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A bilingual speech neuroprosthesis driven by 
cortical articulatory representations shared 
between languages

Alexander B. Silva    1,2,3, Jessie R. Liu    1,2,3, Sean L. Metzger1,2,3, 
Ilina Bhaya-Grossman1,2,3, Maximilian E. Dougherty    1, Margaret P. Seaton1, 
Kaylo T. Littlejohn1,2,4, Adelyn Tu-Chan5, Karunesh Ganguly    2,5, 
David A. Moses1,2 & Edward F. Chang    1,2,3 

Advancements in decoding speech from brain activity have focused on 
decoding a single language. Hence, the extent to which bilingual speech 
production relies on unique or shared cortical activity across languages 
has remained unclear. Here, we leveraged electrocorticography, along 
with deep-learning and statistical natural-language models of English and 
Spanish, to record and decode activity from speech-motor cortex of  
a Spanish–English bilingual with vocal-tract and limb paralysis into 
sentences in either language. This was achieved without requiring the 
participant to manually specify the target language. Decoding models relied 
on shared vocal-tract articulatory representations across languages, which 
allowed us to build a syllable classifier that generalized across a shared set 
of English and Spanish syllables. Transfer learning expedited training of 
the bilingual decoder by enabling neural data recorded in one language 
to improve decoding in the other language. Overall, our findings suggest 
shared cortical articulatory representations that persist after paralysis 
and enable the decoding of multiple languages without the need to train 
separate language-specific decoders.

Anarthria—loss of the ability to articulate speech1—can be a severe  
symptom of neurological conditions such as stroke and amyo-
trophic lateral sclerosis. Invasive speech brain–computer inter-
faces (BCIs) that decode cortical activity into intended speech are 
being developed to restore naturalistic communication to patients 
with anarthria and paralysis. Specifically, intracortical electrodes, 
stereo-electroencephalography and electrocorticography (ECoG), 
the last of which directly records electrical signals from the cortical 
surface, can capture neural activity relevant to produced speech2–9. 
However, speech-BCI advancements have largely focused on decoding a 

single language, primarily English or Dutch, owing to study-population 
sampling3,5–8,10–15. A focus on monolingual and English decoding is not 
unique to speech neuroprosthetics; there are parallel trends in auto-
matic speech recognition and language modelling. Therefore, language 
technologies for bilingual speakers, as well as speakers of non-English 
languages, are often less developed16,17.

Approximately two-thirds of the world population are bilingual, 
that is, they proficiently speak two or more languages18. Research indi
cates that the multiple languages an individual speaks serve comple
mentary functions for communication. For instance, bilinguals often 
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The participant volitionally activated the system by attempting to  
speak, and this initial speech attempt was identified by a speech- 
detection module. Once this initial attempt was detected, the 
phrase-decoding system activates and presents a series of ‘go’ cues 
every 3.5 s. In each 3.5-s window, the participant attempted to say a 
single word. The vocabulary, referred to as bilingual words, consisted 
of 51 English words, 50 Spanish words and 3 words shared between lan-
guages (no, a, and the participant’s nickname, Pancho; Supplementary 
Table 1) for a total of 104 words. Within each cued window, the neural 
features were streamed to a classifier trained to emit probabilities over 
the bilingual words (Fig. 1a and Extended Data Fig. 2). These probabili-
ties were then split for English and Spanish words. Given that verbs and 
adjectives, especially in Spanish, may have multiple different conjuga-
tions, we broadcasted the predicted probability for the unconjugated 
form of the verb to all the conjugated forms. For example, the predicted 
probability for the word ‘traer’ would be broadcasted to the words in 
the set {traer, traigo, traes, trae, traemos, traen, trayendo}, and the 
probability for the word ‘bring’ would be broadcasted to the words in 
the set {bring, brings, bringing}. This led to an increased vocabulary 
size of 111 Spanish and 70 English words for a total of 178 unique words 
(67 English, 108 Spanish and 3 shared; Supplementary Table 2). We 
then applied a beam search to combine probabilities with separate 
monolingual natural-language models trained in English or Spanish. 
The use of natural-language models prioritizes linguistically valid 
phrases and properly conjugates verbs on the basis of preceding and 
following context. A composite score was generated for phrases in each 
language that reflect a combination of neural predictions and phrase 
likelihood under the language model (LM). As a final step, an integrator 
module chose the highest-scoring phrase across the two languages 
to display on the screen. As speech attempts were being made by the 
participant, the speech-detection module continued to predict speech 
events. The decoding system monitored these events over the course 
of the trial and deactivated when a speech attempt was not detected 
in the preceding 3.5-s window. The system then advanced to the next 
trial after a brief delay.

Classification and detection models were trained before phrase 
decoding with an isolated-target task. In this task, a single bilingual 
word was presented on the screen, and the participant attempted to 
produce the target word at a visual ‘go’ cue. The HGA and LFS features 
spanning from the ‘go’ cue to 3.5 s after the ‘go’ cue were used to predict 
the target bilingual word.

We evaluated our decoding pipeline using a copy-typing task 
similar to our past work13. The participant was prompted with randomly 
interleaved English and Spanish phrases, which he tried to replicate 
(Supplementary Videos 1 and 2). During evaluation, decoding models 
were trained using data exclusively from preceding sessions with no 
‘day-of’ recalibration. To measure performance, we primarily used the 
word error rate (WER) metric, commonly used to evaluate outputs of 
automatic speech recognition systems and communication BCIs13,41–43. 
We collected 3 repetitions of 56 phrases (split between English and 
Spanish, Supplementary Table 3), covering all unconjugated bilin-
gual words across languages. We achieved median word error rates 
across online testing blocks of 25.0% (99% confidence interval (CI): 17.2, 
36.4%) on all phrases, 26.7% (99% CI: 18.2, 33.3%) for Spanish phrases 
and 22.2% (99% CI: 7.14, 44.4%) for English phrases (Fig. 1b). Decoding 
with neural data alone without language modelling or beam search 
achieved median word error rates of 70.6% (99% CI: 61.9, 78.1%) overall, 
52.5% (99% CI: 40.4, 61.7%) for Spanish phrases and 55.0% (99% CI: 46.3, 
68.8%) for English phrases (Fig. 1b), indicating that decoding did not 
only depend on the use of LMs (see Extended Data Fig. 3 for a compari-
son to chance neural-only performance). Performance on all phrases 
as well as separately on English and Spanish phrases, using either the 
full-system or neural-only decoding, was significantly better than 
chance (full-system performance with temporally shuffled neural data; 
Supplementary Table 4). During online testing, we achieved median 

report using their languages (L1-native and L2-acquired; in some cases,  
L2 may also be native) in distinct speaker and social contexts and further  
report that the languages they speak contribute distinct dimensions to  
their overall personality and worldview19–22. To develop a neuroprosthesis  
capable of restoring embodied communication to all who could benefit,  
regardless of language background, it is essential to design BCI systems 
capable of multilingual decoding.

To naturally decode bilingual sentences, it is desirable for the sys-
tem to flexibly infer the intended language of the participant entirely  
on the basis of cortical activity and/or natural-language models, which 
capture language-specific word-sequence statistics. It is unclear whether  
intended language can be decoded directly from cortical activity in com
mon speech-motor areas such as the inferior frontal gyrus (IFG, including  
Broca’s area) and the sensorimotor cortex (SMC). A shared articulatory  
(vocal-tract motor) representation across languages would allow models  
to generalize rapidly, minimizing required training time and burden on 
the participant. However, this would present a challenge in decoding 
the intended language from cortical activity alone.

The extent to which shared representations or language-specific 
activation patterns exist in speech-motor cortex is unclear. Some evi
dence suggests that multilingualism may alter core speech-motor net-
works21,23,24. Specifically, learning a non-native second language (L2) 
may recruit distinct patterns of cortical activity25–28 or evoke stronger 
activity in regions of the speech network such as the IFG or SMC29–34. In 
support of shared representations between L1 and L2, recent work has 
shown that the same general anatomical regions tend to be activated 
across languages35–38. In addition, the brain may fit a non-native L2 into 
the articulatory framework of L1, forming, for example, shared syllable 
representations and speech-motor patterns30,39,40. Bilingual speech 
production has primarily been explored with functional magnetic reso-
nance imaging, leaving an open question for how the precise temporal  
dynamics underlying shared or distinct cortical representations enable 
decoding.

Here we report the development of a bilingual speech neuropro-
sthesis for a Spanish–English participant with severe anarthria and 
paralysis (ClinicalTrials.gov; NCT03698149). During attempted speech, 
we decoded neural activity from the speech-motor cortex, recorded 
with a 128-channel ECoG array, word-by-word into English and Spanish 
phrases, using a vocabulary of 178 unique words. The intended language 
is primarily inferred by scoring candidate-decoded sentences with Eng-
lish and Spanish language models, incorporating the differential statis-
tical patterns of word sequences in each language that build through a 
sentence. Despite the participant learning English later in life, neural 
activity patterns, particularly those important for decoding, are shared, 
with no language-specific electrodes. We demonstrate that these shared 
activity patterns best represent the articulatory content of speech and 
facilitate the generalization of a syllable classifier across languages. 
Building on this result, we show that performance on a vocabulary in a 
given language can be improved and expedited by utilizing training data 
previously collected in the other language, thus reducing the required 
time and burden for bilingual participants to use all their languages.

