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A B S T R A C T   

Through condition-based maintenance strategy, engineers can monitor the health states of equipment and take 
actions based on the sensor data. Limited by the low failure frequency and high monitoring costs, it is difficult to 
obtain sufficient historical data of all fault types for condition monitoring (CM). In the steam turbine operation, 
environmental factors, varying power consumption and manual adjustments can lead to a multimode process, 
which consists of multiple normal and abnormal conditions. This paper proposes a framework for online un
supervised CM and anomaly detection, not relying on expert knowledge or labeled historical data. Since there are 
often few monitoring data at the beginning of a new incoming operating mode, an adaptive self-transfer learning 
algorithm based on Gaussian processes is developed to model the monitoring data with uncertainty information, 
and to capture the cross-correlations between the different normal modes. A two-hierarchical identification 
criterion based on the predicted posterior intervals is introduced to first identify the change-points in the ob
servations, and second to decide whether it is an anomaly or a transition between normal modes. The proposed 
framework is tested on a real steam turbine. The results illustrate its high effectiveness.   

1. Introduction 

Thermal power plants offer the primary source of electricity supply 
in the world. The occurrence of unexpected faults may cause the shut
down of power plants, resulting in economic loss and safety issues. As 
crucial equipment in power plants, steam turbine operation and main
tenance have an important impact on power generation reliability, ef
ficiency, and stability. Recently, condition monitoring (CM) has become 
essential to identify potential faults and reduce maintenance costs of 
much equipment [1–5]. 

A steam turbine is a system that converts the heat energy of hot 
steam into rotational mechanical energy [6,7]. The monitoring system 
integrates sensing devices in what is usually called the turbine super
visory instrumentation (TSI) system, as shown in Fig. 1. As the steam 
turbine operation is a multivariate dynamic process, various compo
nents are monitored and multiple parameters or variables are collected 
by the TSI, such as environmental parameters, vibration signals, tem
peratures, and control variables. The TSI data provide a cost-effective 

approach for the CM of steam turbines, without the need to introduce 
additional sensors. A successful CM should timely detect the turbine 
faults, based on the data collected by the TSI system. 

However, a low sampling rate of the monitoring data impedes the use 
of many common signal processing techniques, such as spectral analysis 
[8]. Igor et al. [9] developed a machine-learning-based framework for 
detecting and classifying several fault types in a power-generation sys
tem. Since steam turbine faults occur randomly and the type of faults is 
diverse, it is difficult and expensive to collect sufficient historical fault 
data, and representative for all types of faults [10,11]. Therefore, it is 
necessary to develop anomaly detection techniques that do not rely on 
historical labeled data [12,13]. 

Generally, equipment anomalies produce patterns in data that 
deviate from well-defined normal conditions [14]. Anomaly detection is 
then the task of distinguishing abnormal and normal condition at the 
early stage [15–17]. It is also less reliant on labeled data and expert 
knowledge. A supervised model which needed sufficient normal or 
abnormal condition data tends to be impractical, as some abnormal data 
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are very rare. Generally, it is difficult to collect enough amount of 
abnormal data with limited cost and technical resources. Additionally, 
some abnormal conditions are unavailable before they occur [18]. A 
better anomaly detection method should develop a model that repre
sents the normal operating conditions and detect the anomalies online 
once the system’s condition significantly deviates from the normal 
prediction. Obviously, such unsupervised methods can perform anomaly 
detection in unlabeled data [19]. Therefore, the unsupervised anomaly 
detection method which is more suitable for online applications with 
only normal data will be studied in the following. Recently, many papers 
developed unsupervised anomaly detection methods based on residual 
analysis [20–23]. Due to the stochastic environmental disturbances, 
inevitably there are uncertainties in the practical monitoring process, 
monitoring data and the estimated residuals [24,25]. If these un
certainties are not quickly investigated, the accuracy of anomaly 
detection will be reduced significantly. Compared with many 
residual-analysis-based methods that provide deterministic estimation 
in the control variables without considering these uncertainties, a 
probabilistic method quantifies these uncertainties and develops the 
anomaly detection criterion based on the estimated intervals serves as a 
more accurate monitoring approach, which tends to identify the faults 
timely [26]. 

On the other hand, there are autocorrelations or temporal de
pendency in the monitoring data [27]. A large number of machine 
learning algorithms and signal processing techniques [28–30] have been 
proposed to account for this data autocorrelation for industrial equip
ment condition monitoring. Gaussian process (GP) has been used to 
develop anomaly detection methods for wind farm [31] and power plant 
[10] condition monitoring. Deep learning networks, such as deep 
auto-encoder networks, have been developed in [32–34] for the anom
aly detection of wind turbines and steam turbines. Zhang et al. [35] 
proposed an anomaly detection and diagnosis method for wind turbines 
using long short-term memory-based stacked denoising autoencoders 
and extreme gradient boosting. Zhang et al. [36] developed an unsu
pervised, end-to-end approach to fault detection based on a flow-based 
model without the labels of faulty samples. A successful anomaly 
detection method depends on the accurate modeling of the normal 
operating conditions. For this, it is necessary to consider the associated 
uncertainties and autocorrelations in the monitoring data. 

In the operating process of a steam turbine, there are usually multiple 
normal operating modes, due to electric grid fluctuations and manual 
adjustments [37]. The data characteristics of different modes are 
different. If one specific model is applied to different modes, it can result 
in unexpected false alarms and missing alarms. As most existing 
methods assume the monitoring data are generated from a single normal 
operating mode and the anomaly deviates only from this mode, they 
have been found to be not well-suited in practice [38]. To monitor the 
operating process and detect anomalies accurately, multimode process 
monitoring models have been constructed [38,39]. Peng et al. [40] 
proposed a multiple partial least square-based method to address the 
muti-mode problem in hot strip mill process with the Gaussian mixture 
model and achieve the quality prediction and monitoring goals. Quatrini 
et al. [41] developed a two-step method for anomaly detection in in
dustrial processes with multiple phases based on machine learning 
classification algorithms. 

