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Highlights 
• A gas turbine surrogate model based on Markov-projection approximation 

subspace tracking is established. 
• The evolution of surrogate model parameters is used for condition 

monitoring. 
• A variable weight projection approximation subspace tracking method is 

used to enhance the robustness of the modeling. 
• The surrogate model has been validated using simulation data and 

experiment data. 
• The impact of closed-loop identification is being taken into account during 

the modeling process. 
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Abstract 
Condition monitoring technology plays a crucial role in ensuring the reliable 

operation of gas turbines. Digital twin has propelled condition monitoring 
research into a new phase. This paper established a surrogate model of gas 
turbines for condition monitoring based on Markov-projection approximation 
subspace tracking. Furthermore, it explores the application of surrogate model in 
developing digital twin for gas turbines. The study initially establishes a Markov 
matrix and acquires an observation vector, utilizing the framework of the linear 
model. Utilizing real-time measurement data of gas turbine, the signal subspace 
of the observation vector autocorrelation matrix is updated through the 
projection approximation subspace tracking. By aligning this signal subspace 
with the generalized observability matrix, the identification results of the 
surrogate model parameters are obtained online. Furthermore, a variable weight 
projection approximation subspace tracking method has been proposed to 
enhance the algorithm robustness. Simulation and real experiment demonstrate 
that the surrogate model output effectively tracks the real-time changes in gas 
turbine measurement data. When faults and degradation arise, condition 
monitoring can be achieved by analyzing the evolution of model parameters to 
obtain feedback information from the gas turbine. The proposed method 
maintains its robustness in the presence of impulsive noise. These features offer 
a novel approach for the development of gas turbine digital twin. 
Keywords 
Gas turbine, Surrogate model, Subspace tracking, Digital twin, Condition 
monitoring 
Nomenclature 
Variables  
A system matrix 
B control matrix 
C output matrix 
dm Mahalanobis distance 
Error  model error 

Dt, gt , qt, et , tσ  intermediate variables in PAST method 

f Future time domain size 

fH  I/O stack vector coefficient matrix 

j input dimension 
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K Kalman filter gain 
m output dimension 
M Markov parameter matrix 
n model order 
n1 low-pressure compressor speed 
n2 high-pressure compressor speed 
n3 Power turbine speed 
p past time domain size 
P gas turbine power 
P6 low-pressure turbine exhaust pressure 
Qk, Pk recursive least squares intermediate variable 
S covariance matrix 
T3 high-pressure compressor outlet pressure 
T6 low-pressure turbine exhaust temperature 
u input 
wf fuel flow 

kw  weight coefficient 

W signal subspace 
x state variable 
y measurement/output 
z I/O stack vector 

, ,    forgetting factor 

fΓ  generalized observable matrix 

kφ  Markov parameter vector 

kξ  observation vector 

Abbreviations 
Eig eigenvalue 
FF forgetting factor 
FHA finite history recursive algorithm 
I/O input and output 
IHA infinite history recursive algorithm 
PAST projection approximation subspace tracking 
SVD singular value decomposition 
VWPAST variable weight projection approximation subspace tracking 
Superscripts 

†  Moore-Penrose inverse 

T transpose of a matrix 
Notations  
  Kronecker product 
(1:m,:) line 1 to line m and all columns 
norm normalization 

( , )diag v p  placing the elements of vector v on the p-th diagonal. p =0 

denotes the main diagonal, with p >0 located above the main diagonal and p <0 
located below it 

1. Introduction 
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Gas turbines have emerged as predominant power sources across aviation, 
marine, and electric power industry. Operating in harsh environments, gas 
turbines are prone to fouling, wear, and corrosion within their gas path 
structures, which consequently degrade their performance. Over time, such 
deterioration can precipitate significant accidents [1]. Hence, condition 
monitoring of gas turbines [2–4], including fault detection, performance 
assessment, and trend forecasting, has become a vital area of research. Condition 
monitoring ensures not only the efficiency, reliability, and safety of the gas 
turbines but also their economic viability. The advent of digital twin technology 
in recent years offers a new solution to these challenges, providing an innovative 
approach to proactive maintenance and operational optimization. 

First introduced by Grieves in 2003, the concept of a digital twin was 
initially described as comprising three key components: physical entities and 
virtual spaces and the interconnection between the two. However, it wasn’t until 
2011, when NASA introduced the idea of utilizing digital twin for future aircraft 
development [5], that the concept began to gain wider recognition [6]. NASA's 
definition expanded the concept to encompass highly integrated simulation 
models, characterized by multi-physical fields, multi-scale dimensions, and multi-
probability. In recent years, the definition of digital twin technology has evolved 
further, reflecting its growing significance and application in various fields. Tao et 
al. [7,8] defined digital twin technology as a sophisticated technical tool that 
integrates multi-physics, multi-scale, and multidisciplinary attributes. This 
technology features real-time synchronization, mapping, and high fidelity, 
enabling seamless interaction and integration between the physical and 
information worlds. They proposed a five-dimensional model and outlined six 
application criteria, providing valuable guidance for the advancement of digital 
twin technology. Additionally, they highlighted that the most prevalent 
application of digital twin currently lies in the prognosis and health management 
of equipment. By utilizing real-time mapping through the twin model, potential 
equipment issues can be identified promptly, significantly enhancing model-
based condition monitoring. 

Before the introduction of digital twin technology, numerous studies focused 
on model-based methods for gas turbine condition monitoring. Some of these 
studies have laid the theoretical foundation for condition monitoring using 
digital twin. The models primarily encompass three main categories: (1) 
Performance model [9,10]: This model is grounded in the operational 
mechanisms of gas turbines, encompassing thermodynamics, rotor dynamics, 
combustion, and control theory. (2) Linear model [11]: Linearization occurs 
around the steady-state operation point of the gas turbine using the partial 
derivative method and fitting method [12]; (3) Data-driven model [13,14]: This 
model is constructed directly from the input and output data of gas turbines, 
utilizing machine learning techniques and various neural networks, which is a 
"black box" model. 

To construct an accurate performance model, one must first acquire a 
thorough understanding of the component characteristics of target gas turbine 
[15,16]. These are typically delineated through characteristic diagrams supplied 
by the manufacturer, which principally chart the interplay among flow rate, 
efficiency, rotational speed, and pressure ratio for both the compressor and 
turbine of the gas turbines. Second, to implement condition monitoring of gas 
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turbines using performance models, it is necessary to embed a set of health 
variables (0-1) for the efficiency and flow of components. Subsequently, these 
health variables are obtained by solving the balance equations of the gas turbine, 
as illustrated in Fig. 1: 

 

Fig. 1. Principle of condition monitoring based on performance model 
The premise and key are to obtain the error between the performance 

model output and the gas turbine measurements. Numerical methods or 
optimization algorithms can be employed to minimize this error. This process 
ultimately yields health variables, which, when observed for changes, enable 
effective monitoring of the gas turbine condition. The variations of health 
variables offer a monitoring feature into the condition of the gas turbines. The 
primary benefit of this approach lies in its interpretability, enabling the 
identification of specific components within the gas turbine that are exhibiting 
signs of performance deterioration. Li et al. [17] established a thermodynamic 
model for gas turbines, incorporating health variables into performance variables 
(flow and efficiency) and resolving these factors using the Newton-Raphson 
algorithm, thus enabling diagnosis of typical gas path faults. Ying et al. [18] 
developed a highly precise performance model for a gas turbine, which 
incorporates the effects of the intake and exhaust systems. Experimental results 
demonstrate that this approach effectively estimates the degradation condition of 
a gas turbine. Yin et al. [19] integrated performance variables with exhaust 
electrostatic signal to assess the state of gas turbines. The primary drawback of 
this approach lies in the model nonlinearity, which includes volume inertia, 
rotational inertia, and thermal inertia. These nonlinearities necessitate iterative 
calculations by both the numerical method and optimization algorithm, leading 
to significant consumption of computational resources and often failing to meet 
real-time requirements. Furthermore, the extensive number of variables in gas 
turbines complicates the solution process, frequently causing it to converge to a 
local optimum rather than the global one, thereby compromising the accuracy of 
the results obtained. 