Results
Performance of the bilingual speech neuroprosthesis
We designed a system capable of flexibly decoding English and Spanish 
phrases in a participant with paralysis and anarthria due to brainstem 
stroke (ClinicalTrials.gov; NCT03698149). Our models were trained on 
neural features from a high-density, 128-channel ECoG array primarily 
covering the left sensorimotor cortex and inferior frontal gyrus.

During each phrase-decoding trial, the system displayed a single  
English or Spanish phrase on the screen as the current target. The 
phrase-decoding system continuously recorded local field potentials 
(LFP) from each electrode in the ECoG array and extracted relevant 
neural features, specifically high-gamma activity (HGA; 70–150 Hz) and 
low-frequency signals (LFS; 0.3–100 Hz; Fig. 1a and Extended Data Fig. 1).  

http://www.nature.com/natbiomedeng
https://clinicaltrials.gov/ct2/show/NCT03698149
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Fig. 1 | Implementation of a bilingual speech neuroprosthesis. a, Schematic 
diagram of the bilingual decoding system. In each trial, the participant is 
presented with a target phrase in English or Spanish. The participant volitionally 
activates the system by attempting to speak, and this attempt is identified from 
the neural features by a speech-detection model. After an initial attempted 
speech event is detected, the system cues the participant to attempt to say the 
next word in the sentence every 3.5 s. The neural features from each window are 
processed by a classifier, composed of recurrent neural network (RNN) layers 
and a fully connected dense layer, to produce a probability distribution over the 
104 possible words across both languages (51 English, 50 Spanish and 3 shared). 
The probability vectors over English and Spanish words are processed separately. 
Here, the neural probability for a verb or adjective in the unconjugated form is 
broadcast to all conjugated forms, giving a total of 178 unique words (67 English, 
108 Spanish and 3 shared) to be scored by the n-gram language model. The 
most likely phrase at the end of each window is chosen across languages and 
displayed to the participant. The system is deactivated when a speech attempt is 
not detected within a 3.5-s window. b, Word error rates with the phrase test set, 
calculated using shuffled neural data (Chance), neural decoding from the  
RNN without language modelling (Neural-only) and the full online system  
with language modelling (Online) (****P < 0.0001, ***P < 0.001, see Supplemen
tary Table 4 for exact P values; two-sided Mann–Whitney U-test with 9-way  

Holm–Bonferroni correction for multiple comparisons). c, Language classification 
accuracy for chance, neural-only and online results (****P < 0.0001, **P < 0.005, 
see Supplementary Table 5 for exact P values; two-sided Mann–Whitney U-test 
with 3-way Holm–Bonferroni correction for multiple comparisons). d, The 
decoding rate (words per minute) compared to the participant’s communication 
speed with his AAC strategy. e, The language-classification accuracy (mean) 
as a function of word position in a phrase. Error bars denote 99% CIs. f, Phrase 
likelihood scores from GPT2 (large language model) for trials where the language 
is correctly and incorrectly classified. For each trial, a score is computed 
for the phrase decoded by the system in the target and off-target languages 
(****P < 0.0001; two-sided Wilcoxon signed-rank test). g, Word error rates, 
as in b, when the target language is manually set rather than freely decoded 
(****P < 0.0001, see Supplementary Table 6 for exact P values; two-sided 
Mann–Whitney U-test with 6-way Holm–Bonferroni correction for multiple 
comparisons). In b, c, e and g, distributions are over 21 online phrase-decoding 
blocks. In f, distributions are over 124 trials where the language was correctly 
decoded and 12 trials where the language was incorrectly decoded (in both, we 
filtered for trials where the correct number of words was decoded). Boxplots in 
all panels depict median (horizontal line inside box), 25th and 75th percentiles 
(box), 25th and 75th percentiles ±1.5 times the interquartile range (whiskers) and 
outliers (diamonds).

http://www.nature.com/natbiomedeng
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language-classification accuracy of 87.5% (99% CI: 85.7, 100%), freely 
decoding intended language on the basis of the overall highest-scoring 
phrases. This was significantly better than both chance predictions 
and picking language on the basis of neural activity alone (product of 
highest-probability words in each language), illustrating the impor-
tance of language modelling in choosing the correct language (Fig. 1c 
and Supplementary Table 5).

Selecting the target language (L_target) relied on scoring 
sequences of decoded words in each language based on their likeli-
hood under neural-classification models and language-specific LMs. 
While the neural classifier did confuse words in L_target as words in 
L_other (details discussed in later sections), we hypothesized that these 
confusions would not form linguistically likely sequences of words, in 
contrast to word-sequence predictions in L_target. We refer to this dif-
ference in linguistic likelihood between L_target and L_other as differen-
tial linguistic context. Differential linguistic context builds throughout 
a phrase as longer sequences of words can be better scored for linguistic 
likelihood; correspondingly, language-decoding accuracy improved as 
a function of position within a phrase, with 100% classification by word 
5 versus chance classification at position 1 (Fig. 1e). We used GPT2, a 
large neural-network LM, to score the linguistic likelihood of the final 
decoded word sequences in L_target and L_other across trials44. For tri-
als in which the language was correctly decoded, sequences in L_target 
had a significantly higher likelihood than those in L_other; however, on 
language-error trials, differential linguistic context did not distinguish 
L_target and L_other (Fig. 1f). Lack of differential linguistic context on 
language-error trials could stem from lower likelihoods in L_target or 
higher likelihoods in L_other. To assess these possibilities, we compared 
likelihoods for L_target on correct trials with likelihoods for L_target 
and L_other on incorrect trials. No statistically significant differences 
were found, implying that the likelihood of L_other is increased on 
incorrect trials, reducing differential linguistic context. This may stem 
from neural confusions in L_other that form plausible sequences of 
words. Together, these analyses (Fig. 1e,f) implicate building linguistic 
context throughout a sentence and language models as driving forces 
in decoding the target language.

Offline, we simulated the performance of our system when the 
target language was manually set rather than freely chosen (Fig. 1g 
and Supplementary Table 6). We saw improved word error rates, with 
a median of 21.9% (99% CI: 16.7, 27.6%) for all phrases, 20.0% (99% CI: 
16.7, 28.6%) for Spanish phrases and 20.0% (99% CI: 6.67, 33.3%) for 
English phrases.

Finally, we demonstrated that our participant could use the system 
to openly generate desired phrases from the vocabulary and participate 
in a conversation, switching between languages on the basis of prefer-
ence (Supplementary Video 3). In line with this result, we verified that 
neural features were specific to attempted speech and not listening 
or reading associated with the training task (Extended Data Fig. 4).

Offline characterizations of neural-decoding performance
To further characterize our system’s ability to decode words in both 
English and Spanish from neural features, we used 10-fold cross valida-
tion (CV) to evaluate classification performance on the isolated-target 
data collected to train models for phrase decoding. We trained a clas-
sification model on bilingual words across both languages but masked 
the predictions in the off-target language for each word during training 
and testing (see Methods). During training, this encourages the model 
to learn predictions consistent with the vocabulary in each language. 
During evaluation, this approach allows us to probe the performance 
of the model on English, Spanish and combined vocabularies. We 
achieved median CV classification accuracies of 58.1% (99% CI: 56.9, 
59.3%) overall, 62.9% (99% CI: 61.3, 64.9%) for Spanish words and 52.9% 
(99% CI: 51.6, 55.6%) for English words (Fig. 2a). We also computed 
median CV classification accuracy over the full 104-word vocabulary (no 
masking), which was 47.2% (99% CI: 45.8, 48.2%; Extended Data Fig. 5). 

Differences in English and Spanish classification accuracy may stem 
from characteristics of the specific stimuli used (Extended Data Fig. 6).

An important challenge in developing clinically viable BCIs is 
maintaining similar decoding performance day-to-day without requir-
ing the user to dedicate time to frequently recalibrate the system. The 
relatively large spatial-sampling scale of ECoG offers the potential for 
consistent day-to-day signal acquisition45–49. Notably, we found that 
our models were able to maintain similar classification accuracy, with 
some day-to-day variance, for 48 days without recalibration (Fig. 2b,c 
and Extended Data Fig. 5). This highlights that similar modulation 
patterns for each word in the neural features are maintained over 
time. These results were also achieved over 3.5 years after ECoG-device 
implantation, with improved classification performance on a slightly 
larger vocabulary than initial work with this participant13, demonstrat-
ing longevity of speech-information content in the neural signals. 
Modest improvements in performance were possible with addition of 
more data to the models by retraining each day (Extended Data Fig. 7).