Most of these methods are supervised learning methods, i.e., based 
on labeled data, where the number of normal modes is known and the 
training data are labeled for each mode. Since the operating modes are 
not fixed and the labeled data for each mode are difficult to collect, an 
unsupervised anomaly detection framework for the multimode process 
monitoring is more realistic. Moreover, for a running steam turbine, the 
historical normal data of each mode from identical system may be 
insufficient. Especially when a new normal mode comes, there is no any 
information. This makes it difficult to accurately implement mode 
identification and anomaly detection. Considering that cross- 
correlations and common attributes (invariant system structure and 
robust material performance) can exist in different modes due to the 
inherent attributes of steam turbines, the transfer learning which focuses 
on transferring the knowledge across domains [42,43] is employed. 
Then, the data from the past normal modes can be transferred to con
structed the monitoring models for new modes. Therefore, the problem 
of data shortage can be solved effectively. 

This study proposes an adaptive unsupervised anomaly detection 
framework for steam turbine condition monitoring. The main contri
butions are:  

1) For the multimode operation processes of steam turbines, a transfer 
learning framework based on multiple GPs is developed to auto
matically transfer knowledge across modes, which solve the problem 
of data shortage at the beginning stage of each new mode. Different 
from the transfer learning with shared parameters, we learn a 
transfer kernel that can be a similarity measure to describe the cross- 
correlation of different modes more flexibly.  

2) To achieve the goal of adaptive transfer, an adaptive self-transfer 
learning algorithm is developed to inferring multiple GPs, which 
not only yields deterministic predictions but also capture un
certainties and the nonlinear data autocorrelations. As the past mode 
is used as priori, the computational complexity for the GP of a new 
mode becomes lower.  

3) To avoid false alarm and simultaneously detect anomaly and normal 
mode transition, a two-hierarchical identification criterion based on 
the predicted posterior intervals is proposed. It makes the proposed 
framework capable of an automatic online detection activity to 
timely identify different normal modes and anomalies.  

4) An online unsupervised anomaly detection framework for the 
multimode process monitoring of steam turbine is built without 
labeled data and abnormal data, where a joint algorithm of data 
standardization and early stopping is developed to improve the ef
ficiency. More reliable monitoring results are obtained and the po
tential faults are detected early. 

The paper is arranged as follows. Section 2 provides a description of 
anomaly detection and stream turbine operating data. Section 3 in
troduces the adaptive transfer learning method. Section 4 proposes an 
online CM framework. Section 5 presents a real case study of steam 
turbine. Conclusions are drawn in Section 6. 

2. Problem description 

The TSI data includes various kinds of monitoring variables or 

Fig. 1. The turbine supervisory instrumentation (TSI) system for steam turbine condition monitoring.  
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parameters. Considering the practical fault types and engineering 
experience, we only select the temperature signals here to conduct the 
anomaly detection in this study. Temperatures are significant and easily 
measured by TSI. They are also indicators of the health states of many 
steam turbine components, such as bearings, bushes and rotors. An 
unexpected rise in component temperatures can indicate poor lubrica
tion, abrasion, overload, or cracking [44]. Bae et al. [45] proposed a CM 
scheme applying energy spectrums such as a wavelet analysis to only 
temperature signals for early abnormality detection of a steam turbine 
generator. In the power plants, when the incoming monitored temper
atures are outside the confidence interval predicted as normal by the 
monitoring model, it would be probably construed as an early sign of a 
potential fault [10,46]. Then an anomaly is flagged. 

In different seasons and weather, or even during the day and night, 
the power consumption can vary over wide ranges. Including the 
manual adjustments for mitigating the deterioration of equipment, the 
operating modes of steam turbines change to adapt to the different sit
uations. Fig. 2 shows the active power profile of a steam turbine 
generator in a thermal power plant for 7 months. The rated power is 610 
MW. Fig. 3 displays the metal temperatures of the #1 bearing bushes for 
7 months. Obviously, there exists multiple different modes in the steam 
turbine operation. At the beginning, the steam turbine got its annual 
overhaul. Hence, both the active power and the temperature signal were 
close to their normal values in the complete health state. Then, due to 
the manual adjustment and system degradation, the active power 
declined and the temperature signal increased, which indicated that the 
steam turbine turned into degradation states. In the 5th month, the oil 
pressure gauge of TSI raised an alarm as shown in Fig. 4 and the steam 

turbine was going to fail. Meanwhile, the active power dropped sharply 
and the temperature signal rose rapidly. Then, the steam turbine was 
shut down and repaired, when the active power dipped to zero and the 
temperature signal reduced to the ambient temperature. Finally, the 
steam turbine was back to the normal state after repairs and the moni
toring signals were also in the normal levels. 

Due to various influencing factors, the practical monitoring process 
inevitably exhibits multiple operating modes and stochastic properties. 
Fig. 5 shows the correlation analysis results of the temperature signals. 
In order to make the figures more clearly, the observations from the 
1000th hours to the 3000 h are selected, when different operating modes 
are included. It can be seen that not only the temporal correlation among 
observations, but also the cross-correlation between different operating 
modes significantly exists. Therefore, it is necessary to consider these 
relationships in the modeling of CM. 

GP is then used to construct the monitoring models for characterizing 
uncertainty and complicated correlations. To accurately describe the 
data of different modes, multiple GPs are built for each mode. Since 
there are few data monitored at the beginning stage of a new operating 
mode, an adaptive self-transfer learning framework for unsupervised 
anomaly detection based on multiple GPs is proposed to transferring the 
common attributes across modes, without relying on abnormal data or 
labeled data. Considering that there are no labeled data for each oper
ating mode, a two-hierarchical identification criterion is developed to 
first identify the change-points and secondly detect the anomaly auto
matically. Based on the proposed methods, the abnormal conditions of 
steam turbines are expected to be detected timely so that the mainte
nance actions can be taken more quickly and efficiently. 

Fig. 2. Active power of a steam turbine generator during 7 months.  