Gas path analysis (GPA) is a technique for condition monitoring that 
employs a linear model of gas turbines. The core principle of this method 
involves establishing a linear correlation between measurements and 
performance variables at a specific steady-state operating point. If the 
relationship matrix linking the performance variables to the measurements is 
reversible, then changes in the unmeasured performance variable can be 
determined by observing changes in the measurements. The advantage of a 
linear model lies in its simplicity and ability to satisfy real-time requirements. 
Additionally, it can be effectively integrated with a Kalman filter for fault 
diagnosis in gas turbines and sensors [20,21]. Subsequently, the multi-model 
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approach [22] emerged and continued to evolve. However, a primary limitation of 
the linear model is that it only functions effectively near specific steady-state 
operating points, which does not cater to the entire range of operating conditions 
in gas turbines. Consequently, numerous studies have introduced methods such 
as piecewise linearization [23] and linear time-varying models [24] to address 
this issue. Ma et al. [25] considered inlet guide vane angle as a scheduling 
parameter and proposed an enhanced two-layer variable parameter model. The 
study conducted in [26] utilized compressor speed as a scheduling parameter, 
employed polynomial fitting curve to design an linear parameter varying model, 
and established a dynamic adaptive model for turbofan engines. Even with 
improvements made to linear models, factors such as the selection of segment 
points and scheduling parameters continue to affect model accuracy. 

With the advancement of computer technology, data-driven approaches are 
increasingly being applied to the modeling of gas turbines. By leveraging the 
abundant historical operational data of gas turbines, neural networks can 
effectively model the nonlinear components inherent in these systems. Utilizing 
techniques such as artificial neural networks (ANN) [27], extreme learning 
machines (ELM) [28], and nonlinear ARX (NARX) models [29], precise models of 
gas turbines can be established, which are then used for condition monitoring. In 
recent years, the application of deep learning methods, such as convolutional 
neural networks (CNN) [30] and long short-term memory (LSTM) [31], has been 
progressively expanding. These models possess distinct advantages in feature 
extraction, significantly advancing the field of condition monitoring technology. 
Cheng et al. [32] introduced a spatial-temporal graph neural network that 
incorporates prior physical knowledge, effectively leveraging the spatial coupling 
between knowledge and data. Zhang et al. [33] proposed a method combining 
Bidirectional Gated Recurrent Unit (BiGRU) and Multi-gate Mixture-of-Experts 
(MMoE) for simultaneous aero-engines condition assessment and remaining 
useful life prediction, enhancing the efficiency of health management tasks. 
Cheng et al. [34] constructed a component model of gas turbines, which they 
combined with ANN to create an surrogate model. They utilized the unscented 
Kalman filter to derive performance variables, facilitating diagnosis under both 
gradual degradation and sudden faults. The limitation of the data-driven 
modeling approach lies in its reliance on the quantity and quality of historical 
data. When the data set is limited, the model is susceptible to overfitting or 
underfitting. Although machine learning methods such as Bayesian model [35] 
and Gaussian regression [36] can be effective with limited data, they often face 
increased computational complexity when dealing with high-dimensional 
problems. Furthermore, relying solely on data-driven methods does not 
adequately account for the degradation of gas turbine performance. 

The advent of digital twin technology has undeniably elevated the condition 
monitoring of gas turbines based on models to a new level [37]. Numerous 
scholars have explored the application of digital twin technology in gas turbine 
modeling for condition monitoring. They constructed the digital twin model 
using performance model, data-driven model, etc., or introduced a novel 
algorithm to address the associated challenges. Sun et al. [38] developed a gas 
turbine data-driven digital twin model using semi-supervised deep learning 
methods for performance monitoring and degradation prediction. This model 
was validated using real turbofan engines data and C-MAPSS dataset. The 
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performance model and measurement data were integrated by Hu et al. [39] to 
enhance the simulation accuracy of the gas turbine, while introducing controlled 
errors into the model to reduce the modeling cycle. The gas turbine digital twin 
modeling method proposed by Zhang [40] et al. is based on deep multiple 
models, establishing a bidirectional data flow between the performance model 
and the data-driven model by integrating deep multiple models. Ma et al. [41] 
introduced a data-driven approach for developing a digital twin model of gas 
turbines, aiming to enhance anomaly detection capabilities in the field. Wang et 
al. [42] proposed a digital twin framework for aeroengine, aiming at engine fault 
diagnosis. Zhao et al. [43] utilized a reduced order model to establish a digital 
twin model of offshore wind turbines for modal analysis and corresponding 
structural prediction. 

It can be seen from the above analysis that enhancing the precision of the 
model and the efficiency of the modeling process, along with establishing 
bidirectional communication between the model and its physical entity, stand as 
key objectives in the advancement of digital twin framework. As noted in the 
literature [44], surrogate modeling is an effective approach to accomplish the 
aforementioned tasks. The models discussed in the above literatures are referred 
to as surrogate models. Essentially, the surrogate model serves as a generalized 
digital twin model, typically integrated within the digital twin framework. Its 
primary function is to process the collected data and establish the mapping 
relationship between input and output data within the digital twin framework. In 
this process, it is essential to consider modeling accuracy, cost, and efficiency to 
fulfill the real-time requirements of digital twin.  

One significant characteristic of the digital twin technology is that the output 
from the surrogate model consistently aligns with the measurements from the 
physical entity, regardless of whether the entity is normal or faulty. Under normal 
conditions, the structure of the surrogate model remain unchanged. However, 
when a fault occurs in the physical entity, the structure of the surrogate model 
must adapt since its output needs to match the altered measurements. 
Consequently, the usual correlation between input and output in the original 
surrogate model is disrupted. This adaptation becomes a critical attribute in 
condition monitoring, a fact supported by numerous studies highlighting the 
importance of changes in the model structure for condition monitoring. 

Bartelmus et al. [45] established a linear correlation between operational 
conditions and spectral characteristics, utilizing the slope of the regression 
equation as a diagnostic feature to assess the planetary gearbox by monitoring 
changes in slope. Building upon this foundation, they further established a 
relationship between the root-mean-square value of the gear box's monitoring 
signal and load to enable fault detection under time-varying non-stationary loads 
[46]. The linear relationship between load power and vibration variables of wind 
turbine bearing was established in Zimroz et al. [47] based on this concept. The 
effectiveness of this approach was further validated through typical bearing 
failures. The problem of model mismatch in the actual process was revealed in 
Ceci et al. [48] through the analysis of structural equation models. The research 
conducted by Gui et al. [49] demonstrated that the demagnetization failure of a 
permanent magnet synchronous motor leads to discrepancies in model 
parameters and a decrease in model prediction accuracy.  

Incorporating this concept into the digital twin framework allows for a form 
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of " bidirectional communication" through the use of the surrogate model 
structural adjustments to relay condition information from the physical entity. 
This means the actual measurements from the physical entity can be used to 
update the surrogate model, while modifications in the surrogate model 
structure can be employed to deduce information about the physical entity. 