Given evidence in the literature that L1 and L2 may activate distinct 
cortical regions26,28, we next examined whether classification models 
trained only on English or Spanish words utilized different electrodes 
or features. We found that for both the HGA and LFS feature types, 
electrode contributions to the classifier (see Methods) were similar 
between English and Spanish (Fig. 2d). Indeed, non-parametric cor-
relation between electrode contributions for English and Spanish, for 
both HGA (P < 0.0001, ρ = 0.85, non-parametric correlation permuta-
tion test; Fig. 2e left) and LFS (P < 0.0001, ρ = 0.92, non-parametric 
correlation permutation test; Fig. 2e right) showed a strong positive 
relationship. In contrast, for both English and Spanish, very few elec-
trodes contributed strongly with both LFS and HGA, indicating com-
plementary information in the two bands (Extended Data Fig. 8).

On the basis of this result, along with array coverage of the sen-
sorimotor cortex, we hypothesized that shared articulatory rep-
resentations were driving decoding2,50,51. To assess this, we used a 
model trained on all 104 bilingual words (no masking) and explored 
which factors drove confusability between any given pair of words 
(Extended Data Fig. 9). Here, confusability refers to the number of 
times that a given target word was incorrectly classified as another 
word in the dataset. Specifically, we assessed the effect of the follow-
ing three similarity measures on confusability: (1) semantic similarity, 
measured by high-dimensional Word2Vec embeddings52; (2) acous-
tic similarity, measured by mel-cepstral distortion (MCD)53; and (3) 
whether the pair of words was in the same language (Fig. 2g). We fitted 
a multiple-regression model to predict confusability between each pair 
of words from these three variables. We found that acoustic similarity 
between words had significantly stronger relative explanatory power 
than semantic similarity or whether the pair of words was in the same 
language (Fig. 2g; P < 0.0001, two-sided Mann–Whitney U-test with 
3-way Holm–Bonferroni correction). Given that acoustics are a strong 
proximate measure for articulation2,54, this provides evidence that our 
classification models capture shared articulatory information at the 
same electrode sites rather than language-specific signals.

A shared cortical representation of English and Spanish 
phrases in the speech-motor cortex
We next directly probed the neural representation of English and Span-
ish speech across the participant’s electrode array in a model-agnostic 
manner. We designed a large set of unique phrases with ~200 words in 
each language (Fig. 3a) to sample a larger articulatory space in each 
language (Extended Data Fig. 10 and Supplementary Table 7). This 
allowed us to evaluate whether the magnitude or localization of neural 
activity was different between languages, over a larger vocabulary 
space. We first computed the standard deviation of the average HGA 
(0–2 s after the ‘go’ cue) across English and Spanish phrases for each 
electrode and visualized the values on the cortex (Fig. 3b). Sample 
evoked response potentials (ERPs) are shown for two electrodes, 

http://www.nature.com/natbiomedeng
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(measured using MCD), semantic similarity (measured using cosine similarity 
of Word2Vec embeddings) and whether the words are in the same language. 
Bottom: the relative variance explained by each factor in the multiple-regression 
model. Distributions were created by bootstrapping the confusion matrix with 
replacement 2,000 times. ****P < 0.0001, two-sided Wilcoxon signed-rank  
test with 3-way Holm–Bonferroni correction for multiple comparisons.  
d–f, Spearman correlation permutation test (****P < 0.0001). Boxplots in all 
panels depict median (horizontal line inside box), 25th and 75th percentiles 
(box), 25th and 75th percentiles ±1.5 times the interquartile range (whiskers)  
and outliers (diamonds).
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demonstrating temporally similar neural-activity patterns for Eng-
lish and Spanish phrases (Fig. 3c). We next quantitatively compared 
2 key metrics across electrodes and between languages. We found a 
strong positive correlation of the maximum of the HGA ERP (P < 0.0001, 
ρ = 0.77, Spearman correlation permutation test; Fig. 3d) and standard 
deviation of the average HGA (described above, P < 0.0001, ρ = 0.95, 
Spearman correlation permutation test; Fig. 3e) between languages.

To better understand whether the temporal dynamics of neu-
ral responses differed between languages, we correlated HGA ERPs 
computed from trials in the same language with ERPs computed from 
trials in the other language. Again, we found a strong positive rela-
tionship between correlations within and between languages across 
electrodes (P < 0.0001, ρ = 0.98, non-parametric correlation permu-
tation test; Fig. 3f). Finally, we trained a deep-learning model that 
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across languages. a, Large stimulus set of unique words and phrases used to 
cover a more comprehensive articulatory space in each language, relative to 
the vocabulary used for phrase-decoding (Fig. 1). b, Standard deviation of the 
average HGA from 0 to 2 s (relative to the visual ‘go’ cue) for English and Spanish 
phrases across each electrode. c, Sample ERPs to English and Spanish phrases  
for two electrodes noted in b. d, Relationship between the maximum HGA for 
each electrode during English and Spanish phrases. e, Relationship between 
the HGA standard deviation (as in b) for English and Spanish phrases for each 
electrode. f, Relationship of the correlation of ERPs within a language to the 
correlation of ERPs between languages for each electrode. d–f, Correlation 
assessed with non-parametric Spearman rank correlation and permutation 
testing over 128 electrodes (****P < 0.0001). Values normalized to fall between  

0 and 1. g, 10-fold CV classification accuracy for classifying each phrase as English 
or Spanish. h, Stimulus set designed to probe a shared syllable representation 
between languages. We trained classifiers in each language and tested in both 
the same and the other language. i, Sample ERPs from an electrode indicated in 
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for models trained on Spanish and English, respectively). c,i, Shaded regions 
indicate the standard error of the mean at each timepoint, computed across 
trials. In g and j, distributions are over 10 non-overlapping folds. Boxplots in 
all panels depict median (horizontal line inside box), 25th and 75th percentiles 
(box), 25th and 75th percentiles ±1.5 times the interquartile range (whiskers) and 
outliers (diamonds).
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predicted whether a phrase was English or Spanish on the basis of the 
neural features, HGA and LFS, during the speech attempt. We achieved 
53.3% median 10-fold CV classification accuracy (Fig. 3g; 99% CI: 49.0, 
55.8%), indicating that performance was not different from chance. 
Therefore, across a large phrase set, the precise temporal patterns 
of neural features in the speech-motor cortex also cannot strongly 
distinguish between languages.

Shared syllable representations enable cross-language 
training and testing of classifiers
It is hypothesized that bilinguals who learn L2 later in life may fit the 
articulatory content of L2 into previously learned L1 representations. 
One way this may manifest is in a shared syllable representation across 
languages30,39,40. Given the strong evidence for shared articulatory 
representations with our participant, we assessed whether a syllable 
classifier could generalize between English and Spanish. We designed 
an utterance set in which the same 7 syllables were present in 7 English 
and Spanish words (Fig. 3h and Supplementary Table 8). ERPs from 
a sample electrode demonstrate a clear similarity in neural activ-
ity for the same syllable across languages (Fig. 3i). Next, we trained 

syllable-classification models over the shared syllable set using neural 
data recorded as the participant attempted to say the English or Span-
ish words. We evaluated these models either on held-out data from 
the same language or data from the other language. Our syllable clas-
sifier achieved high performance regardless of whether training and 
testing occurred in the same language (Fig. 3j; P = 0.08 and P = 0.03, 
two-sided Mann–Whitney U-test, for train English (Spanish) and test 
Spanish (English), respectively). This provides compelling evidence 
that a shared syllable representation can allow data collected in one 
language to be repurposed for a second language.

Rapid transfer learning between languages
Transfer learning is a common technique in machine learning that 
involves the initialization of model weights with parameters learned on 
a separate task or dataset55,56. Transfer learning has primarily been used 
in neural decoding to leverage models trained in previous participants 
to expedite training in a new participant57,58.

Given strong shared articulatory representations between lan-
guages, we hypothesized that transfer learning between different 
languages in the same participant should expedite learning a new 
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Fig. 4 | Rapid transfer learning between languages. a, Schematic depiction of 
the paradigm used to evaluate transfer learning between languages. Models were 
trained on an English or Spanish vocabulary. These models were then fine-tuned 
and evaluated on a new English or Spanish vocabulary. b, Median classification 
accuracy as a function of amount of training data (learning curves) for fine-
tuning and evaluating on a new Spanish vocabulary. c, Median classification 
accuracy as a function of amount of training data (learning curves) for fine-tuning 
and evaluating on a new English vocabulary. In b–c, models were either not 
pre-trained or pre-trained on a different English or Spanish vocabulary. Chance 
decoding level is 4%. d, Schematic depiction of the paradigm used to evaluate 
the effect of acoustic similarity between the train and fine-tune set on transfer 
learning efficacy. e, MCD (as in Fig. 2g) between each word in the acoustically 
(acou.) similar or different train sets with the corresponding word in the fine-