Fig. 3. Metal temperature of the #1 bearing bushes of a steam turbine gener
ator during 7 months. 

Fig. 4. The alarm raised by the oil pressure gauge of TSI.  

Fig. 5. Autocorrelation and partial autocorrelation in partial temperature data.  
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3. Adaptive self-transfer learning 

3.1. Gaussian processes 

A GP describes a continuous sequence of random variables, any finite 
number of which follow a multivariate Gaussian distribution. Generally, 
a GP f(x) can be characterized by a mean function m(x) and a positive 
semi-definite covariance matrix K(x,x), i.e., 

f (x) ∼ G P (m(x),K(x, x)), (1)  

where x = [x1, x2,⋯, xn]
T is the input observation, y = f(x) is the target 

output observation of GP, m(x) = E[y] and the (i, j)-th element of K(x, x)
is k(xi, xj). k(⋅) is the covariance function usually defined in terms of a 
kernel function, and can be regarded as a similarity measure between 
the inputs. 

Let θ denote the vector of hyper-parameters of GP. Then, the log- 
likelihood function can be expressed as 

ℓ(θ) = −
n
2

ln(2π) − 1
2

ln|K| −
1
2
(y − m(x))TK− 1(y − m(x)). (2) 

The parameter θ can be estimated by maximizing (Eq. (2)). 
The GP regression model is a Bayesian model and widely applied in 

regression analysis, with prior p(y|x) = N (m(x),K(x, x)). According to 
the definition of a GP, when a new input x∗ is available, y = f(x) and y∗ =

f(x∗)are jointly Gaussian. Therefore, the conditional distribution p(y∗|y)
is calculated in closed form with the Gaussian identities, i.e., 

p(y∗|y) = N (μ,Σ), (3)  

where μ = m(x∗)+ K(x∗,x)K(x, x)− 1
(y − m(x)), 

Σ = k(x∗, x∗) − K(x∗, x)K(x, x)− 1K(x, x∗),

K(x∗, x) = K(x, x∗)T
= [k(x∗, x1),⋯, k(x∗, xn)].

As the focus is on the predictive result for the unknown output y∗, the 
posterior distribution p(y∗|y) conditional on y can be calculated using 
Eq. (3). Note that Eq. (3) provides a flexible prediction for y∗, which can 
not only determine the point estimate with the distribution’s mean, but 
also quantify the prediction uncertainty with its variance. 

3.2. Dynamic time warping 

Dynamic time warping (DTW) is a distance measure of similarity 
obtained by searching the optimal alignment between two time- 
dependent sequences. Using DTW, we can map one data point in a 
sequence to more than one data point in the other sequence, and thus, 
the distance between two time-sequences with different lengths can be 
calculated. If there is an anomaly in the operation process, the dissim
ilarity analysis by DTW between the online monitoring data sequence 
(varying length) and the historical sequences (fixed length) can be used 
for the detection of operating mode change. 

Given a historical time series v = [v1,⋯, vs]
T and an online moni

toring data w = [w1,⋯,wn]
T, the similarity between v and w is measured 

by the DTW distance. First, a distance matrix is constructed, in which the 
(i, j)-th element denotes an alignment between two points vi and wj. 
Generally, the Euclidean distance is used as the alignment. Then, a 
warping path is defined as a cumulative distance of a sequence of ele
ments from (1, 1) to (l, n), which should meet three constraints including 
boundary, monotonicity, and continuity. To optimize the best warping 
path and the minimum distance, a cost matrix is built based on dynamic 
programming, i.e., 

D(i, j) = di,j + min

⎧
⎨

⎩

D(i, j − 1)
D(i − 1, j)
D(i − 1, j − 1)

, (4)  

where i = 1,⋯,s, j = 1,⋯,n. Finally, the minimum distance D(l, n) is the 
DTW distance, i.e., DTW(v,w) = D(s,n). 

To account for the varying warping paths, the DTW distance is 
normalized by l∗DTW, the number of aligned pairs on the optimal warping 
path, to represent the dissimilarity of two data sequences as follows 

dsim(v,w) = DTW(v,w)
/

l∗DTW . (5) 

A lower dsim(⋅) indicates a higher similarity of v and w. 

3.3. The proposed adaptive self-transfer learning method 

At the initial stage of CM, a GP model (GP-1) is constructed to cap
ture the current normal operating mode (called Mode-1), and the model 
parameters are updated as more monitoring data are collected. When 
some external factors or artificial adjustments occur, the steam turbine 
switches to a new normal operating mode (called Mode-2). At this time, 
a new GP model (GP-2) should be established for Mode-2. However, at 
the beginning of Mode-2, there are only a few monitoring data for 
parameter estimation, and it is difficult for the determined GP model to 
accurately capture the operating characteristics of Mode-2. Then, the 
monitoring efficiency and detection accuracy would decline signifi
cantly. To solve this problem, transfer learning is introduced. 

Although the transfer learning has been combined with some neural 
networks and used in the anomaly detection of industrial equipment 
[47], the limited monitoring data with fault information were usual 
necessary and the uncertainties of operating processes were not 
modelled. Considering that there is often no abnormal data and the 
uncertainty quantification can improve the CM effectiveness, we pro
pose a transfer learning based on GPs to solve these problems. Some 
previous works have used GP or sparse GP for transfer learning [48–51], 
all of which focused on transferring knowledge from source domains to 
target tasks for offline applications. Therefore, we develop an adaptive 
self-transfer learning algorithm based on Gaussian process models 
(ASTL-GP) for multimode process condition monitoring, which can 
adapt the online monitoring data in mode transfer automatically. 

Using transfer learning, we can transfer knowledge from Mode-1 to 
Mode-2, especially at the beginning of Mode-2. Then, a more accurate 
GP-2 can be obtained with limited data by leveraging cross-correlations 
between the observations of different modes. There are two re
quirements that the expected transfer learning algorithm should meet. 
One is the shared knowledge between modes should be transferred as 
much as possible when these two modes are similar. The other is that 
negative transfer should be avoided as much as possible, if the two 
modes are unrelated. Obviously, a mechanism that can automatically 
adjust the transfer schemes would be preferred. 