To address the constraints encountered by performance models, linear 
models, and data-driven models in the arena of gas turbine condition monitoring, 
this study establishes a gas turbine surrogate model for condition monitoring 
and explores the application of surrogate model in the development of gas 
turbine digital twin. The surrogate model employs a linear framework to 
maintain computational efficiency. It does not require extensive historical 
operational data and remains effective across the entire operating range of the 
gas turbine. In addition, in our review of the literature on gas turbine modeling, 
we have discovered that a limited number of studies address the issue of closed-
loop control. Specifically, the interplay between system input and noise often 
results in skewed estimations from the model, which is also one of the issues that 
needs to be addressed. The premise and key to obtain the model parameters 
online is to be able to obtain the generalized observable matrix of the linear 
model online. To address above issues, this study introduces a method based on 
Markov-projection approximation subspace tracking (Markov-PAST). PAST 
method in array signal processing is an effective approach to computing and 
updating the subspace of a matrix. The challenging task lies in finding an 
appropriate observation vector. The observation vector contains the information 
of the signal subspace, so in this study, a Markov parameter matrix is constructed 
to derive this observation vector. Utilizing the PAST method, the signal subspace 
of the observed vector autocorrelation matrix is computed. This computation 
transforms the calculation of the signal subspace into an unconstrained 
optimization problem, which is then obtained through recursive calculation. The 
impact of closed-loop interference is mitigated by minimizing noise. 
Subsequently, the signal subspace in the recursive process is equivalent to the 
generalized observable matrix, and the model parameters are extracted from the 
generalized observable matrix. The model is continually updated in real-time 
using data gathered by sensors, ensuring that the outputs align closely with the 
actual the gas turbine. 

The primary contributions of this research are outlined as follows: (1) A gas 
turbine surrogate model for condition monitoring is established, which is 
applicable in the development of the gas turbine digital twin. (2) The surrogate 
model is updated in real-time using the Markov-PAST method. (3) A refined form 
of the PAST method has been proposed to enhance the algorithm robustness in 
the presence of impulsive noise. (4) The modeling process takes into account the 
impact of the closed-loop system. (5) The effectiveness of the surrogate model for 
condition monitoring is corroborated through both simulation data and 
experiment data. 

This study is outlined as follows: Section 2 is an introduction to the research 
object. Section 3 introduces the relevant methodology. Section 4 details the entire 
modeling process. Section 5 presents the verification results of the model, and 
Section 6 concludes with the main findings and future prospects. 

2. Principle of gas turbine 
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In this study, we have selected a propulsion-type three-shaft gas turbine as 
the research objective. This gas turbine boasts a rated power output of 26.2 MW, 
making it ideal for the power systems of large vessels. Fig. 2 is the schematic 
diagram of the three-shaft gas turbine, and Table 1 is the primary design 
parameters and variables. 
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Fig. 2. Schematic diagram of three-shaft gas turbine structure 
Table 1. Main variables/ parameters of three-shaft gas turbine 

Variables/ Parameters Unit Value (Type) 
Low-pressure rotor speed (n1) r/min 7168 
High-pressure rotor speed (n2) r/min 9564 

Power turbine speed (n3) r/min 3260 
outlet temperature of the low-pressure compressor (T2) K 465 
outlet temperature of the high-pressure compressor (T3) K 739 

outlet temperature of the low-pressure turbine (T6) K 1004 
outlet pressure of the low-pressure compressor (P2) kPa 438 
outlet pressure of the high-pressure compressor (P3) kPa 1978 

outlet pressure of the low-pressure turbine (P6) kPa 358 
Rating power (P) MW 26.2 

Efficiency % 36.3 
Fuel  - Diesel oil 

The three-shaft gas turbine consists of low-pressure compressor, high-
pressure compressor, combustion chamber, high-pressure turbine, low-pressure 
turbine, and power turbine. The operational process is as follows: Initially, during 
startup, the motor drives the compressor to rotate. Air enters the compressor 
through the inlet filter where impurities such as large dust particles are filtered 
out. The compressed air then flows into the combustion chamber where its 
pressure and temperature increase. Fuel is injected into the combustion chamber 
and ignition occurs after mixing with high temperature and high pressure gas. 
Intense combustion generates gas with even higher temperature and pressure in 
the combustion chamber. Subsequently, this gas sequentially enters each turbine 
stage driving their rotation the high-pressure turbine drives the high-pressure 
compressor while the low-pressure turbine drives the low-pressure compressor. 
Once started up successfully, disconnection from starter allows for stable 
operation of the gas turbine; meanwhile, power generated by the power turbine 
performs work on loads. It should be noted that during operation of a gas turbine 
system, cavities (V1,V2,V3) between components cannot be disregarded; airflow 
passing through these areas adheres to mass conservation principles. 
Additionally worth mentioning is that due to its significant mass and rotational 
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inertia characteristics, the rotating shaft of a gas turbine complies with dynamic 
equations. In Fig. 2, 0 represents the atmospheric environment, 1 represents the 
inlet section of the low-pressure compressor, 2 represents the inlet section of the 
high-pressure compressor, 3 represents the inlet section of the combustion 
chamber, 4 represents the inlet section of the high-pressure turbine, 5 represents 
the inlet section of the low-pressure turbine, 6 represents the inlet section of the 
power turbine, and 7 represents the outlet section of the power turbine. 

 

Fig. 3. Closed-loop control strategy for three-shaft gas turbines 
As depicted in Fig. 3, the three-shaft gas turbine employs a closed-loop 

control strategy to regulate the power turbine speed. Upon receiving the power 
command signal P, the control system automatically calculates the current speed 
n3,0 of the power turbine and determines the difference Δn3 between its actual 
speed n3 and given speed n3,0 as input for a controller that typically utilizes PID 
control methodology. The PID controller is designed based on predetermined Kp, 
Ki, Kd values, which are then used to calculate the required fuel flow wf for energy 
conversion into kinetic energy reflected in rotor rotation. A sensor measures 
power turbine speed and feeds it back into the controller forming a closed-loop, 
thereby enabling maintenance of set working condition. 

3. Methodology 

3.1. Surrogate modeling principle 

The surrogate model developed in this research is based on the linear model 
framework, utilizing the state-space model from modern control theory, which is 
widely applied in practical engineering. As discussed in the introduction, the 
benefits of the linear model include its simple structure and low computational 
requirements, ensuring efficient online calculations. Linear models are 
somewhat limited, effectively applicable only in the vicinity of a specified steady-
state operating point. To overcome this limitation, various adaptations, such as 
piecewise linear models and linear time-varying models, have been introduced. 
Despite these enhancements, challenges remain with selecting appropriate 
segment points and scheduling parameters, which affects the model accuracy. 
Consequently, the model outputs often fail to track the actual measurements of 
gas turbine in real-time and accurately. To address this issue, the study 
introduces the principle of surrogate modeling, which is shown in Fig. 4: 

                  



11 

 

A1

B1 C1

K1

Predict yk,pre=f(Ak,p Bk,p Ck,p Kk,p)

Actual gas turbine

LC

HC HT

LT

CC

PT

Fuel

P

10

P0, T0

P1, T1

2

P2, T2
P3, T3

3

P4, T4

4

P5, T5

5

P6, T6

6

P7, T7

7

 n1  n2  n3

V1 V2 V3

wf

Ak

Bk Ck

Kk

Surrogate model

...

Time

...

k=1 k=k

k=2,3

... k=k+1

yk,pre

yk

Tracking

u1

y1

x2 x1

z-1 z-1

uk

yk

Cxkxk+1 xk

ek

Fig. 4. Gas turbine surrogate modeling principle 
The input and measurements are collected in real-time from a real gas 

turbine, and the model parameters are derived through identification techniques. 
At k=1, the surrogate model receives the input u1 and measurements y1, resulting 
in the identification results A1, B1, C1, K1. Subsequently, at k=2, the model 
receives the input u2 and measurements y2, yielding the identification results A2, 
B2, C2, K2. This process continues iteratively for subsequent time. The outputs of 
the model at time k are derived from the model parameters Ak,p, Bk,p, Ck,p, Kk,p, 
which are established prior to time k, as well as from the input and 
measurements. This approach considers the dynamic behavior of the gas turbine, 
with the particular computational method to be detailed subsequently. The 
established model can be considered a linear time-varying model, where its 
parameters evolve over time. However, unlike traditional time-varying models, 
this surrogate model does not require the determination of scheduling 
parameters. This eliminates the error typically introduced when establishing the 
relationship between scheduling parameters and the model output 
characteristics. The core of the established surrogate model lies in solving its 
parameters at each moment, ensuring that the process is not overly complex to 
maintain accuracy and efficiency, which is a key focus of this study. Furthermore, 
as the surrogate model must address the closed-loop issue, it is essential to 
eliminate the influence of ek within the algorithm. 