tune/test set (**P = 0.0039; two-sided Wilcoxon signed-rank test). Distributions 
are over 10 words. f, Median classification accuracy as a function of amount of 
training data (learning curves) for fine-tuning and evaluating on the ‘fine-tune 
and test set’, defined in d, with transfer learning from the acoustically (acou.) 
similar and different models. Learning curves are also shown for no pre-training 
and transfer learning from a model trained on a semantically (sem.) similar set 
of words. Performance at 0.0 h of training data reflects the pre-trained model’s 
ability to generalize to the fine-tune and test set with no additional or specific 
training data. Chance decoding is 10% (dashed line). In b, c and f, the shaded areas 
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range (whiskers) and outliers (diamonds).
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vocabulary. To assess this, we evaluated a potential use case where 
models trained on a vocabulary in a first language were used to learn 
a new vocabulary in a second language. We benchmarked this per-
formance against a scheme in which models trained on a vocabulary 
in the first language were used to learn a new vocabulary in the same 
first language. We pre-trained English and Spanish models on 4.33 h 
of data from a vocabulary of 25 words in each respective language 
(for an analysis of how the amount of pre-training data affects transfer 
learning, see Supplementary Fig. 1). We then fine-tuned and tested 
these models on a new set of 25 Spanish words (Fig. 4b). Interestingly, 
we found that pre-training on an English vocabulary achieved equiva-
lent performance to pre-training in Spanish. Further, we achieved 
significantly higher performance on the new vocabulary using either 
pre-training scheme, compared with no pre-training, after just minutes 
of new training data. We observed an analogous outcome when we 
fine-tuned and tested pre-trained models on a new set of 25 English 
words (Fig. 4c). Overall, this demonstrates that decoder training with a 
vocabulary in a new language can be expedited by leveraging previous 
data collected in a different language, minimizing required training 
times for multilingual BCI use.

To further explore the factors that drove transfer learning and 
whether models could generalize to an entirely new vocabulary with 
no additional training data, we designed a new 10-word fine-tune and 
test set (Fig. 4d). We next designed three pre-training sets by choosing 
a word to pair with each of the 10 words in the test set that was either 
acoustically (acou.) similar, acoustically different, or semantically 
(sem.) similar (Fig. 4d). We verified that the pairwise MCD between each 
word in the acoustically similar set and the corresponding word in the 
test set was significantly lower than that of the acoustically different 
set and the test set (Fig. 4e; P = 0.004, two-sided Wilcoxon signed-rank 
test). We then computed learning curves on the new test set using 
transfer learning from one of the three pre-training sets or no transfer 
learning (Fig. 4f). Here we also included an evaluation point at 0 h of 
training data, which indicates the ability of the pre-trained model to 
generalize with no additional data specific to the fine-tune set. Notably, 
we see that only in the case of an acoustically similar pre-training set 
is this possible and learning curves with the acoustically similar set 
increase most rapidly (Fig. 4f). Overall, this demonstrates that care-
ful design of pre-training and fine-tune/test sets for acoustic, and by 
virtue articulatory2,54, similarity may allow generalization of models 
to bilingual vocabularies with as little as no additional training data.

Discussion
We leveraged shared articulatory representations in the speech-motor 
cortex to drive a bilingual speech neuroprosthesis. We achieved 
low word error rates, usable in a clinical setting59, with high 
language-classification accuracy when the target language is freely 
decoded on the basis of neural features and, importantly, differential 
linguistic context that builds throughout a phrase. Over 1,300 days 
after implantation, our ECoG-based neural-classification algorithms 
demonstrate stable performance without retraining for over 40 days. 
We also observed robust decoding of syllables in a given language 
after training on data collected exclusively in the other language. Cor-
respondingly, transfer learning between languages facilitated learning 
of a new vocabulary in a second language with as little as 1 h of new 
training data. Together, this set of findings parallels advancements in 
automatic speech recognition, bringing communication technology 
to multilingual and non-English speakers60–62.

Notably, the participant learned Spanish natively (L1) and then 
learned English (L2) later in his adult life, after any critical acquisition 
period63. However, we did not find any cortical regions or patterns 
of neural activity26,28 in our coverage specific to English or Spanish 
speech attempts. Despite later acquisition of L2 (around time of the 
participant’s brainstem stroke), we also did not notice clear differ-
ences in magnitude of evoked activity between L1 and L2, noted in 

non-invasive neurophysiology studies29–34. Aligning with theories 
that articulatory representations of L2 in the brain leverage those of 
L1 (refs. 39,40), our results demonstrate a largely conserved syllable 
representation between languages.

This shared articulatory representation offers key advantages 
for multilingual BCIs. BCIs typically require training data with the 
user to develop high-performance decoders. This puts a burden on 
the user, and long training times may discourage adoption and con-
tinued use64,65. Here we demonstrate that, through transfer learning, 
training time for multilingual participants to use all their languages 
may be greatly reduced. Further, our sublexical decoders achieved 
robust performance on syllables in a new language with no additional 
language-specific training data. These findings suggest that future 
multilingual speech BCIs may target shared sublexical units (for exam-
ple, phonemes14) to improve bilingual vocabulary sizes and decod-
ing speeds, leveraging alternative approaches to fixed-window word 
decoding8,15,66.

While being a single-participant study is a limitation of this work, 
the strength of shared cortical articulatory representations, despite 
the participant learning L2 later in adult life, is encouraging for gen-
eralizability to other patients. This is especially true for those who 
learned L2 early in life, which correlates with stronger shared repre-
sentations30,31,33,35. Future work, however, should examine whether this 
effect varies with L2 proficiency, age of acquisition and articulatory 
similarity to L1. Though this study leveraged invasive electrophysiol-
ogy, these results also hold relevance for non-invasive BCIs. A poten-
tial advantage of non-invasive BCIs is the ability to sample a larger 
area of cortex involved in functions beyond speech-motor control. 
Non-invasive BCIs may apply a similar framework, as applied here 
with articulatory features, for higher-level language features, such as 
semantics67,68, that could further enable rapid generalizability across 
languages. These studies may also find language-specific signals, which 
we did not see in the speech-motor cortex, but may exist in higher-order 
cortical regions28,69,70. A complementary direction for invasive BCIs is 
to understand whether language-specific signals exist at the level of 
single neurons.

Needing to build linguistic context to decode the intended lan-
guage is one limitation of this study. While we demonstrated a strong, 
shared articulatory representation between English and Spanish, it 
is possible that languages in different families, such as English and a 
tonal language (for example, Mandarin), have distinct cortical repre-
sentations for certain speech-production features, such as pitch71,72. 
These differences could improve neural decoding of the intended 
language but limit transfer learning between the languages. In addi-
tion, we modelled language selection at the phrase level. In practice, 
multilingual speakers may switch between languages within phrases 
(code-switching), a topic that has been studied with non-invasive neural 
recordings and large language models73–75. Future studies may explore a 
neural code-switching signal or utilize code-switching language models 
to decode language at the word level73. Overall, this study demonstrates 
the feasibility of a bilingual speech neuroprosthesis that can flexibly 
decode speech in the user’s intended language and generalize between 
languages with minimal training data, with the potential to restore 
more natural communication to the many bilinguals with paralysis 
who may benefit.

Methods
Clinical-trial overview and the participant
This study was conducted as part of the BCI Restoration of Arm 
and Voice (BRAVO) clinical trial (ClinicalTrials.gov; NCT03698149) 
approved by the US Food and Drug Administration (FDA), UCSF Insti-
tutional Review Board and the National Institutes of Health. This study 
was performed in accordance with the Declaration of Helsinki. The 
adult participant provided written informed consent to participate 
in this study. All ethical regulations were followed. This clinical trial is 
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a phase 1 single-centre early feasibility study to evaluate the potential 
of ECoG-based neural interfaces for controlling advanced neuropro-
stheses that restore motor and communicative functions. Due to the 
exploratory nature of this trial and the limited number of trial partici-
pants, we did not pre-define specific secondary outcomes. Our primary 
endpoint, which was pre-defined, was to assess the efficacy of the trial 
and was stated in the protocol as ‘Feasibility of control of a wearable 
exoskeleton device and communication interface’. As such, a variety of 
analysis methods were applied with the trial participant throughout the 
trial, with the aim to fully assess the efficacy of an ECoG-based neural 
interface for motor and communication restoration. The data herein 
presented are not aimed at informing concrete conclusions regarding 
the primary outcomes of the trial. The study protocol passed approval 
of the Committee on Human Research at the University of California, 
San Francisco, and the FDA awarded an investigational device exemp-
tion for the ECoG neural implant used in this trial participant. Before 
completion of the trial, results of this work were agreed to be released 
by the data safety monitoring board.

The participant (he/him) involved in this study was 36 years old at 
enrolment. He was previously diagnosed with severe spastic quadripa-
resis and anarthria by neurologists and a speech-language pathologist 
due to stroke of the bilateral pons13. His injury did not affect cognitive 
function, and he has slight residual function of the vocal tract allowing 
for audible grunts and moans; however, he is unable to produce intel-
ligible speech (Supplementary Note 1). To communicate, he relies on 
an Augmentative and Alternative Communication (AAC) interface that 
utilizes residual head movements to spell out words (Supplementary 
Note 2). After details concerning the neural implant, experimental 
protocols and medical risks were explained, the participant provided 
full informed consent to partake in the study. The participant is a native 
Spanish speaker (L1) and learned English in adult life, reaching fluency 
at age 30, after his brainstem stroke.