Denote v1,1,⋯, v1,s and v2,1,⋯, v2,n as the observations of Mode-1 
collected at time t1,1,⋯, t1,s and the observations of Mode-2 collected 
at time t2,1, ⋯, t2,n, respectively. Suppose the input of GP-1 at t1,s is a 
vector of lagged observations x1,s = [v1,s− 1,⋯, v1,s− L]

T, where L is the 
number of lags to incorporate. The target output corresponding to x1,s is 
y1,s = v1,s. The input and the output for GP-2 at t2,n are x2,n =

[v2,n− 1,⋯, v2,n− L]
T and y2,n = v2,n, respectively. Note that the temporal 

dependency is considered and the past L observations are used to predict 
the next observation. 

Let y = (yT
1 , yT

2 )
Tand define a GP over y, i.e., 

y ∼ G P (m(x), K̃), (6)  

where x = [xT
1 , xT

2 ]
T,x1 = [x1,1,⋯, x1,s]

T,y1 = [y1,1,⋯, y1,s]
T, x2 =

[x2,1,⋯, x2,n]
T,y2 = [y2,1,⋯, y2,n]

T,K̃ is the kernel covariance matrix for 
transfer learning, and the (i, j)-th element of K̃ is defined as 

k̃
(
xρ,i, xτ,j

)
= λijk

(
xρ,i, xτ,j

)
, (7)  
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where ρ, τ ∈ {1,2}and the additional factor λij is assumed to be 

λij =
1

1 + ς
(
xρ,i, xτ,j

)
× dsim(y1, y2)

,

with ς(xρ,i, xτ,j) = 0 if ρ = τ, otherwise ς(xρ,i,xτ,j) = 1. 
Note that Eq. (7) indicates that λ is expected to be 1 for highly 

correlated Mode-1 and Mode-2, and the cross-correlation between ob
servations from the different modes equals to the correlation between 
the ones in the same mode. For nearly uncorrelated Mode-1 and Mode-2, 
λ is expected to be 0, and k̃(xρ,i,xτ,j)→0. These behaviors are consistent 
with the two requirements proposed above for transfer learning and, 
thus, make the assumptions in Eq. (7) more flexible and convincing. 

Using CM, we often want to predict the next target output y2,n+1 at 
time t2,n by calculating p(y2,n+1|y). The corresponding inference is the 
same as that in Eq. (3). Let θ1 and θ2 be the hyperparameter vectors of 
GP-1 and GP-2, respectively. The mean and covariance of (y2,n+1|y) is 
given by 

μ2,n+1 = m
(
x2,n+1

)
+ K̃

(
x2,n+1, x

)
K̃(x, x)− 1

(y − m(x)), (8)  

Σ2,n+1 = k
(
x2,n+1, x2,n+1

)
− K̃

(
x2,n+1, x

)
K̃(x, x)− 1K̃

(
x, x2,n+1

)
, (9)  

where K̃(x,x)=
[

K̃11 K̃12
K̃21 K̃22

]

, K̃11 = K(x1,x1),K̃22 = K(x2,x2),K̃(x2,n+1,x)

= K̃(x, x2,n+1)
T, 

K̃
(
x2,n+1, x

)
=
[
k̃
(
x2,n+1, x1,1

)
,⋯, k̃

(
x2,n+1, x1,s

)
, k

(
x2,n+1, x2,1

)
,⋯, k

(
x2,n+1, x2,n

)]
, K̃12 = K̃21 and  

K̃12(x1, x2) =

⎡

⎣
k̃
(
x1,1, x2,1

)
⋯ k̃

(
x1,1, x2,n

)

⋮ ⋱ ⋮
k̃
(
x1,l, x2,1

)
⋯ k̃

(
x1,l, x2,n

)

⎤

⎦

l×n

.

Furthermore, μ2,n+1 can be decomposed as follows: 

μ2,n+1 = m
(
x2,n+1

)
+
∑s

i=1
λαik

(
x2,n+1, x1,i

)
+
∑n

j=1
αj+lk

(
x2,n+1, x2,j

)
, (10)  

where αi is the ith element of K̃(x, x)− 1
(y − m(x)). The second term in 

(10) represents the cross-correlations between the observations from 
different modes where a shrinkage is introduced based on the similarity 
of modes. When more monitoring data of Mode-2 are available, the 
similarity between two modes and the additional factor λ keep updating. 
Thereby, the transfer is also automatically adjusted. 

Since GP-1 and its parameter θ1 are prior information in transfer 
learning which can be determined by using the method in Section 3.1, 
only the parameter θ2 of GP-2 need to be estimated here. Considering 
that the data size of y2 from Mode-2 may be small, we proposed to es
timate θ2 based on the conditional distribution p(y2|y1). According to 
(6), we know that this distribution is also a Gaussian, i.e., 

p(y2|y1) = N (μ2,Σ2), (11)  

where the mean μ2 = m(x2,n) + K̃(x2, x1)K(x1, x1)
− 1
(y1 − m(x1)) and the 

covariance matrix 
Σ2 = K(x2,x2) − K̃(x2,x1)K(x1, x1)

− 1K̃(x1,x2). 
The log-likelihood function is expressed by 

ℓ(θ2) = −
n
2

ln(2π) − 1
2

ln|Σ2| −
1
2
(y2 − μ2)

T Σ− 1
2 (y2 − μ2). (12) 

The parameter θ2 can be estimated by maximizing (Eq. (12)). 
The proposed ASTL-GP shown in Fig. 6 combines the data from 

multiple normal modes, and captures both autocorrelations between 
different observations as well as the cross-correlations between different 
modes. This allows GP-2 to be more flexible and credible at the early 
stage of Mode-2, if strong cross-correlations between these two modes 

exist. 