Online acquisition of model parameters can be achieved through two 
methods: the finite history recursive algorithm (FHA) and the infinite history 
recursive algorithm (IHA), also known as sliding window algorithm and 
exponential window algorithm [50], as depicted in Fig. 5: 

                  



12 

 

 

Fig. 5. Principles of FHA and IHA 
FHA involves conducting an identification process within a limited window 

each time new data is collected, integrating it with historical operating data. The 
key to obtain the model parameters is to calculate the generalized observable 
matrix. This approach enables the effective utilization of the most recent data to 
update a generalized observable matrix, facilitating the identification of the 
current model. Importantly, as the system transitions to a new state, past data 
does not influence the characteristics of the current model. One drawback is that 
window size must be carefully calibrated. Each identification procedure entails 
SVD and the projection method is used to eliminate noise. If this process is 
carried out in a large window, the efficiency of the calculation will be reduced. 
Conversely, a window that is too small might fail to accurately capture the system 
dynamic properties. To obtain generalized observable matrix online using the 
FHA, performing SVD in each window is feasible. While executing SVD with a 
computer is not inherently complex, doing so within each window consistently 
requires a significant amount of computing resources. Most significantly, since a 
gas turbine exemplifies a closed-loop system, a correlation exists between the 
noise and the input. Consequently, employing projection to negate noise impact is 
not a feasible approach. However, IHA does not need to consider window size. 
This method only needs to initialize generalized observable matrix once and then 
use the latest data collected to update it. This method greatly reduces computing 
resources and does not need to store the data in the window, which is especially 
suitable for online processes. One drawback is the requirement to utilize the 
entirety of past data, which can lead to error accumulation. Consequently, in 
practical computations, it is common to apply a forgetting factor, typically close 
to 1, to mitigate the influence of historical information.  

In this study, IHA is adopted for online calculation, and a Markov-PAST 
method is proposed. The subspace tracking approach within array signal 
processing serves as an effective method to dynamically update the matrix 
subspace. The challenge and key of applying this method to solve for the 
generalized observable matrix lie in identifying an appropriate observation 
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vector that encapsulates the essential information of generalized observable 
matrix. In this paper, a method is proposed to derive the observation vector by 
constructing a Markov parameter matrix. The PAST method is then employed to 
compute and update the signal subspace of the observation vector 
autocorrelation matrix. The signal subspace is treated as equivalent to 
generalized observable matrix. Subsequently, the calculation for generalized 
observable matrix is transformed into an unconstrained optimization problem, 
which is obtained through recursive calculations. Finally, model parameters are 
derived from generalized observable matrix to obtain the structure of the online 
surrogate model. During this phase, the recursive least square method is applied 
to minimize noise and mitigate the impact of closed-loop identification.  

Generally, the process of establishing the surrogate model relies on the 
Markov-PAST. The model is continuously updated with the last data collected at 
each moment, ensuring that the model output accurately tracks the actual 
measurements in real time. 

3.2. Markov-PAST method 

This section introduces the Markov-PAST method to the establishment of the 
surrogate model. Firstly, the state-space model [51] of the gas turbine is written 
as modified form, as shown in Eq. (1): 

1
ˆ ˆ

ˆ ˆ

+ = + +


= +

x Ax Bu Ke

y Cx e

k k k k

k k k

, (1) 

where the variables 

   
T T T

1 2 1 2 1 2
ˆ ˆ, ,j m n

j m nu u u y y y x x x =  =  =  u y x  

represent the input, model output, and model state variables respectively. The 
measurements of gas turbine involve directly measuring variables such as 
temperature, speed, and pressure in the cross-section of the gas turbine. The 
input typically consists of the gas turbine fuel flow.  

11 12 111 12 1 11 12 1

21 22 221 22 2 21 22 2

1 21 2 1 2

, ,

jn n

jn nn n n j m n

n n njn n nn m m mn

b b ba a a c c c

b b ba a a c c c

b b ba a a c c c

  

    
    
    =  =  = 
    
    
     

A B C

  

represent the parameter matrices. 

11 12 1

21 22 2

1 2

m

m n m

n n nm

k k k

k k k

k k k



 
 
 = 
 
 
 

K  denotes the 

Kalman filter gain, while ˆ
k k k= −e y Cx  signifies the mean white noise process. The 

primary objective of this study is to ascertain the parameter matrix by utilizing 
gas turbine input and measurement data. Consequently, both the output and 

state variables of the model are denoted as ky  and kx  in subsequent discussions. 

The state-space model should be transformed into the predictor form as 
follows [52]: 
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1+
 = +


= +

x Ax Bz

y Cx e

k k k

k k k

, (2) 

where T T[ ] ,m j n n + =  = − z u y A A KC  

11 12 1 11 12 1

21 22 2 21 22 2 ( )

1 2 1 2

[ ]   

j m

j m n m j

n n nj n n nm

b b b k k k

b b b k k k

b b b k k k

 +

 
 
 = = 
 
 
  

B B K . 

Assumption 1: 1A . 

In Assumption (1), the eigenvalues of matrix A  are situated within the unit 
circle. The foundational premise of this study is the stability of the system. As 
noted in reference [53], the discrete system exhibits asymptotic stability when 
the eigenvalues of the state-space model system matrix fall within the unit circle. 

The forward recurrence allows us to derive the following: 

, 1, ,−= + +y Γ x H z ef k f k f f k f k , (3) 

where 
T T T T

, 1 1[   ] mf

f k k k+ k+ f - = y y y y , 
T T T T ( )( 1)

1, 1 -2[   ] m j f

f k k k+ k+ f + −

− = z z z z , 
T T T T

, 1 1[    ] mf

f k k k k f+ + −= e e e e , 

-1

mf n

f

f



 
 
 = 
 
 
 

C

CA
Γ

CA

, 

( )( 1)

-2 -3

mf m j f

f

f f

 + −

 
 
 
 = 
 
 
  

0 0 0

CB 0 0

H CAB CB 0

0

CA B CA B CB

. 

The Eq. (3) is expressed in the form of a Hankel matrix as shown below: 

1f f k f f f−= + +Y Γ X H Z E , (4) 

where 

1 1[    ] n R

k k k k R



+ + −= X x x x , 

, , 1 , 1[    ] mf R

f f k f k f k R



+ + −= Y y y y , 
( )( 1)

1 1, 1, 1 1, 1[    ] m j f R

f f k f k f k R

+ − 

− − − + − + −= Z z z z , 

, , 1 , 1[    ] mf R

f f k f k f k R



+ + −= E e e e , 

where R represents the number of columns in the Hankel matrix. 

Assumption 2: 1( )frank R− =Z . 

In Assumption (2), the model parameters obtained by the identification 
method will converge to the true parameters when the input signal satisfies the 
persistency of excitation [54,55]. In addition, the model should aim to adhere to 

                  



15 

 

the principle of minimum implementation to ensure it has the smallest order and 
highest computational efficiency while maintaining accuracy. Although this 
condition is not a necessary prerequisite, it is the objective of the optimization 
model. 

In open-loop identification, where noise is uncorrelated with input and 
output, projection methods are often employed to mitigate the impact of noise. 
For instance, oblique projection techniques are widely referenced in literature 
[56,57], with the N4SID method being an exemplary case of offline subspace 
identification. More broadly, on both sides of the equation, the row space is 

projected onto the row space of the complement of 1−Z f , resulting in the 

following equation: 

1 1 1 11− − − −

⊥ ⊥ ⊥ ⊥

−= + +Y Π Γ X Π H Z Π E Π
f f f ff Z f k Z f f Z f Z , (5) 

According to the properties of the projection, the following equation is 
obtained: 

1 1− −

⊥ ⊥= +Y Π Γ X Π E
f ff Z f k Z f , (6) 

A standard approach involves multiplying by two factors 1 2,O O , which must 

satisfy the following conditions: 

1 2

1 2

( ) ( )

( ) ( )
−

⊥

=

=

=

1
O Γ Γ

X Π O X

O E O Ο

f

f f

k Z k

f

rank rank

rank rank

, 

Depending on the method of identification used, the factors 1 2,O O  will vary. 