Neural implant
The participant’s neural implant was a high-density ECoG array (PMT) 
coupled with a percutaneous connector (Blackrock Microsystems). 
A total of 128 electrodes, arranged in a lattice formation, with 4-mm 
centre-to-centre spacing make up the ECoG array. Over 3 years ago, the 
array was surgically implanted on the pial surface of the left hemisphere. 
The array was centred to sample cortical regions essential for speech 
production, namely, the dorsal posterior aspect of the inferior frontal 
gyrus, the posterior aspect of the middle frontal gyrus, the precentral 
gyrus and the anterior aspect of the postcentral gyrus. To transmit data 
to a computer for further analysis, the percutaneous connector was 
implanted in the skull. The connector conducts electrical signals from 
the ECoG array to a detachable digital headstage and cable (NeuroPlex E, 
Blackrock Microsystems), which transmits the data to a computer with 
little signal processing. The device was implanted in February 2019 at 
the UCSF Medical Center without any surgical complications.

Data acquisition and pre-processing
To acquire and extract meaningful neural features for downstream 
analysis, we applied a multistep pipeline. First, the local field potential 
(LFP) was acquired from each electrode via a headstage (a detachable 
digital connector; NeuroPlex E, Blackrock Microsystems) connected 
to the percutaneous pedestal connector. The connector digitizes the 
LFP from each electrode and transmits the signals through an HDMI 
connection to a digital hub (Blackrock Microsystems). The digital 
hub relays the digitized signals to a Neuroport system (Blackrock 
Microsystems) through an optical fibre cable. The Neuroport system 
applies noise cancellation and an anti-aliasing filter to the signals 
before streaming them at 1 kHz to a separate online computer via an 
Ethernet connection (Colfax International). We used the NeuroPort 
Central Suite software package (v.7.0.4, Blackrock Microsystems) to 
control the Neuroport system.

The resulting LFP across electrodes was further processed on the 
online computer using a custom Python software package (rtNSR) that 
is capable of processing and analysing the ECoG signals, executing the 
online tasks, performing online decoding, and storing the data and 
task metadata4,13,42,76. Common average referencing (CAR) is a use-
ful technique for reducing shared noise across multichannel neural 
datasets77. We used rtNSR to first apply a CAR (across all electrode 
channels) to each time sample of the ECoG LFP. We then extracted 
two sets of neural features from the re-referenced ECoG signals: HGA 
and LFS. To extract these features, we used digital finite impulse 
response filters to compute the analytic amplitude of the signals in 
the high-gamma frequency band (70–150 Hz; HGA) and an anti-aliased 
version of the signals (with a cut-off frequency at 100 Hz; LFS).  
We concatenated the time-aligned HGA and LFS into a single tem-
poral stream, sampled at 200 Hz. The HGA was then derived from 
the analytic amplitude, whereas LFS was not. We next z-scored the 
HGA and LFS for each channel using a 30-s sliding window approach. 
Lastly, we rejected artefacts in the signal, defined as timepoints with 
32 features with z-score magnitudes greater than 10. Each of these 
timepoints was replaced with the z-score values from the preceding 
timepoint and ignored when updating the 30-s window z-score sta-
tistics. These final, processed features defined the HGA and LFS used 
in subsequent analyses and online decoding (together referred to as 
‘neural features’). All data collection and online decoding tasks were 
performed in a small office near the participant’s residence. To train 
decoding models and perform offline analyses, data were uploaded to 
the lab’s server infrastructure and models were trained using NVIDIA 
V100 GPUs hosted on this infrastructure.

Task design
To develop a system capable of online decoding of English and Spanish 
phrases, we collected two general types of tasks with the participant: 
an isolated-target task and a phrase-decoding task.

Isolated-target task
During the isolated-target task, the text for a target word appeared 
on the screen along with 4 dots on either side. The dots sequentially 
disappeared and the text target turned green to indicate that the par-
ticipant should attempt to speak the word (‘go’ cue). The participant 
attempted to speak the target word at the ‘go’ cue. We first collected a 
version of the task where the participant was asked not to attempt to 
vocalize (mimed). Data included in this paper are from a subsequent 
version of the task where the participant was allowed to attempt 
audible grunts of the target word (overt). During the isolated-target 
task, we used a vocabulary of 104 words: 50 Spanish, 51 English and 
3 that are shared across languages (referred to together as ‘bilingual 
words’; Supplementary Table 1). Neural data collected during the 
isolated-target task were used to train and optimize classification 
and detection models that were later used, without recalibration, 
for phrase decoding.

Phrase-decoding task
The phrase-decoding task is treated in detail in the Results section and 
Fig. 1a. In brief, the participant used this paradigm to either perform 
a copy-typing task with the bilingual test phrases (Supplementary 
Table 3) or freely use bilingual words to have a conversation. To choose 
bilingual test phrases and train language models (see below), we crowd-
sourced generation of a large set of phrases made from the bilingual 
words through volunteers independent of our laboratory. Similar to our 
previous work13, to form the bilingual test phrases, we chose 28 English 
and Spanish phrases at random that covered the entire vocabulary, had 
no grammatical errors and appeared at least 2 times in the generated 
corpus. Data collected during the phrase-decoding task were used for 
evaluation only, with no calibration of models or hyperparameters 
based on the bilingual test phrases.
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Large bilingual-phrase set
To further probe the representation of English and Spanish speech 
attempts, we designed a large bilingual-phrase set with ~200 unique 
words in each language (Fig. 3a). These phrases were designed to span 
a large articulatory space in each language (Extended Data Fig. 10 and 
Supplementary Methods 1). These phrases were presented to the partic-
ipant using a sliding cued paradigm. In brief, the participant first heard 
an audio version of the phrase. The text corresponding to the phrase 
was then shown on the screen. A green vertical bar then slid across the 
phrase at the same rate as the previously presented audio. The green 
vertical sliding bar indicated the timing of when the participant should 
attempt each word in the phrase. The neural data collected during this 
task were used offline to evaluate the representations of English and 
Spanish speech attempts on the speech-motor cortex. No online dem-
onstrations were performed with this task paradigm and phrase set.

English and Spanish paired-syllable words
To probe a shared syllable representation between English and Spanish 
words, we designed a limited set of stimuli where each word shared a 
syllable, in a different context, with a word in the opposite language 
(Supplementary Table 8). We collected this set using a modified para-
digm similar to the isolated-target task. In brief, the participant first 
heard an audio recording of each word. Next, the text corresponding 
to the target word appeared on the screen along with 4 dots on either 
side. The dots sequentially disappeared and the text target turned 
green to indicate that the participant should attempt to speak the word. 
The neural data collected during this task were used offline to train and 
test syllable classifiers between languages. No online demonstrations 
were performed with this task paradigm and phrase set.

Modelling
We trained speech detection and classification models using data col-
lected during the isolated-target task where the participant attempted 
to speak bilingual words.

For use with the phrase-decoding task, trained models were saved 
to the online computer. Models were trained and implemented using 
the PyTorch Python package (v.1.6.0). Natural-language models were 
also used to encourage the system to decode plausible sequences of 
words in each language, complementing neural predictions during the 
phrase-decoding task (Supplementary Methods 2). All hyperparam-
eters for phrase decoding were chosen and optimized on simulations 
with the isolated-target task, collected before evaluation (Supplemen-
tary Methods 3). We used common scientific computing packages in 
Python including NumPy, scikit-learn, pandas, seaborn and matplotlib 
for modelling and data analysis.

Speech detection
To allow the participant to volitionally engage and disengage the decod-
ing system, we trained a speech detection model to detect attempted 
speech from neural features online. The speech detector was trained 
using both LFS and HGA at 200 Hz, using recurrent neural networks 
(in particular, long short-term memory layers) and truncated back-
propagation through time, similar to previously described methods13,42. 
Model architecture and training parameter details are listed in Sup-
plementary Table 9.

In this work, we trained the model on overt isolated-target 
bilingual-words data and rest blocks (where the participant rested 
silently for 1 min). For each isolated-target bilingual-words block, 
we labelled each timepoint as ‘rest’, ‘speech preparation’ or ‘speech.’ 
Timepoints between the presentation of the target word on the screen 
and the ‘go’ cue were labelled as ‘speech preparation’ and timepoints 
between the ‘go’ cue and 2 s after the ‘go’ cue were labelled as ‘speech’. 
This window was chosen on the basis of the duration of average neural 
responses during speech attempts. Timepoints from 2 s after the ‘go’ 
cue to the end of the trial (when the screen cleared) were discarded from 

training due to the ambiguity of when a speech attempt truly ended and 
the participant was at rest. All other timepoints (that is, the 1 s between 
trials when the screen was blank) were labelled as ‘rest’. For rest blocks, 
every timepoint was labelled as ‘rest’. Rest blocks were added into the 
training set to augment the amount of timepoints when the participant 
was truly resting outside the task context.