4. The online multimode process monitoring and anomaly 
detection framework 

4.1. Data preprocessing 

Due to the external interferences and the instability of sensors, the 
monitoring data from TSI are usually nonstationary and noisy. Some 
abrupt spikes or missing data occur. Therefore, to avoid false alarms and 
ensure continuous CM, smoothness and data interpolation can be used 
for the preprocessing of the raw data. Generally, exponential smoothing, 
singular spectrum analysis, spline-based non-parametric regression 
technique, or deep learning methods can be selected for data smoothing. 
Mean imputation, regression imputation and machine learning-based 
imputation are commonly used data completion methods. 

Considering the requirements of real-time monitoring, only the 
simpler methods, such as exponential smoothing spline-based regression 
and mean imputation, are used for data preprocessing in this paper, 
which can be conducted efficiently and conveniently online. After pre
treatment of raw observation data, the obtained smooth data sequences 
are input into the online process monitoring and anomaly detection. 

4.2. Two-hierarchical identification criterion 

The key part of monitoring a multimode process without labeled 
historical data is how to distinguish different operating modes in an 
unsupervised framework. That is, we should develop criteria which can 
simultaneously identify different normal operating conditions (ex
pected) and detect abnormal conditions (unexpected). When a normal 
mode turns to another normal mode or to the abnormal mode, there 
exist change points in the monitoring data in both cases. The occurrence 
of change points can represent both normal mode transition and 
anomaly. Therefore, we develop a two-hierarchical identification cri
terion, where the change point is first identified, and then a decision 
whether it is an anomaly or a normal mode transition is made 
automatically. 

Suppose the system is currently in the r-th normal operation mode 
and the input observations up to time tr,n is denoted by xr =

[xr,1,⋯, xr,n]
T. Then, according to (3), (8) and (9), the predictive pos

terior of the target output yr,n+1 at time tr,n+1 is Gaussian-distributed, i.e., 

p
(
yr,n+1|yr− 1, yr

)
= N

(
μr,n+1,Σr,n+1

)
. (13) 

When r = 1, the predictive posterior is p(yr,n+1|yr). Given a confidence 
level 1 – α, the posterior interval estimates of yr,n+1 are [μr,n+1 − zα/2σr,n+1,

μr,n+1 + zα/2σr,n+1], where zα/2 is the quantile of standard normal 

Fig. 6. The ASTL-GP framework for multimode process monitoring.  
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distribution and σ2
r,n+1 = Σr,n+1. 

Then, a condition index (CI) is constructed based on the posterior 
intervals: 

hr,n+1 = max

[
yr,n+1 − PIU

r,n+1

PIU
r,n+1 − PIL

r,n+1
,

PIL
r,n+1 − yr,n+1

PIU
r,n+1 − PIL

r,n+1

]

, (14)  

where PIU
r,n+1 = μr,n+1 + zα/2σr,n+1 and PIL

r,n+1 = μr,n+1 − zα/2σr,n+1. A 
positive hr,n+1 means the observation yr,n+1 is out of the intervals at time 
tr,n+1.. 

It is reasonable to identify yr,n+1 as a change point, if hr,n+1 is positive. 
Furthermore, we take two or more consecutive observations to deter
mine if there are change points. Multiple consecutive outliers can 
highlight the occurrence of a new mode which differs from the current 
mode. The specific criterion for identifying a change point in the 
multimode process is summarized below. 

Criterion-1: Given a significance level α, if γ0 consecutive observa
tions from time tr,n+1 to tr,n+γ0 satisfy hr,n+1 > 0, hr,n+2 > 0,⋯,hr,n+γ0 > 0, 
then yr,n+1 is flagged as a change point. 

Generally, CM is conducted every few minutes. Under this resolu
tion, false alarms can result in unexpected operation or maintenance 
decisions. To eliminate false alarms, only when γ consecutive observa
tions fall on the same side out of the confidence intervals, a new oper
ating mode (normal or abnormal conditions) is defined to occur. 

After a change point has been identified, we need to make the 
second-hierarchy criterion for distinguishing between the normal mode 
transition and anomaly. Generally, when the operating mode of the 
equipment is switched from a normal one to another normal one, the 
monitoring data of the new mode will be still in control after relatively 
short-term fluctuations. As the abnormality is usually an early sign of a 
potential fault, if the system enters abnormal conditions, the corre
sponding monitoring data are expected to fluctuate dramatically and be 
out of control continuously. Therefore, Criterion-2 for detecting the 
anomaly is given below. 

Criterion-2: For consecutive change points yr,n+1,⋯, yr,n+γ2 and the 
corresponding sequence of CIs, if there is an excessive number of hr,n+γ1 , 
…, hr,n+γ2 out of the given control interval, then an anomaly is identified. 
Otherwise, a normal mode transition occurs. 

The control limits of the given interval can be calculated based on the 
idea of control charts. During [tr,n+1, tr,n+γ1 ], the system is assumed to be 
in a short-term fluctuation. Hence, the judgement of Criterion-2 is made 
from tr,n+γ1 . 

4.3. The Online unsupervised monitoring framework 

Since the value ranges of the raw monitoring data are unfixed, it 
would be better if the data points were standardized as the inputs for the 
monitoring models. This can ensure the mean of the inputs is zero. 
Considering that there is no prior information (mean and variance) 
about the raw monitoring data, an online adaptive standardization 
method is necessary. In addition, as the length of the monitoring data 
increases over time, the computational burden will increase. To improve 
the operating efficiency of the proposed monitoring framework, an 
early-stopping rule for the training of ASTL-GP is designed. Then, the 
pseudo-code of a joint real-time data standardization and early-stopping 
procedure is presented in Algorithm 1: 

The updating of the mean and standard deviation is early stopped at 
time tL+ξ− 1. The number ξ of iterations is smaller than the duration of 
one normal operating mode. That is, the standardization of the obser
vations for one mode depends on the first ξ + L observations. In practice, 
if several consecutive μv

i+1 and σv
i are rather stable, the iteration can be 

early stopped and thus the value of ξ is determined. Combined with 
Algorithm 1, the pseudo-code of the online unsupervised monitoring and 
anomaly detection framework for the multimode process of steam tur
bine is summarized in Algorithm 2 as follows: 

To make the proposed framework more intuitive, its schematic is 
shown in Fig. 7. 