For detailed procedures, one should consult the referenced literature [58]. 
Subsequently, SVD is performed to obtain the generalized observability matrix 

Γ f . 

However, the presence of the closed-loop invalidates the condition that the 
noise is unrelated to the input/output, thereby rendering the aforementioned 
process unfeasible. Therefore, based on the form of IHA, this study adopts the 
following process to obtain the generalized observable matrix: 

The backward recursion of Eq. (2) over p time domains yields: 

1

1

−

− −

=

= +x A x A Bz
p

p i

k k p k i

i

, (7) 

The Assumption (1) implies that 1A . Therefore, if p exceeds a certain 

threshold, we can conclude that 0− A x
p

k p  and consequently obtain: 

1

1

−

−

=

=x A Bz
p

i

k k i

i

, (8) 

The truncation of Eq. (8) at p yields the following result: 

1 2 1

,

1

[   ]

T

k p

T

p p k p

k p p k

T

k

−

− − − +

−

 
 
 = =
 
 
  

z

z
x A B A B B L z

z

, (9) 

The Eq. (9) can be derived by expressing it in the form of a Hankel matrix: 
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=X L Zk p p , (10) 

where 
( )

, , 1 , 1... m j p R

p p k p k p k R

+ 

− + −
 =  Z z z z . 

The Markov parameter matrix is defined as follows: 

1 2

1

p p

f p

f

− −

−

 
 
   = =   
 
 

C

CA
M Γ L A B A B B

CA

, (11) 

where ( )mf m j p +M . 

If 
-1=

i
h CA B

i
, 

1 1

1 2

1 2

p p

p p

p f p f f

−

+

+ − + −

 
 
 =
 
 
  

h h h

h h h
M

h h h

, (12) 

When p is large enough, 

1 1

20

0 0

p p

p

f

− 
 
 =
 
 
  

h h h

h h
M

h

, (13) 

The Eq. (8) is incorporated into Eq. (1), resulting in the following derived 
equation: 

1

1 1

−

− −

= =

= + = + y CA Bz e h z e
p p

i

k k i k i k i k

i i

,(14) 

The given equation represents an ARX model of order p, which is also the 
method used to calculate the output of the surrogate model, where the coefficient 
h denotes the Markov parameter of the predictor. 

The Eq. (14) should be reformulated as: 

,= +y φz ek p k k , (15) 

where 
1 ( )p m m j p−  + =  φ CB CAB CA B  is called Markov parameter vector. 

The problem thus transforms into an optimization problem with given ,z p k  

and yk , specifically aiming to minimize the following criteria, which is an 

approach to mitigate the impact of noise: 
2

,

1

( )
=

= = −φ e y φz
L

k k p k

k

J , (16) 

The recursive least squares method presented below is employed for φ : 

1 1 ,

, 1

, 1 ,

1 1 ,

( )

( )

− −

−

−

− −

= + −

=
+

−
=

φ φ y φ z Q

z P
Q

z P z

P P z Q
P

k k k k p k k

T

p k k

k T

p k k p k

k k p k k

k





, (17) 
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where 

1 ( ) ( ) 1 T ( )

, , ,

1

T ( ) ( )

, ,

1

, ( ) , ,

,

R
T m j p m j p m m j p

k p k p k yz zz yz k p k

i

R
m j p m j p

zz p k p k

i



− +  + −  +

=

+  +

=

=  = = 

= 





P z z φ Ξ Ξ Ξ y z

Ξ z z

 is the 

forgetting factor, 0.9 1  .The purpose of this is to "discard" past information 

during recursion, in order to prevent the past data from overwhelming the new 
data and causing the algorithm to lose its ability to adjust parameters, 
meanwhile, avoid the accumulation of errors. The other forgetting factors in this 
study have equivalent effects and will not be further discussed. The selection of 
the forgetting factor significantly influences both the convergence speed of the 
algorithm and the accuracy of the model [59,60]. 

The major advantage of the PAST lies in its ability to circumvent SVD during 
the identification process and instead transforms the estimation of the 
generalized observable matrix into an unconstrained optimization problem [61]. 

The problem can be formulated as follows: Consider the observation vector ξ  

and the criterion function below, where W represents the signal subspace of 
autocorrelation matrix of observation vector: 

 
2

( ) = −W ξ WW ξ
TJ E , (18) 

The criterion function is reformulated into a recursive form incorporating a 
forgetting factor, 0.9 1  : 

2

1

( ) −

=

= −W ξ W W ξ
k

k t T

k t k k t

t

J  , (19) 

If 
T

t k t=d W ξ ，Eq. (19) can be written: 

2

1

( ) −

=

= −W ξ W d
k

k t

k t k t

t

J  , (20) 

The fundamental recurrence equations of the PAST are as follows: 
T

1

1

T

T

1

1

T

1

/ ( )

[ ] /

t t t

t t t

t t t t

t t t t

t t t t

t t t t





−

−

−

−

−

=

=

= +

= −

= −

= +

d W ξ

g K d

q g d g

K K q g

e ξ W d

W W e q

, (21) 

The most crucial step among them is to employ the concept of approximate 

projection, wherein 
T

1t t−W ξ  replaces 
T

t tW ξ  for recursive purposes. ,t tg q  and et  

serve as the intermediary variable in recursive calculations, while   represents 
the forgetting factor. 

The orthogonality of Wk  cannot be guaranteed by using 
T

1t t−W ξ  to replace 
T

t tW ξ  for recursion. Therefore, it is necessary to orthogonalize Wk  in each 

iteration during the calculation process, as demonstrated in Eq. (22): 
T 1/2( )k k k k

−=W W W W  (22) 

The Eq. (22) is expressed as a recursive relation in the following format: 
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2 2 2 1/2

2'

1

' T

1

((1 ) 1)

(1 )

t t t t

t t t t t t

t t t t

− −

−

−

= + −

= + +

= +

σ q e q

e σ W q q e

W W e q

, (23) 

The challenge with PAST lies in identifying a suitable observation vector that 
incorporates information of the generalized observable matrix. In this study, we 
address this issue by employing a constructed Markov matrix to determine the 
observation vector, which can be derived from Eq. (4), Eq. (8), and Eq. (11): 

,=Γ x Mzf k p k , (24) 

The above equation implies that the column space of matrix ,Mz p k  is 

equivalent to the column space of matrix ,Γ f k . Assuming ,=ξ Mzk p k , we can 

deduce that ,=W Γk f k . The initialization of Wk  allows for the selection of any 

matrix, however, in order to expedite convergence of the PAST, it is recommended 
to obtain input and measurements from a length collected at the initial stage of 
the algorithm based on offline subspace identification [62]. 

The matrices A, B, C, and K can be obtained using Γ f : 

, (1: ,:)=C Γ f k m , (25) 

where, m represents the dimension of output. 
The last column of the Markov parameter matrix M is acquired: 

,

1

f k

f −

 
 
 = =
 
 
 

CB

CAB
E Γ B

CA B

, (26) 

Therefore 
†

,

(:,1: )

(:, 1: )

=

=

= + +

B Γ E

B B

K B

f k

j

j j m

, (27) 

where the variable j represents the dimensionality of the input. 

The shift invariant property of Γ f  is utilized to obtain this: 
†

, ,(1: ( 1),:) ( 1: ,:)= − +

= +

A Γ Γ

A A KC

f k f kn f n nf
,(28) 

where the dimension of the state variable is represented by n. 