The speech detector was trained using all available isolated 
bilingual-words data before online testing. This means that before 
each day of online testing, the speech detector was retrained if new 
isolated data were collected the previous day. The speech detector 
generates the probability of a speech event (causally) and thresholding 
converts these continuous probability streams into discrete events13,42. 
Detection thresholding parameters (smoothing, probability threshold-
ing and time thresholding) were manually fine-tuned by evaluating on 
held-out bilingual-phrase blocks that were not used in any part of the 
training of the speech detector.

Classification
We trained an artificial neural network (ANN) with the objective of 
classifying the neural features from a speech attempt as one of the 
104 words in the bilingual-words set. During model training, we used 
stochastic gradient descent and the Adam optimizer78 to find a set of 
parameters that minimized the cross-entropy loss between target and 
predicted outputs across the 104 classes. Weights were initialized with 
parameters learned on the previous collection of mimed bilingual 
words, given a small final improvement on overt with transfer learning 
from mimed (Supplementary Fig. 2).

In brief, the ANN processed a 3.5-s window of neural features 
(0–3.5 s relative to the ‘go’ cue) corresponding to a speech attempt. A 
3.5-s window was chosen for the window length, as it was the speed at 
which the participant could reliably attempt sequential words using 
the cued decoding system. The neural features were first decimated 
by a factor of 6 to an effective rate of 33.33 Hz. A one-dimensional 
temporal convolutional layer further downsampled the neural features 
by a factor of 4. The downsampled neural features were then passed 
through a three-layered bidirectional gated recurrent neural network 
(GRU)79. Here, dropout was used to prevent the model from overfitting. 
Finally, the output of the final timestep of the last layer of the GRU was 
passed through a dense, fully connected layer to produce 104 outputs 
corresponding to each word of the bilingual words. A softmax function 
was applied to these outputs to yield an estimated probability for each 
word. During training, the outputs corresponding to words in a differ-
ent language from the target word were masked before computation 
of the loss. This encouraged the model to make predictions consistent 
with the vocabulary of each language. During evaluation, where the 
language of the speech attempt was unknown, we separately passed for-
ward English and Spanish word probabilities to downstream decoding 
modules. See Supplementary Methods 3 for specific details regarding 
data augmentation and hyperparameter optimization. A table provid-
ing optimal hyperparameters is provided in Supplementary Table 10.

During the phrase-decoding task, we utilized model ensembling 
to minimize overfitting and variance caused by random initialization 
of parameters80. We trained 10 distinct classification models using ten 
random subsets of the isolated-target task training set. Each model 
retained the same architecture but saw a slightly different distribu-
tion of training data. To evaluate a given window of neural features, we 
averaged predictions across the ten models to yield a single ensemble 
prediction.

Language modelling
We trained 5-gram natural-language models for both English and Span-
ish from the crowdsourced corpus using custom code (Supplementary 
Methods 2). Similar to previous work13, the language model was trained 
to output the probability of each word in the vocabulary on the basis 
of the preceding, up to 4 words in the sequence.
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Phrase decoding
The primary goal of phrase decoding is to find the most likely 
sequence of words (s*) given neural data X. To solve this problem, 
we used a beam search approach similar to our previous work, with 
modifications to apply to word sequences in two languages41,42. In 
brief, the neural features for each 3.5-s window were passed through 
the ensemble classifier to generate a neural-based probability for 
each word in the vocabulary. These probabilities were then split 
and rescaled into two vectors: one for Spanish words and the other 
for English words. At this stage, the same downstream decoding 
modules were applied separately for English and Spanish. The phrase 
decoding module finds s*, given its likelihood from the neural data 
and its likelihood under the language-model prior. At each window 
within the trial, the highest-scoring English beam was compared to 
the highest-scoring Spanish beam. The beam with the higher overall 
score was displayed to the participant as feedback and effectively 
set the language of the output. See Supplementary Methods 4 for a 
detailed mathematical treatment and information on hyperparam-
eter selection for the beam search process.

System evaluation
During the phrase-decoding task, the participant was instructed to con-
tinue attempting each word in the phrase regardless of decoding accu-
racy. However, on a small subset of trials, the participant self-reported 
making an error or not being able to continue the attempt (n = 7 out 
of 168 total trials). Errors included attempting the wrong words in the 
phrase (n = 3, such as attempting in English rather than in Spanish), 
muscle spasms/shakes preventing attempted speech (n = 3) and hav-
ing something in his eye (n = 1). Similar to our previous work with this 
participant42, we excluded these trials from subsequent analysis to 
focus on the performance of our system rather than the performance 
of the participant.

Word error rate
We report the WER as the sum of the word edit distances between 
the predicted and target phrases in a phrase-decoding block divided 
by the total number of words across all target phrases in the block. 
Each block contained 8 phrases: 4 English and 4 Spanish. Similar to 
previous studies, we chose to report WER over blocks, given that short 
phrases may become overly influential42,43,76. To compute the WER in the 
neural-only condition, we left verbs unconjugated both in the decoded 
and ground-truth sentences, and considered results up to the point 
where the ground-truth and decoded sentences had the same number 
of words. Thus, it is the inverse of classification accuracy and allows us 
to probe the neural-classification performance of the system during 
the phrase-decoding paradigm.

Cross-validation accuracies
To evaluate the offline performance of our system in classifying 
bilingual words, we used 10-fold CV. In each of the 10 folds, 90% of 
the data was used for training and 10% for evaluation. Within the 90% 
of data used for training, 10% was randomly selected to be reserved 
for a validation set (used to early stop training, see Supplementary 
Methods 3). Within each of the 10 folds, we fitted 10 randomly ini-
tialized models to ensemble predictions on the held-out evaluation 
fold. When indicated, during evaluation, we masked the predictions 
that were not in the same language as the target word. This allowed 
us to probe performance over the English and Spanish vocabularies 
separately.

To assess performance over the full 104 bilingual-word vocabulary, 
we trained models with a single modification. We removed masking 
entirely to allow the models to learn associations across languages dur-
ing training and testing. We also provide the CV accuracies for using dif-
ferent window sizes during classification of the full 104 bilingual-word 
vocabulary (Supplementary Fig. 3).

Performance without recalibration
To evaluate the performance of our system without daily recalibra-
tion, we trained a neural classifier using the same process as described 
above (Methods: Classification) on data collected before day 1,333 
post-implantation. We then froze the weights of this classifier and 
evaluated its performance on isolated-task data collected on subse-
quent days until the start of online sentence decoding. We evaluated 
performance with the masking approach to compute accuracy over the 
English and Spanish vocabularies separately or the entire vocabulary. 
For a comparison, we used the same methodology to retrain the clas-
sifier, with sequential addition of each day’s data.

Electrode contributions to classification
To probe whether English and Spanish words led to similar electrode 
contributions, we trained classification models only on bilingual words 
in English or Spanish. We then evaluated the electrode contributions 
in these models to compare between the two languages. We defined 
the contribution of each electrode to classification performance as 
the derivative of the classifier’s loss function with respect to the input 
features (HGA or LFS) over time13,42,81. This effectively measured the 
change in model outputs, given small changes in the HGA or LFS for 
each electrode across timepoints. To form a composite contribution 
per electrode and feature set, we calculated the L2-norm over time and 
averaged data across evaluation trials. For each feature set, we then log 
transformed the resulting values and normalized results so that each 
value fell between 0 and 1.

Confusability of English and Spanish words
To probe the confusability between bilingual words, we used the pre-
dictions from 10-fold CV models trained on all bilingual words with no 
masking. We computed a confusion matrix where each entry represents 
the number of times a word (row) was predicted as being any of the 
104 words in the vocabulary. Intuitively, the entry on the diagonal 
then represents the number of times a word was correctly classified. 
We normalized each row to sum to 1, making each entry a proportion 
(0–1). To explore which factors drove confusability between any two 
words, we measured the semantic and acoustic similarity between 
bilingual words.

We first embedded each word as a 300-dimensional vector using 
Word2Vec52. We computed the semantic similarity between words 
as the cosine similarity between respective embedded vectors. We 
next generated an audio waveform for each word using a multilingual 
text-to-speech system82, where a single speaker was used. The MCD, 
commonly used to evaluate speech synthesis systems53, was used to 
measure the acoustic similarity between words. The MCD was defined 
as the squared error between dynamically time-warped mel-cepstral 
coefficients of two waveforms.

A multiple-regression model was fitted to predict the confus-
ability between every pair of bilingual words on the basis of whether 
the words were in the same language, as well as their semantic and 
acoustic similarity. To assess the relative variance explained by each 
factor, we removed each variable individually and calculated the 
drop in R2 compared to the full model. We then normalized the three 
values for explained variance to sum to 1. To compute confidence 
intervals for these estimates, we sampled the confusion matrix with 
replacement 2,000 times. For each random sample, we performed the 
above-described procedure to compute the relative variance explained 
by each factor.

A shared articulatory representation across languages
To probe a shared articulatory representation, we first computed 
the standard deviation of the average HGA (0–2 s after a ‘go’ cue) 
for speech attempts to English and Spanish phrases within the large 
bilingual-phrase set. ERPs were calculated by averaging the HGA at 
each timepoint for speech attempts to phrases in each language. 

http://www.nature.com/natbiomedeng


Nature Biomedical Engineering | Volume 8 | August 2024 | 977–991 988

Article https://doi.org/10.1038/s41551-024-01207-5

We computed the maximum HGA across timepoints of the ERP at 
each electrode.