5. Case study 

This section presents the case study of a steam turbine in a 610-MW 
thermal power plant, which belongs to Shanghai Electric Group and is 
located in Iraq. Moreover, the proposed method is also suitable to other 
steam turbines of other companies or country. 

5.1. Condition monitoring and anomaly detection 

The TSI data has various kinds of monitoring variables. Considering 
that the bearings are key components with higher frequent faults in 
steam turbines, only the metal temperatures of Bearing #1 are selected 
here as described in Section 2. The dataset covers the period 15/01/ 
2021 to 15/04/2021. The observations were sampled every 10 min. As 
the steam turbine’s health states would change over time, the ambient 
temperature rises and the electricity consumption fluctuates, the oper
ating modes of the steam turbine can be different. 

Fig. 8 shows the raw data of the metal temperature. The actual alarm 
temperature in the plant is set to 107 ℃. From Fig. 8, we can see that the 
bearing is subject to multiple operating modes before failure alarm. 

Algorithm 1 
Real Time Data Standardization and Early Stopping.  

Input: Raw monitoring data v1, v2,⋯ for one operating mode, number L of lags, 
number ξ of iterations. 

Output: The standardized data and the estimates of the parameters θ*. 
1: Initialization: Set i = L and the observations v1 ,⋯, vi are z-score standardized. 

2: while (i − L+1) ≤ ξ do 
3: Calculate the mean μv

i and standard deviation σv
i of v1,⋯,vi. 

4: Standardize the observation vi+1 to ṽi+1 = (vi+1 − μv
i ) /σv

i . 
5: Update the mean μv

i+1 and standard deviation σv
i+1 of v1,⋯,vi, vi+1. 

6: Construct the input xi+1 = [vi,⋯, vi− L+1 ]
T and the output yi+1 = vi+1. Estimate 

the unknown parameters of GP or ASTL-GP. 
7: Set i = i + 1. 

8: end while 
9: The final mean and standard deviation of the observations are determined as μv

∗ =

μv
L+ξ− 1 and σv

∗ = σv
L+ξ− 1. The unknown parameters θ* of GP or ASTL-GP are 

estimated based on xL+1 ,⋯, xL+ξ and yL+1,⋯,yL+ξ. 
10: For all the observations after time tL+ξ− 1, do 
Implement the data standardization based on μv

∗and σv
∗as in Step 3; 

11: end for 
12: Predict the posteriors based on the trained model with θ*.  

Algorithm 2 
An Unsupervised Framework for Adaptive Multimode Process Monitoring and 
Anomaly Detection  

Input: The data sequence from the CM of a steam turbine, xr,1,⋯,xr,n. 
Output: The anomaly y∗. 
1: Initialization: Set r =1 and n =1. Construct a GP for mode-r. 
2: Preprocessing: Smooth and complete the raw monitoring data up to tr,n+1. 

Standardize the preprocessed monitoring data as in Algorithm 1. 
3: Modeling: Estimate the unknown parameters of GP-r, and calculate the predictive 

posterior at time tr,n+1 as in Eq. (13). 
4: Implement the early-stopping rule as in Algorithm 1. 
5: while the anomaly y∗is not identified, do 
6: if yr,n+1 is flagged as a change point according to Criterion-1 then 

7: Implement Criterion-2 with last γ2observations. 
8: if the sequence of CIs is in control, then 
9: A new normal operation mode occurs and set r = r +1, n =1. 

Calculate the similarity between the monitoring data from mode r and mode 
r-1. Construct a new GP-r. Estimate the parameters and compute the predictive 
posteriors by using the adaptive transfer learning as in Subsection 3.3. 

10: else 
11: The change point is identified as an anomaly. 
12: end if 
13: end if 
14: Set n = n + 1 and continue the CM. 

15: end while  
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When approaching the actual alarm threshold, the monitoring temper
ature fluctuates heavily. Therefore, an appropriate online multimode 
process monitoring method is necessary to detect the faults at early 
stage. Then, the maintenance decisions can be made in time. 

The number of lags is set as L = 12, which means the data from the 
past two hours is used to predict the observation at the next time. As the 
power plant had annual overhaul at the end of 2020, we can assume the 
system is in a healthy state during the first three days. Then, the 
parameter ξ in the early stopping rule is set to 432. According to this 
assumption, most observations in the first three days of the CM should 
fall within the confidence intervals. Thus, zα/2 can be obtained by 

zα/2 = max
{(

μ1,n+1 − y1,n+1
) /

σ1,n+1
}
. (15) 

In Eq. (15), the quantile is determined as the largest zα/2 among the 
first three days’ observations to avoid false alarms. 

The kernel function k(xi, xj) of GP should be carefully determined as 
it represents the underlying correlation between the observations. The 
candidate kernel functions are shown in Table 1. The monitoring data 
from Mode-1 are used to train the GPs with different kernels and the 
corresponding log-likelihood values are also listed in Table 1. It can be 
found that the squared exponential kernel which has the largest log- 
likelihood value should be selected as the kernel function of GP. Com
bined with the Euclidean distance dED(⋅) between xi and xj, the formula 
of the squared exponential kernel is given by 

k
(
xi, xj

)
= σ2

f exp
(
− dED

(
xi − xj

) / (
2σ2

e

))
, (16) 

As the observations are standardized, σf is set to one. 
Since there is no data of other modes for the first normal operating 

mode (Mode-1) at the beginning of CM, the GP is used to fit the obser
vations collected on-line for Mode-1. When the system switches to other 
operating modes from Mode-1, the ASTL-GP model is applied. In prac
tice, the engineers or the on-site workers usually determine the anom
alies when a specific monitoring signal exceeds the prefixed threshold 
for two or three consecutive hours. Therefore, we assume that if 18 
consecutive observations (during three hours) are beyond the posterior 
intervals, a change point is flagged. Then, according to Criterion-2, the 
X-charts are used to distinguish the anomaly or the transition point of 
normal modes from the consecutive change-points. 