3.3. VWPAST method 

The data received by the gas turbine from the sensor in practical 
engineering may be contaminated by impulsive noise, which is primarily 
characterized by sudden and rapid fluctuations in the measurement within a 
short period of time. Impulsive noise typically originates from sensor 
malfunctions, electromagnetic interference in measurement and control systems, 
or combustion oscillation, among other sources. Although not inherently 
indicative of a fault, this can potentially impact the robustness of the 
identification process. The present section enhances the PAST by incorporating 
the influence of weights. A surrogate modeling approach based on variable 
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weight PAST (VWPAST) is proposed. 
The new criterion function is established based on Eq. (18), as depicted in 

Eq. (29): 
2

T

1

( )
k

k t

k k t k k t

t

J w −

=

= −W ξ W W ξ , (29) 

The Mahalanobis distance will be employed in this study to establish the 
weight coefficient, and the weight w will be defined as follows: 

2

1

1

( , )−

=
z Z

k

m k k

w
d

, (30) 

The Mahalanobis distance between zk and −1
Zk , denoted as 1( , )−z Zm k kd  

[63], is being considered.   ( ) ( 1)

1 1 2 1

m j k

k k

+  −

− −= Z z z z . 

1 T

1 1, 1,( , ) ( ) ( )m k k k k m k k md −

− − −= − −z Z z Z S z Z , (31) 

where the covariance between zk  and 1,−Zk m , denoted as 1,( , )−=S z Zk k mCov .The 

variable 1,k m−Z  represents the arithmetic mean of the set 
1

1 1,

1

1
, ,

1

k
k i

k k m i

ik
 

−
−

− −

=

=
−
Z Z z  is the forgetting factor ,0.9 1  . 

The data distribution at time k is considered inconsistent with the preceding 

data if the Mahalanobis distance between zk  and 1−Zk  exhibits a sharp increase, 

thereby indicating an elevated probability of outliers in zk . The weight w 

assigned to update Wk  in this iteration will be reduced, ensuring the 

calculation's robustness. 
The recurrence form for Eq. (21) will be transformed as follows: 

T

1

1

T

T

1

1

T

1

/ ( )

[ ] /

t t t

t t t

t t t t t t

t t t t

t t t t

t t t t

w w



−

−

−

−

−

=

=

= +

= −

= −

= +

d W ξ

g K d

q g d g

K K q g

e ξ W d

W W e q

, (32) 

The aforementioned is an enhancement of the PAST. The inclusion of weight 
in the recurrence process enhances the algorithm robustness. 

4. The unified framework for surrogate modeling 

The present section presents a unified framework for generating a gas 
turbine surrogate model, as illustrated in Fig. 6. 
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Fig. 6. The unified framework for gas turbine surrogate modeling 

The first step involves initializing the parameters 0 0 0 0, , ,φ W P K  that require 

updating. Subsequently, the current input and measurements obtained from the 
sensor are received under closed-loop conditions and then normalized. The input 
and measurement data collected at every moment are utilized to update 
parameters within the algorithm based on the form in Fig. 4, ensuring that the 
surrogate model output is consistent with the actual measurements. The specific 

procedure involves updating parameter ,φ Pk k  through recursive least square 

method and the Markov parameter matrix Mk is obtained. The parameters Kk, Wk 
are then updated using either the PAST method or VWPAST method, and finally 

=Γ Wk k  is set to extract the parameter matrices Ak, Bk, Ck, Kk of the model from 

the generalized observable matrix Γk . Table 2. is the specific process. 

Table 2. Process for generating gas turbine surrogate model 
Step1: Determine the order of the model n, future time domain length and past 
time domain length f=p=l. Determine the forgetting factors , ,   .Initialize 

1 T 1 T

0 0 0 0 0 , , 0 0 0 0 0, , , , , ( ) , ,p k p k yz zz

− −= = =φ W P K P z z φ Ξ Ξ K d d W  is obtained by offline 

identification algorithm. 

Step2: Normalize the input and measurements. 

T

T

( )

( )

k

k

k

norm

norm

 
=  
  

u
z

y
, 

Step3: Update ,φ Pk k  and calculate the Markov parameter matrix Mk. 
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1 1 ,

T

, 1

T

, 1 ,

1 1 ,

( )

            , 

( )

k k k k p k k

p k k

k

p k k p k

k k p k k

k





− −

−

−

− −

= + −

=
+

−
=

φ φ y φ z Q

z P
Q

z P z

P P z Q
P

 (33) 

, 1 1 , 1( , 1) ,k i R i i k i m ndiag i − + − = −  +M J h M J  is a m n  matrix in which all elements are 

1, ( , )diag v p  means that placing the elements of vector v on the p-th diagonal. p = 
0 denotes the main diagonal, with p > 0 located above the main diagonal and p < 
0 located below it. 

end 

Step4: Update the parameter ,k kK W . 

PAST  

T

1

1

T

T

1

1

/ ( )      , 

[ ] /                            

k k k

k k k

k k k k

k k k k

k k k k





−

−

−

−

=

=

= +

= −

= −

d W ξ

g K d

q g d g

K K q g

e ξ W d

 (34) 

2 2 2 1/2

2'

1

' T

1

((1 ) 1)

(1 )           ,

k k k k

k k k k k k

k k k k

− −

−

−

= + −

= + +

= +

σ q e q

e σ W q q e

W W e q

 (35) 

VWPAST 

1 T

1 1, 1,( , ) ( ) ( )   ,m k k k k m k k md −

− − −= − −z Z z Z S z Z  (36) 

2

1

1
  ,

( , )
k

m k k

w
d −

=
z Z

 (37) 
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1

1
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T

1

1
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]

k k k
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k k k k k k

k k k k

k k k k
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

−

−

−

−

=

=

= +

= −

= −

d W ξ

g K d

q g d g

K K q g

e ξ W d

 (38) 

2 2 2 1/2

2'

1

' T

1

((1 ) 1)

(1 )            ,

k k k k

k k k k k k

k k k k

− −

−

−

= + −

= + +

= +

σ q e q

e σ W q q e

W W e q

 (39) 

Step5: Calculate the extended observable matrix. 

,  ,f k k=Γ W  (40) 
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Step6: Extract parameter matrices A,B,C,K 

, (1 : ,: , ) f k m=C Γ  (41) 

†

,

1

    

(:,1: )

(:, 1:

,

)

f k

f

j

j j m

−

 
 
 =
 
 
 

=

= + +

CB

CAB
B Γ

CA B

B B

K B

 (42) 

†

, ,(1: ( 1),:) ( 1: ,:)

                                         ,

f k f kn f n nf= − +

= +

A Γ Γ

A A KC
 (43) 

Repeat step 2- steps 6 

End 

5. Results 

5.1. Surrogate model verification 

Section 5.1.1, Section 5.1.2 and Section 5.1.3 are conducted within 
simulation condition. The present study establishes a simulation performance 
model for a three-shaft gas turbine to accurately replicate the operational 
process of a gas turbine. The data presented in Section 5.1.4 represents actual 
measurements obtained from bench experiment of a gas turbine.  

 The gas turbine performance model serves as the simulation model. Under 
simulation conditions, it assumes that external factors are solely influenced by 
temperature and pressure, with boundary conditions set at an atmospheric 
temperature of 288.15K and atmospheric pressure of 101.325kPa. The 
simulation step size is defined as 0.01, while the numerical calculation method 
employed is Runge-Kutta algorithm of order 4. For the specific equations used in 
the modeling process, the reader is referred to the paper [64].  

The variables were normalized in this study to prevent the occurrence of ill-
conditioned matrices during the establishment of the surrogate model. The 
equation is as follows: 

min

max min

−
=

−

x x
x

x x
norm , (44) 

where the normalized data is denoted as xnorm . The minimum and maximum 

values of the sequence are represented by minx  and maxx  respectively. 

5.1.1. Analysis of modeling results for rated steady-state condition 

The modeling results for rated steady-state condition are first analyzed. The 
selected model input is fuel flow wf. Given a rated power signal, the white noise 

ek  has a mean of 0 and a variance of 0.05. Fig. 7 illustrates the gas turbine fuel 

flow at present: 
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Fig. 7. Fuel flow for rated condition 
The vertical coordinate is the fuel flow for rated condition. With the given 

hyperparameters in the modeling process, including a model order of n=7 (The 
selection of model order in this research is grounded on Assumption 1, detailed 
in Section 3.2. This choice was reached after numerous trials, aiming to maintain 
the model order as minimal as feasible while ensuring the accuracy of the 
model), a past and future time domain size of p = f = 25, and forgetting factors of 

0.995  = = = , please refer to Step 1 in the flowchart for initializing the 
variables in the recursion process. 

