde-
pendent variables estimated by the adjusted SLM using MLE are more statistically sig-
nificant than those of the previous models. All three models listed in Table 4 imply 
that road speed, regional traffic volume and the percentage of residents driving and 
walking to work were positively associated with regional traffic crashes.

5. Discussion

This study discusses the impact of heterogeneous autocorrelation within SAR proc-
esses and provides a strategy for analyzing the variation in spatial autocorrelation 
strength. To the best of our knowledge, this study is a pilot investigation that incorpo-
rates heterogeneity in SAR models through matrix representation. The Monte Carlo 
simulation indicates that the traditional SLM with a homogeneous autocorrelation 
assumption introduces additional uncertainties in the estimation of beta if there are 
variations in the strength of the spatial autocorrelation. Furthermore, the SAR coeffi-
cient estimated by the traditional SLM cannot represent the global average of the 
spatial autocorrelation strength. However, the geographical structure of the heteroge-
neous autocorrelation can be captured through statistical associations between the 
residuals and the dependent variable. The variation in the SAR coefficients can be 
effectively re-estimated using our adjusted SLM with a generalized SAR coefficient 
matrix. Our strategies for exploring spatial variations in autocorrelation were applied 
to a transport geography study and have shown significant improvements in the 
goodness of fit of the SAR models.

Our proposed method is robust for detecting geographical structures with varia-
tions in imposing and receiving spatial effects. This type of geographical structure 
shows the heterogeneity of spatial autocorrelation strength through directional vari-
ability, which is similar to the results found in ecosystems and landscapes (Liu et al. 
2018). Our adjusted SLM assumes that the variation in spatial autocorrelation strength 
may not be linked to distance. The extension from a single SAR coefficient to a matrix 
suggests that spillover effects can be attributed to long-range anisotropic environmen-
tal and social interactions that do not strictly adhere to geographical proximity. At the 
cost of additional degrees of freedom, an SLM with an SAR coefficient matrix can also 
provide global statements for statistical associations.

Despite the effective evidence obtained from both Monte Carlo simulations and 
real-world transport geography data analyses, the proposed method has several limita-
tions. The limitations of the methodology design are the coordination between the 
heterogeneous autocorrelation identification process and the heterogeneous autocor-
relation re-estimation process, and the performance of change point detection in cap-
turing specific patterns of heterogeneous autocorrelation.
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First, our adjusted SLM requires an accurate identification of the heterogeneous 
autocorrelation pattern or the prior knowledge of spatial dependence structure. As 
shown by the Monte Carlo simulations, the SLM with a generalized SAR coefficient 
matrix has uncertainties in re-estimating the coefficients without a clear identification 
of the heterogeneous autocorrelation structure. Thus, we propose a change point 
detection algorithm as a candidate method for identifying heterogeneous autocorrela-
tions. The accurate estimations on regression coefficients using the heterogeneous 
spatial autocorrelation model depend on the performance of change point detection, 
despite stable and robust model performance measured by MSE.

Second, the change point detection algorithm may demonstrate diminished sensi-
tivity when identifying patterns using closely clustered SAR coefficients. Our algorithm 
is robust in recognizing geographical structures with variations in imposing and receiv-
ing spillover effects. These patterns include structures with a single unit and a spatial 
boundary where clustered regions with different SAR coefficients meet. However, this 
algorithm is not sensitive to detecting such a distribution of SAR coefficients in which 
similar values are tightly clustered. The algorithm can easily identify the boundary 
where two clusters intersect through a binary division but requires more breaking 
points and further complicated tests on merging homogeneous areas to capture the 
full internal structure (eg central points in Patterns (1) and (4), and the internal ring in 
Pattern (6)).

Third, the change point detection algorithm does not have specific criteria for 
determining the optimal breaking points, and requires multiple trials by adjusting the 
parameters to capture accurate heterogeneous spatial autocorrelation patterns. Binary 
heterogeneous spatial autocorrelation is the simplest form of variation in autocorrel-
ation and can be easily captured by change point detection with the number of inter-
vals starting with the smallest value. However, the real world can be more complex, 
and more SAR coefficients may be required to model variations in the spatial autocor-
relation strength. With no prior knowledge of the spatial autocorrelation strength dis-
tribution, we must always experiment with the change point detection algorithm 
parameters. The optimal number of breaking points was determined by comparing 
the statistical significance of the estimated coefficients and the overall model perform-
ance using a generalized SAR coefficient matrix. It is also recommended that model 
performance be tested using different combinations of changing points based on dif-
ferent parameters because the real pattern may be disguised by other unknown 
causes. Further diagnostics should be developed to aid users in parameter and model 
selection.

6. Conclusion

SAR models with a homogeneous assumption of spatial autocorrelation remain preva-
lent in the modeling of SAR processes in various research fields. However, traditional 
SAR models estimate the beta values of independent variables and SAR coefficients 
with unreliability or uncertainty when there are variations in the strength of spatial 
autocorrelation. This study conducted a pilot investigation of the impact of heteroge-
neous spatial autocorrelation on traditional SAR models and proposed strategies to 
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extract geographical structures representing the variation in spatial autocorrelation 
strength through residual analysis, together with an adjusted SLM with a generalized 
SAR coefficient matrix to re-estimate the SAR processes.

A Monte Carlo simulation study showed that the adjusted SLM can precisely re-esti-
mate SAR processes after the identification of heterogeneous spatial autocorrelation 
patterns. Our methods are particularly robust in recognizing geographical structures 
with variations in imposing and receiving spillover effects. Our adjusted SLM also has 
a better goodness of fit than the traditional SLM, given a real-world case study on 
transport geography. The performance of our adjusted SLM relies largely on the identi-
fication of heterogeneous spatial autocorrelation patterns. Thus, future research efforts 
are required to find better approaches to identify the variation in spatial autocorrel-
ation strength with suitability for more complicated cases where more groups of SAR 
coefficients are significantly different.
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