We also tested the temporal correlations between the ERPs for 
English and Spanish phrases. During each iteration of 2,000 bootstraps, 
English and Spanish trials were randomly split into two equal groups. 
We then computed the ERPs for each group, resulting in 2 English 
and 2 Spanish ERPs per electrode. At each electrode, we computed 
the Pearson correlation between the ‘within language’ and ‘between 
language’ ERPs. The correlations across the ‘within’ and ‘between’ 
language groups were averaged to yield 2 data points per electrode 
per iteration. The median ‘between language’ and ‘within language’ 
correlation was taken across bootstraps for each electrode.

We next asked whether temporal patterns in the neural features 
could be used to classify each trial as an English or Spanish phrase. We 
fitted a classification model with the same parameters and architecture 
found optimal for bilingual words in the isolated-target task to predict 
whether a trial was an English or Spanish phrase on the basis of a time 
interval of (−2,4) s relative to the ‘go’ cue.

Syllable decoding
To decode syllables from speech attempts in the English and Spanish 
paired-syllable words set, we trained a classifier to predict syllable identity 
over the set of shared syllables (Supplementary Table 8). For syllables that 
occurred at the beginning of a word, we used neural features from a time 
window of (0,2) s relative to the ‘go’ cue. For syllables that occurred at the 
end of a word, we used neural features from a time window of (1.5,3.5) s 
relative to the ‘go’ cue. We then trained a classification model using the 
same architecture, training procedure (no masking) and hyperparam-
eters (except that the dropout was lowered to 0.5, given fewer target 
classes) as found optimal for bilingual words in the isolated-target task 
to predict probabilities over the shared syllables. To evaluate the ability 
of classification models to generalize between languages, we used two 
evaluation schemes. To evaluate performance in the same language used 
to train the classifier, we used 10-fold CV. To evaluate performance on the 
other language not used in training, we used all syllable-pair trials from 
the non-training language (split into 10 equally sized folds).

Transfer learning between languages
To assess the efficacy of transfer learning between languages, we used data 
collected during the isolated-target task. We randomly selected 25 words 
from the English bilingual words and 25 words from the Spanish bilingual 
words. We then trained classification models for these vocabularies using 
the same architecture, training procedure (no masking) and hyperparam-
eters as found optimal for bilingual words. This yielded two pre-trained 
models: one in English and the other in Spanish. We then randomly selected 
another 25 English words from the remaining unused English bilingual 
words to form a new vocabulary. We repeated the above-described process 
a second time, selecting 25 Spanish words from the remaining unused 
Spanish bilingual words to form the new vocabulary.

To compute learning curves with the new vocabulary, we used 
10-fold CV. Within each fold, we iteratively trained classification models 
with increasing fractions of the training data. At each fraction of train-
ing data, we evaluated on the held-out evaluation fold. This yielded 
10 estimates of evaluation accuracy at each fraction of training data 
included. We visualized the 99% confidence interval over these 10 
estimates at each fraction of training data studied.

We computed learning curves on the new vocabulary using the 
above-described procedure under three conditions: no transfer 
learning (weights initialized randomly), transfer learning from the 
pre-trained English model, and transfer learning from the pre-trained 
Spanish model.

Statistics
We used two-sided non-parametric tests to compare groups of obser-
vations. For unpaired data, we utilized Mann–Whitney U-tests and 

for paired data, we used Wilcoxon signed-rank tests. We employed a 
cut-off of 0.01 to determine significance of P values and used a Holm–
Bonferroni correction to adjust P values for multiple comparisons 
where the underlying neural data were not independent. Associated P 
values for the Spearman rank correlation were computed with permu-
tation testing. Confidence intervals were computed using a bootstrap-
ping approach. In brief, over 2,000 iterations, we randomly sampled 
the data (for example, blocks) with replacement and computed the 
desired metric (for example, the median word error rate over blocks). 
The 99% confidence interval was then taken over the bootstrapped 
distribution. To estimate the participant’s AAC rate, we ensured, using 
a Mann–Whitney U-test, that a subset of sentences that matched the 
distribution of all evaluation sentences was chosen (Supplementary 
Fig. 4 and Note 2).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data needed to recreate the main figures are provided as Source 
Data, and are also available in GitHub at https://github.com/asilvaalex4/ 
bilingual_speech_bci. The raw patient data are accessible to research-
ers from other institutions, but public sharing is restricted pursuant 
to our clinical trial protocol. Full access to the data will be granted 
on reasonable request to E.F.C. at edward.chang@ucsf.edu, and a 
response can be expected in under 3 weeks. Shared data must be kept 
confidential and not provided to others unless approval is obtained. 
Shared data will not contain any information that may identify the 
participant, to protect their anonymity. Source data are provided 
with this paper.

Code availability
The code required to replicate the main findings of the study is available 
via GitHub at https://github.com/asilvaalex4/bilingual_speech_bci.
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Extended Data Fig. 1 | Timing and information flow through the bilingual-
sentence decoding system. Shown is a more detailed schematic overview of 
the bilingual-sentence decoding system to complement Fig. 1a. Three levels of 
information are depicted: the neural features, the decoding system, and the 
output to the participant monitor. To start, the participant makes a speech 
attempt. This is detected by the system and cues activation of an ongoing 
decoding process. Following activation, a series of 3.5 s windows are cued to 
the participant. At the end of each window, after the full 3.5 s have passed, the 

neural features from that window are passed to the decoding process illustrated 
in Fig. 1a. Following a latency to conduct the decoding, the most likely beam 
from the process in Fig. 1a is displayed on the participant monitor. This process 
continues to occur for sequential 3.5 s windows until a window with no detected 
speech occurs. After such a window, the decoding is finalized and terminated. 
The system then listens for another speech attempt to activate and repeat the 
process.

http://www.nature.com/natbiomedeng
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Extended Data Fig. 2 | Graphical depiction of bilingual-word classification. 
Shown is a schematic of the bilingual-word classification process. Neural features 
(256 total; 128 HGA and 128 LFS time series over 3.5 s) are classified as a word 
in the bilingual vocabulary. Neural features are first processed by a temporal 
convolution. Next, the features are passed through three bidirectional GRU 
layers. The latent state from these layers is then read out by a dense, linear 
layer that emits probabilities over the 104 words in the bilingual vocabulary. 

This process is performed by 10 distinct models, each with a different weight 
initialization and trained on different folds of the data. The probabilities 
generated across these 10 models are averaged to create one probability vector 
across the bilingual vocabulary. This vector is finally split by language and the 
probability for a given word is broadcast to all conjugated forms of the word 
before being combined with the language model, as shown in Fig. 1a.

http://www.nature.com/natbiomedeng
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Extended Data Fig. 3 | Neural-only chance sentence-decoding performance. 
Shown are neural-only specific chance sentence-decoding distributions, 
alongside the neural-only decoding performance shown in Fig. 1. Here, we 
specifically computed a chance distribution with respect to neural-only 
decoding. We did this by shuffling the neural features and passing them through 
the classifier. The chance error rate was then computed the same way as for 

neural-only performance (**** P < 0.0001; two-sided Mann-Whitney U-test with 
3-way Holm-Bonferroni correction for multiple comparisons). Distributions 
are over 21 online phrase-decoding blocks. Box plots in all panels depict 
median (horizontal line inside box), 25th and 75th percentiles (box), 25th and 
75th percentiles +/- 1.5 times the interquartile range (whiskers), and outliers 
(diamonds).

http://www.nature.com/natbiomedeng
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Extended Data Fig. 4 | Performance of attempted speech model on silent 
reading and listening. For a subset of 10 bilingual words, we collected neural 
features during attempted speech, passive listening, and silent reading (roughly 
250 trials in each paradigm). A model was trained on attempted speech data, 
using the same procedure throughout the manuscript, and evaluated on neural 
features from held-out attempted speech, passive listening, and silent reading 
trials. Performance was not significantly different from chance when evaluating 
the attempted speech model on listening or silent reading, in contrast to 

evaluation on attempted speech. This provides evidence that attempted speech 
neural features are specific to motor production of speech and not reflecting 
a process that strongly underlies listening or silent reading. Results are from 
10-fold cross validation within each paradigm. Dashed line indicates chance 
performance (10%). Box plots in all panels depict median (horizontal line inside 
box), 25th and 75th percentiles (box), 25th and 75th percentiles +/- 1.5 times the 
interquartile range (whiskers), and outliers (diamonds).

http://www.nature.com/natbiomedeng
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Extended Data Fig. 5 | Classification accuracy over the full 104 
bilingual-words. a, Shown is unmasked classification accuracy over the full  
104 bilingual-words. The classifier retained stable performance without 
retraining (weights frozen at black dotted line) as in Fig. 2b. b, Classification 
performance before and after a 30-day break in recording without retraining 
(P = 0.31, two- sided Mann-Whitney U-test). Distributions are over 5 days.  