Fig. 9 shows the results of multimode process monitoring and 
anomaly detection by using Algorithms 1 and 2, where zα/2 is 3.8 by 
calculating (15). The whole operating process of the steam turbine can 
be divided into four normal modes. The red hollow circles in the left 
panels of Fig. 9 denote change points, and the observations after the red 
hollow circle are also identified as change points. The right panels of 
Fig. 9 are the X-charts whose control limits are determined by 95% 
confidence intervals. From Fig. 9(a), (b) and (c), we can find that the 
part of the CI sequence which exceeds zero becomes in control again 
after a very short time fluctuation. This indicates that these change 
points are the normal mode transition points. On the contrary, after a 
change point is identified in the CM of Mode-4, the sequence of identi
fied change-points presents a significant deterioration trend and is 
finally out of control. Therefore, an anomaly occurs. Although there are 
a few outliers in the early monitoring time of some modes, this phe
nomenon is not a continuous process and can be regarded as accidental 
events due to random factors and lack of monitoring data rather than 
change points. Note that the computational efficiency is a very impor
tant factor for an online CM task. When a new incoming observation is 
available, the proposed monitoring procedure is only iterated once for 
outputting a prediction and then making the identification result. 
Therefore, the CPU time of the proposed method for one iteration of 
each mode are reported in Table 2. The operating system of the test 
computer is Windows 10, the CPU is AMD Ryzen 7 5800H with Radeon 
Graphics 3.20 GHz, and the RAM memory is 16.0 GB. The calculating 
software is Python 3.7. It can be seen from Table 2 that when a new 
observation is available, the CPU time for running one iteration to 
outputting one prediction in any operation mode is below 7 s. That is, 
the anomaly detection result at each inspection can be obtained in a few 
seconds. Compared with the 10 min observed interval, the proposed 
method is obviously very efficient with less computational burden in the 
online application before the next observation reaching and thereby the 

Fig. 7. Schematic of the online unsupervised monitoring framework for a 
steam turbine with multiple operating modes. (Initial value of r is 1.) 

Fig. 8. Raw monitoring data of the metal temperature of the #1 bearing 
bushes, which were sampled every 10 minutes. 

Table 1 
Candidate kernel functions and their estimation results.  

Kernel Formula Log-likelihood 

Laplacian k(xi,xj) = σ2
f exp( − τ /σe) -284.664 

Exponential k(xi,xj) = σ2
f exp( − τ /(2σ2

e )) -147.945 
Squared exponential k(xi,xj) = σ2

f exp( − τ2 /(2σ2
e )) -98.9056 

Matern 3 
k(xi,xj) = σ2

f

(
1 +

̅̅̅
3

√
τ

σe

)

exp
(

−

̅̅̅
3

√
τ

σe

) -109.618  
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Fig. 9. Results of the adaptive multimode process monitoring and anomaly detection. (a) Mode-1; (b) Mode-2; (c) Mode-3; (d) Mode-4 and anomaly. (The left panel 
of each subfigure is the monitoring result of the CI sequence, and the right panel is the identification result of the proposed two-hierarchical criterion). 
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reliability management decisions can be made timely. 
The identification results of the multimode process monitoring 

compared with the alarm raised by TSI are shown in Fig. 10. The alarm 
raised by the oil pressure gauge of TSI was on April 8, 2021, and the 
steam turbine was shut down for repair on May 4, 2021. From Fig. 10, 
the proposed monitoring framework can accurately and adaptively 
identify different operating modes, and the anomaly is thereby detected 
at the 6477th samples (February 28, 2021). That is, the proposed 
approach can detect the steam turbine’s anomaly before its failure and 
shut down. Fig. 11 shows that the bearing bushes were severely wearing 
out and generated visual cracks. Considering that wearing out and crack 
are types of soft failure, the actual fault may occur earlier and gradually 
propagate to an alarm finally. Therefore, our approach can release a 
timely alarm of the potential fault. Then, the operators of the power 
plant have time to adjust the generation plans and arrange maintenance 
activities. 

To analyze the robustness of the proposed anomaly detection 
method, we assume different values of consecutive observations for 
Criterion-2, i.e., 6, 12, 24 and 30 consecutive observations (one, two, 
four and five hours). The identification results of the multimode process 
monitoring under these settings are shown in Fig. 12. We can find that 
the operating process is adaptively divided into four normal operation 
modes when the values of consecutive observations are set as 6, 12 and 
18. While the operating process is separated into three normal modes 
under Criterion-2 of 24 and 30 consecutive observations. This indicates 
the identification sensitivity of the proposed method becomes lower. 
However, the detected anomaly time under these settings is very close 
and all of them are before the steam turbine’s failure time. It can 
conclude that the proposed unsupervised anomaly detection method is 
robust and credible under identification criteria of different settings. 

5.2. Comparative study 

In this section, the proposed ASTL-GP model is compared with GP. 
Fig. 13 shows the comparison between ASTL-GP and GP. Only the 
monitoring data of the early stage of Mode-2 is selected for this illus
tration. From Fig. 13, the predictive posterior intervals of ASTL-GP are 
narrower than those of GP, which indicates the performance of ASTL-GP 
is more robust especially at the beginning of CM. Furthermore, the 
monitoring results of the whole process by these two models are given in 

Table 2. The FAR (false accept rate) [10] is used to measure the per
formance of CIs, which is the ratio of the number of outliers to the total 
number of CIs for Mode-r, i.e., 

FARr =
1
nr

∑nr

i=0
ε
(
hr,i

)
, (17)  

where ε(hr,i) = 1, if hr,i > 0; otherwise, ε(hr,i) = 0. nr is the total number 
of CIs for Mode-r. 