The modulus length of the eigenvalue of the system matrix A  is obtained at 
each step during the modeling process in order to observe changes in the 
surrogate model, as depicted in Fig. 8. 

 

Fig. 8. The modulus length of the model eigenvalue for rated condition 

In Fig. 8, the vertical coordinate denotes the modulus length of the 
eigenvalue (Eig) of the model system matrix. The modulus length of eigenvalues 
is less than 1, indicating that the model is asymptotically stable. Moreover, the 
eigenvalue gradually converges to a constant value from its initial dynamic 
change, implying that the surrogate model progressively reaches a stable state 
through recurrence. The selected model outputs include the outlet temperature 
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of the high-pressure compressor (T3), the outlet temperature of the low-pressure 
turbine (T6), the speed of the low-pressure compressor (n1), the speed of the 
high-pressure compressor (n2), and the outlet pressure of the low-pressure 
turbine (P6). Fig. 9 is the comparison between the surrogate model output and 
the performance model output, with the blue line representing the surrogate 
model output and the red line representing the performance model output. 

 

Fig. 9. Comparison of surrogate model output and performance model output for 
rated condition 

The fit between the surrogate model output and the performance model 
output is deemed satisfactory, as evidenced by Fig. 9. The discrepancy between 
the surrogate model output and the performance model output is quantified 
using the following methodology: 

ˆ
100%i i

i

y y
Error

y

−
=   (45) 

where ˆiy  represents each output of surrogate model at the i-th time point, and 

iy  represents each output of performance model at the i-th time point. 

The accuracy and convergence speed of the model are generally influenced 
by the choice of forgetting factor. Fig. 10 is the error between the surrogate 
model output and the performance model output for different forgetting factors 
(FF).  
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Fig. 10. Error of surrogate model output and performance model output for 
different forgetting factors (%) 

The progression of recursion in Fig. 10 demonstrates a gradual decrease and 
eventual stabilization of the error between the surrogate model output and 
performance model output. This pattern aligns with the change in eigenvalue, 
indicating a correlation with the selection of forgetting factor during recursion. 
The smaller the value of the forgetting factor, the higher the convergence rate of 
the model. Taking n1 as an example, it can be observed that when the forgetting 
factor is set to 0.990, the model achieves its fastest convergence rate; whereas 
with a forgetting factor of 0.999, the convergence rate becomes significantly 
slower. The robustness of the identification decreases when the forgetting factor 
is too small, as indicated by an increase in the error between the surrogate model 
output and performance model output at specific points, such as when using a 
forgetting factor of 0.990 or 0.992. 

The mean steady-state error of the model was analyzed and quantified using 
the mean absolute percentage error (MAPE) for different forgetting factors. The 
calculation equation is as follows: 

1

ˆ1
MAPE 100%

n
i i

i i

y y

n y=

−
=   (46) 

Table 3. Steady-state error of model with different forgetting factors (%) 
Variables T3 T6 n1 n2 P6 

FF 

0.990 0.0055 0.0072 0.0028 0.0066 0.0050 
0.992 0.0046 0.0059 0.0039 0.0062 0.0036 
0.995 0.0028 0.0056 0.0024 0.0054 0.0024 
0.997 0.0016 0.0052 0.0016 0.0049 0.0021 
0.999 0.0004 0.0045 0.0011 0.0042 0.0005 
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The results in Table 3 demonstrate a decrease in MAPE as the forgetting 
factor increases; however, this improvement comes at the expense of slower 
convergence speed. To strike a balance between model accuracy and convergence 
speed, the forgetting factor of 0.995 was chosen for this study, ensuring a steady-
state error below 0.0056%. 

The analysis of modeling results for the rated steady-state working 
condition reveals that the output of established surrogate model based on the 
Markov-PAST effectively tracks gas turbine measurements in steady-state 
conditions, while ensuring robustness and convergence speed through 
appropriate selection of forgetting factors. 

5.1.2. Analysis of modeling results in the presence of impulsive noise 

The operation of gas turbines in practical engineering is occasionally 
disrupted by impulsive noise, which manifests as sudden fluctuations in 
measurements within a short time frame. Although not indicative of a fault, this 
phenomenon can impact identification accuracy and diminish robustness. The 
present study addresses this issue by incorporating the impact of weight into the 
recurrent process of the original algorithm, thereby proposing the VWPAST 
algorithm. The measurement data in Section 5.1.1 has been augmented with an 
impulsive noise, characterized by a zero mean and a variance of 0.5, to validate 
the VWPAST algorithm. 

Fig. 11 is the output of the surrogate model obtained using the PAST and 
VWPAST, respectively. 

 

Fig. 11. Comparison of model output based on PAST and VWPAST when adding 
impulsive noise 

The analysis of Fig. 11 reveals that both methods exhibit a certain level of 
output value mutation when subjected to impulsive noise. Taking P6 as an 
example, the enlarged figure demonstrates that the VWPAST exhibits smaller 
output value mutations compared to the PAST. The above results demonstrate 
that the output of the surrogate model established by VWPAST can contribute to 
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impulsive noise reduction to a certain extent. 
Fig. 12 is the weight variation in the iterative process with the introduction 

of impulsive noise. The vertical coordinate is the change in weight w: 

 

Fig. 12. The change of weight coefficient when adding impulsive noise 

The weight coefficient decreases to nearly 0, as depicted in Fig. 12, 
indicating a deviation of the Mahalanobis distance from the original distribution 
for the measurement data at this particular time due to the introduction of 
impulsive noise. Consequently, there is a sudden increase in the Mahalanobis 
distance between the two, leading to an abrupt drop in weight. Subsequently, 
when the impulsive noise subsides, the weight gradually reverts back to its 
original value. 

The VWPAST is utilized in the process to obtain the eigenvalue modulus 
length of the system matrix A  at each step of the recurrence process, enabling 
observation of model changes throughout the recurrence process, the results are 
compared with the PAST, as depicted in Fig. 13. 

 

Fig. 13. Comparison of eigenvalue modulus length changes between PAST and 
VWPAST when adding impulsive noise 

The vertical coordinate is the change of the eigenvalue modulus length of the 
eigenvalues of the model system matrix A  obtained by using the two methods. 
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The eigenvalue of the PAST method exhibits a sudden change at the moment 
when impulsive noise occurs, leading to a decrease in identification robustness. 
However, with the passage of time, it gradually reverts back to its original value. 
The convergence speed of the main eigenvalue using the VWPAST method is 
relatively slow due to the presence of weight in the recurrence process. However, 
this weight plays a crucial role by minimizing its impact during impulsive noise 
occurrences, thereby mitigating mutations and allowing for a consistent trend 
towards gradual convergence to a specific value. The fluctuation of small 
eigenvalues becomes irregular, however, due to their relatively low contribution 
rate to the system matrix, it will not significantly impact the overall identification 
process. 

5.1.3. Analysis of modeling results for variable working conditions 

The applicability of the surrogate model building method proposed in this 
study for variable working conditions is verified by utilizing a performance 
model to simulate the operation of a gas turbine within a specific operating 
range. 

The power signal depicted in Fig. 14 is presented in this working diagram. 
The working diagram encompasses the operational conditions of five processes, 
simulating the condition of load lifting and load reduction during actual 
operation. 

 

Fig. 14. Demand power signal for variable working conditions 

The vertical coordinate is the demand power signal. The comparison 
between the surrogate model output and the performance model output for 
different working conditions is illustrated in Fig. 15. 
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Fig. 15. Comparison of surrogate model output and performance model output 
for variable working conditions 

As depicted in Fig. 15, the surrogate model output and performance model 
output exhibit a high degree of conformity even for variable working conditions. 
The error between the two is quantified by Eq. (35), as illustrated in Fig. 16. 