c, 10-fold cross validation (CV) accuracy over the unmasked 104 bilingual-words 
using all collected data. Median CV accuracy 47.24% (99% CI: [45.83,48.23] %). 
Distributions are over 10 non-overlapping folds. Box plots in all panels depict 
median (horizontal line inside box), 25th and 75th percentiles (box), 25th and 
75th percentiles +/- 1.5 times the interquartile range (whiskers), and outliers 
(diamonds).

http://www.nature.com/natbiomedeng
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Extended Data Fig. 6 | Acoustic similarity of words within the English and 
Spanish bilingual words. For each word in the English vocabulary we calculated 
the mean pairwise mel-cepstral distortion (MCD) to all other English words. 
We repeated the same procedure for Spanish. Distributions are over 51 English 
and 50 Spanish words (shared words were excluded). English words have a 
significantly lower mean pairwise MCD (**** P < 0.0001, two-sided Mann-Whitney 

U-test). This indicates that English words, on average, are more acoustically 
confusable with other English words than Spanish words are with other Spanish 
words. Box plots in all panels depict median (horizontal line inside box), 25th and 
75th percentiles (box), 25th and 75th percentiles +/- 1.5 times the interquartile 
range (whiskers), and outliers (diamonds).

http://www.nature.com/natbiomedeng
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Extended Data Fig. 7 | Effects of re-training models daily during frozen-
decoder evaluation. Shown is a comparison between performance with and 
without re-calibration. (a) Shown is the performance without re-calibration 
for reference taken from (Fig. 2b). (b) Shown is the performance with re-
training the classifier with sequential addition of each day’s data. (c) Shown 
are distributions of accuracy with and without re-training, demonstrating that 

small improvements may be found with re-training the decoders with each day’s 
data. Distributions are over 9 days in each boxplot (starting after the first-day 
when retraining is possible). Chance is 1.85% for English, 1.89% for Spanish, and 
1.87% for all words (masked). Box plots in all panels depict median (horizontal 
line inside box), 25th and 75th percentiles (box), 25th and 75th percentiles +/- 1.5 
times the interquartile range (whiskers), and outliers (diamonds).

http://www.nature.com/natbiomedeng


Nature Biomedical Engineering

Article https://doi.org/10.1038/s41551-024-01207-5

Extended Data Fig. 8 | Distinct contributions of HGA and LFS to classifier performance. Shown are plots of electrode contributions for HGA against LFS, separately for 
English (left) and Spanish (right) trained models (as in Fig. 2d,e). The dotted lines indicate the 90th percentile of HGA and LFS contributions. The majority of electrodes 
only fall above the 90th percentile for one of HGA or LFS.

http://www.nature.com/natbiomedeng
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Extended Data Fig. 9 | Full confusion matrix over all bilingual-words. Full confusion matrix over the 104 bilingual-words. The sum of each row was normalized to 1, 
making confusion a proportion from (0-1). Predictions were generated using 10-fold cross validation over the full 104 bilingual-words with no masking (as in Extended 
Data Fig. 5).

http://www.nature.com/natbiomedeng
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Extended Data Fig. 10 | Acoustic coverage of large-bilingual-phrase set.  
We quantified the distribution of phonemes and phoneme place of articulation 
features to ensure the large-bilingual-phrase set covered a broad space in each 
language. We designed the large-bilingual-phrase set to sample a broad range of 

English (a) and Spanish (b) phonemes. We ensured that the relative proportion 
of phoneme place of articulation features was similar between English (c) and 
Spanish (d).

http://www.nature.com/natbiomedeng
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection We used the NeuroPort Central Suite software package (version 7.0.4; Blackrock Microsystems) to control the Neuroport system to collect 
data from the implanted ECoG device. The resulting signals across electrodes were further processed on the real-time computer, using a 
custom Python software package (rtNSR) that is capable of processing and analysing the ECoG signals, executing the real-time tasks, 
performing real-time decoding, and storing the data and task metadata. Custom code can be found at https://github.com/asilvaalex4/
bilingual_speech_bci

Data analysis We used common scientific computing packages in Python including NumPy, scikit-learn, pandas, seaborn and matplotlib during modelling 
and data analysis. The code required to replicate the main findings of the study is available from https://github.com/asilvaalex4/
bilingual_speech_bci

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The data needed to recreate the main figures are provided as source data, and are also available at https://github.com/asilvaalex4/bilingual_speech_bci. The raw 
patient data are accessible to researchers from other institutions, but public sharing is restricted, as per our clinical trial protocol. Full access to the data will be 
granted on reasonable request to Edward Chang at edward.chang@ucsf.edu, and a response can be expected in under three weeks. Shared data must be kept 
confidential and not provided to others unless approval is obtained. Shared data will not contain any information that may identify the participant, to protect their 
anonymity.

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender The participant is male (he/him pronouns).

Reporting on race, ethnicity, or 
other socially relevant 
groupings

We did not examine the effect of these variables, because of our sample size of 1.

Population characteristics The participant, a brainstem-stroke survivor, was 36 years of age at the start of the study.

Recruitment Participants were recruited according to the approved clinical-trial protocol (ClinicalTrials.gov; NCT03698149). We include 
the following more detailed statement below (from our previous publication with the participant; Metzger et al. 2022, Nature 
Communications). 
 
"Participants with motor impairments secondary to neurological disorders were recruited from clinics specializing in the 
treatment of stroke, ALS, and general neurological disorders, at UCSF and the San Francisco VA Medical Center. 
 
Prior to enrollment into the study, an informal phone interview to schedule an office-based evaluation takes place, followed 
by three outpatient screening visits. During the first outpatient visit, we describe the trial in detail and answer all questions. 
Should the participant choose to continue, we schedule another visit to conduct a physical exam and to perform screening to 
determine eligibility. An MRI and CT of the brain is obtained for future surgical planning and to determine further eligibility. 
Additionally, an ECG and chest X-ray are also obtained. We schedule a third follow-up visit to review this data and answer 
remaining questions prior to enrollment in the trial. 
 
To meet the eligibility criteria for enrollment in our trial, participants must fit specific clinical characteristics (see attached 
clinical protocol for full eligibility criteria). Therefore, we do not expect any noteworthy self-selection bias in this study or 
other studies that are part of this clinical trial, as participants who volunteer to participate will not differ from non-volunteers 
in any relevant clinical characteristics."

Ethics oversight The study protocol was approved by the FDA, UCSF IRB, and the NIH.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences
For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size The sample sizes for the tests were primarily determined by the number of recording sessions possible with the current participant and the 
overall available data. We primarily estimated the number of task trials that would be required to reasonably estimate the measurements of 
interest along with performing statistical analyses. 

Data exclusions During the phrase-decoding task, the participant was instructed to continue attempting each word in the phrase regardless of decoding 
accuracy. However, on a small subset of trials, the participant self-reported making an error or not being able to continue the attempt (n=7 
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out of 168 total trials). Similar to our prior work with this participant (Metzger et al. 2022), we excluded these trials from subsequent analysis 
to focus on the performance of our system rather than the performance of the participant.

Replication We collected real-time decoding results over many blocks as well as performing cross-fold-validated decoding offline. These steps ensure that 
our results can be replicated over multiple sessions, days, and portions of data with the participant. However, true replication would require 
deploying a similar bilingual decoding system in another participant, which we aim to do in future.

Randomization This was a single-participant study.

Blinding Blinding was not applicable given the goal of designing a proof-of-concept bilingual decoding system for the participant

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study
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Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration ClinicalTrials.gov; NCT03698149

Study protocol A description of the study can be found at https://clinicaltrials.gov/ct2/show/NCT03698149. The full clinical-trial protocol can be 
found as a supplementary file associated with our previous publication with the same participant (https://www.nejm.org/doi/
suppl/10.1056/NEJMoa2027540/suppl_file/nejmoa2027540_protocol.pdf). 

Data collection Data collection occurred in a small office nearby the participant's residence. The clinical trial began in November 2018. The 
participant was recruited and enrolled in the study shortly afterwards, and was implanted with the study device in February 2019 at 
the UCSF Medical Center. Data for this specific study were collected during the year 2022 and in early 2023. 

Outcomes The outcomes are the same as our prior work with the participant (Metzger et al, 2022). 
 
"This clinical trial is a phase 1 single-center early feasibility study to evaluate the potential of ECOG-based neural interfaces for 
controlling advanced neuroprotheses that restore motor and communicative functions. Due to the exploratory nature of this trial 
and the limited number of trial participants, we did not pre-define specific secondary outcomes. Our primary endpoint, which was 
pre-defined, is to assess the efficacy of the trial and is stated in the protocol as "Feasibility of control of a wearable exoskeleton 
device and communication interface." As such, a variety of analysis methods will be applied with trial participants throughout the 
trial with the aim to fully assess the efficacy of an ECOG-based neural Interface for motor and communication restoration. The data 
herein presented is not aimed at informing concrete conclusions regarding the primary outcomes of the trial."
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