From Table 3, we can see that ASTL-GP can accurately identify all 
four normal operation modes, whereas GP cannot identify the third 
mode. This indicates that ASTL-GP is more sensitive to the mode tran
sition than GP. Even when the difference between the operating mech
anisms of Mode-2 and Mode-3 is not obvious, ASTL-GP still can make 
precise identification. This may be because the transfer learning in 
ASTL-GP can obtain more operation information from other modes. 
Also, the transition time of other modes and anomaly time detected by 
GP are closer to those by ASTL-GP. The reason is the differences among 
different modes (except between Mode-2 and Mode-3) are significant, 
and thus the mode transitions are identified easily. Furthermore, the 
FARs of ASTL-GP are also much smaller than those of GP. This further 
validates the effectiveness of ASTL-GP. 

Furthermore, the proposed unsupervised monitoring method is 
compared with three other state-of-the-art monitoring methods: deep 
autoencoder (DAE), long short-term memory (LSTM) and wavelet 
spectrum-based control chart (WS-CC). The first and the second were 
applied to wind turbines [28,29], where the residuals between the true 
observations and the predictions by DAE and LSTM were used as the 
monitoring indices. The last was applied to a steam turbine generator 
based on temperature signals [38]. The configurations of these models 
were selected as follows. 

DAE: The numbers of neurons in the input and output layers were 12 
and 1, respectively. The encoder was composed of 3 hidden layers. The 
number of neurons in each hidden layer were 64, 32 and 16, respec
tively. The batch size was 32 and the epochs were 100. 

LSTM: The network consisted of three layers. The dimensions of the 
input and output were 12 and 1, respectively. The number of neurons in 
the hidden layer of LSTM was 16. The batch size was 16 and the epochs 
were 100. The dropout was set to 0.5. 

WS-CC: Four-leveled decomposition was conducted by the Haar 
wavelet transform. The T2 statistic was used to construct the condition 
index. 

Moreover, the mse (mean squared error) and the Adam optimizer 
were respectively selected as the loss function and the optimization 
method for both DAE and LSTM models. 

The comparative monitoring results by the different methods are 
shown in Table 3. Obviously, the existing methods were designed for 
process monitoring with only one normal operation mode and one 
abnormal mode, whereas the proposed method can adaptively monitor 
the multimode processes without priors. From Table 4, DAE and LSTM 
can accurately identify the transition point between Mode-1 and Mode- 
2. This is because deep learning methods have excellent nonlinear fitting 
abilities. However, they misidentify the transition point as an anomaly 
and ignore the multiple normal operating modes. Moreover, the it is 
difficult for deep learning methods to quantify the uncertainties in the 
steam turbine operation. The anomaly detected by WS-CC is earlier than 
those of other methods. This suggests that WS-CC is most sensitive to the 
changes in observations and gives earlier alarms. Hence, the wavelet 
decomposition is not suitable for low frequency data. Even in the CM of 
Mode-1, the proposed method still has the lowest FAR. This is because 
that both the uncertainty and correlations in the monitoring data are 
considered in the proposed method. As more observations are available, 
the characteristics of the operating process will be captured accurately, 
which finally results in precise predictions and robust detection 
performance. 

Table 2 
CPU time of the proposed method for one iteration during different operational 
modes.  

Mode-1 Mode-2 Mode-3 Mode-4 

1.592 sec 5.773 sec 5.680 sec 6.980 sec  

Fig. 10. Anomaly detection results compared with the fault alarm by TSI.  
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5.3. Discussions 

CM and fault detection for equipment plays an important role in 
reliability engineering, which can provide useful information for 
condition-based maintenance and health management. According to the 
comparative results above, the proposed method can identify different 
operational modes and detect the abnormality accurately and effec
tively. When the anomaly was detected earlier as in DAE, LSTM and WS- 

CC, wrong false alarms occurred. Then, the shutdown and maintenance 
actions triggered in advance could make a great waste of the production 
potential in steam turbine. On the other hand, if the anomaly was 
detected later than the occurrence of true faults, it would lead to extra 
maintenance cost and economic loss. Therefore, a proper and reasonable 
CM method can not only make full use of the steam turbine’s perfor
mance, but also significantly reduce management costs. Furthermore, 
both the availability and the economic efficiency of steam turbines can 

Fig. 11. Bearing bushes with severe wearing out and generated cracks.  

Fig. 12. Anomaly detection results under different criteria. (a) 6 consecutive observations; (b) 12 consecutive observations; (c) 24 consecutive observations; (d) 30 
consecutive observations. 
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be guaranteed. With the help of the proposed method, the engineers can 
make more informed reliability and maintenance decisions. Addition
ally, the proposed CM framework can be extended to other industrial 
applications if the operational conditions and modes are time-varying or 
non-deterministic. 

6. Conclusions 

This paper proposed an online unsupervised multimode process 
monitoring and anomaly detection framework for an application to 
steam turbines with the TSI data. The prior fault information including 
expert knowledge or labelled historical data was not needed. An adap
tive self-transfer learning algorithm based on multiple GPs was devel
oped to deal with the paucity of monitoring data at the beginning of a 
new incoming operating mode. Dynamic time warping was used to 
measure the similarity between the past mode and the current mode in 
real time. The similarities which were used to define the kernel 
covariance matrices of GPs can capture the uncertainties and cross- 
correlations between different normal modes were captured. A two- 
hierarchical identification criterion was constructed to first identify 
the transition points between normal modes and second detect the 
anomaly. The proposed framework was validated on a real steam tur
bine and its superiority were fully illustrated. The results shown that the 
normal mode transition points and the anomaly were distinguished 
accurately. Four normal operating modes were identified and the 
detection time of the anomaly gave an early warning before the actual 
fault occurred. In addition, compared with other state-of-the-art condi
tion monitoring methods, the proposed method can adaptively and 

exactly monitor the multimode processes, while the existing methods 
were only capable of identifying one normal mode before the anomaly. 

Although the proposed method has better flexibility and applica
bility in condition monitoring, only the temperature signals were 
considered. It is worthy investigating how to construct multimode pro
cess monitoring models to detect the steam turbine fault based on 
multivariate TSI data in the future. 
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The FAR of the proposed method is calculated based on the CM of Mode-1. 
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