 

Fig. 16. Error between surrogate model output and performance model output 
for varying working conditions 

The error gradually stabilizes from the initial dynamic change, similar to the 
rated working condition, as depicted in Fig. 16. However, during the working 
condition switching stage, the error increases to a certain extent. This increase is 
particularly significant when there is a large span in the working condition 
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switching. For instance, as illustrated by the red box in the figure, when the 
working condition transitions from 0.6 to 0.9 and rapidly decreases back to 0.5, 
there is a dramatic surge in error magnitude. The specific changes in error are 
presented in Table 4. 

Table 4. Error between surrogate model output and performance model output 
for variable working conditions (%) 

Variables T3 T6 n1 n2 P6 
MAPE 0.125 0.068 0.275 0.025 0.231 
Errormax 1.152 0.801 2.038 0.206 1.888 

The MAPE between the surrogate model output and the performance model 
output is observed to be below 0.275% for variable working conditions, as 
depicted in Table 4. Notably, the maximum error of 2.038% occurs when there is 
a wide range of changes in the working conditions. 

5.1.4. Analysis of modeling results from bench experiment of an actual gas 
turbine  

In order to validate the practical applicability of the proposed surrogate 
model, this study utilized operational data from a specific three-shaft gas turbine 
in a bench experiment and employed the surrogate model for real-time tracking 
of measurement data. The experiment was conducted under standard 
atmospheric pressure. Fig. 17 illustrates the variations in ambient temperature 
and given power during this bench test. 

 

Fig. 17. Ambient temperature and given power of three-shaft gas turbine bench 
experiment 

The vertical coordinate is the atmospheric temperature and the given power 
signal, which are the boundary conditions of gas turbine operation, and the 
horizontal coordinate is the running time of this bench experiment. Fig. 18 is the 
results of tracking actual gas turbine operation data using the surrogate model 
established. 
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Fig. 18. Comparison of surrogate model output and actual measurements  

The figure demonstrates that the output of the surrogate model remains 
consistent with the actual gas turbine measurement even when subjected to 
variable ambient temperature and operating conditions. Fig. 19 visually 
illustrates the discrepancy between the two. 

 

Fig. 19. Error between surrogate model output and actual measurements 

The error between the surrogate model output and the actual 
measurements of the gas turbine are observed to be consistently within a low 
range, as depicted in Fig. 19. The position where the error increases is located at 
the point of switching working conditions, which is similar to the variable 
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working conditions in simulation. The error will tend to escalate under low 
operating conditions; however, overall, it remains within an acceptable range. 
These errors are quantified using two indices: maximum relative error and 
MAPE, which are presented in Table 5. 

Table 5. Error between surrogate model output and actual measurements in 
bench experiment (%) 

Variables T3 T6 n1 n2 P6 
MAPE 0.060 0.059 0.041 0.083 0.025 
Errormax 0.393 0.224 0.220 0.549 0.458 

The results in Table 5 demonstrate that the maximum relative error between 
the output of the surrogate model and the measurements of the actual gas 
turbine is 0.549%, and MAPE is within 0.083%, thereby substantiating the 
established model's credibility in real engineering application. 

5.2. Application of surrogate model for condition monitoring 

The surrogate model established in this study is mainly oriented to gas 
turbine condition monitoring. Since the established surrogate model can be 
consistent with the behavior of the actual gas turbine, the model parameters of 
the surrogate model will also change correspondingly when the gas turbine is 
abnormal. If the feature quantity of the model structure evolution can be 
extracted, the real-time feedback on the gas turbine condition can be obtained. 
The objective of this section is to utilize changes in model parameters to achieve 
condition monitoring of gas turbines under three typical operating conditions. 

5.2.1. Sudden fault detection 

This section will briefly discuss an instance of a sudden failure in a gas 
turbine. The term "sudden failure" primarily refers to the damage inflicted on the 
gas turbine by external or internal factors during a specific time period. This is 
predominantly characterized by abrupt variations in efficiency and flow rate 
within the gas path system, consequently leading to alterations in the operational 
characteristics of the gas turbine at that particular moment [65]. Based on this 
characteristic, the performance model of a gas turbine is utilized in this study to 
simulate the condition when the compressor efficiency abruptly decreases to 
95% of its normal condition [66], as depicted in Fig. 20, the vertical coordinate is 
the decrease of compressor efficiency. Fig. 21 is fuel flow wf and measurements 
of the gas turbine. 
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Fig. 20. Degree of decrease in low-pressure compressor efficiency for sudden 
failure 

 

Fig. 21. Changes in input and measurement for sudden failure 

Fig. 21 illustrates that when the fault was introduced at 20s, due to the 
closed-loop control strategy, the control system had to increase the fuel flow for 
the gas turbine to maintain its original output power when a decrease in 
efficiency. Consequently, this affected other measurements. By employing the 
method proposed in this study and using the PAST as an example, we obtained 
changes in eigenvalue modulus length of the system matrix under these 
conditions to observe how sudden faults impact the model, as depicted in Fig. 22. 

 

Fig. 22. Change of model eigenvalue modulus length for sudden failure 
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The observation from Fig. 22 reveals that at 20s, similar to the model 
changes in a normal condition, the primary eigenvalue underwent dynamic 
variations initially and gradually reached stability. When a fault occurred, the 
primary eigenvalue exhibited an abrupt change and progressively converged 
towards another fixed value with increasing running time, indicating a 
modification in the model structure at the time of fault occurrence. The mapping 
relationship between model inputs and outputs has consequently undergone 
alteration and reconstruction. The change in the model structure signifies a 
deviation of the gas turbine from its normal operating condition. Based on this 
characteristic, fault detection of the gas turbine can be conducted. 

The eigenvalues of the system matrix reflect the characteristics of the model 
itself, but in practical application, the change of the eigenvalue is limited to a 
small range, so it is difficult to capture this change, and it is necessary to find an 
additional feature to represent the change of the model. According to the analysis 

in Section 3.2, Markov parameter vector 
1p− =  φ CB CAB CA B  in the 

modeling process contains the information of model parameters A, B, C, K, whose 
physical significance indicates the influence of p time domain data before k time 
on the current output. Therefore, φ  is selected in this section as the feature 
quantity of model parameters evolution, which is called model mismatch feature 
in this study (This statement requires mathematical proof process, which will be 
reflected in the subsequent research, but it is not the main content of this study, 
which is only for demonstration).  

φ  is a ( 1)m m p +  matrix, which can be regarded as a multidimensional 

distribution, m is the measurement dimension. We use Wasserstein distance [67] 
to quantify the distributed distance between normal and actual gas turbine, and 
the calculation equation of Wasserstein distance is as follows: 

1 1

( , )~ ( , )
( , ) ( , )

( , ) ( inf ( , ) ) ( inf [ ])
 

= − =  − x y x y x y
s ss s

x y x y
a h a h

w a h dxdy 
 

 , (47) 

where h denotes the distribution of feature in normal gas turbine, a represents 
that of the distribution of feature in actual gas turbine, s is the order. When s=1, 
Wasserstein distance is employed to compute the distance between two vectors 
with identical dimensions. The Wasserstein distance is employed for computing 
the distance between two matrices or tensors of identical dimensions when s=2. 
The Wasserstein distance is employed to compute the dissimilarity between two 
shapes of different dimensions when the order of s is higher dimensional. 
Considering that the mismatch feature takes the form of a matrix, s=2 is selected 
for computation in this study. 

Fig. 23 is the Wasserstein distance of model mismatch feature change in the 
case shown in Fig. 21: 
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Fig. 23. Wasserstein distance of model mismatch feature distribution for sudden 
fault 

As illustrated in the figure above, the Wasserstein distance stays 
approximately at 0 for the first 20s, suggesting that the gas turbine condition is 
nearly normal during this interval. At 20s, the gas turbine experienced a sudden 
failure, coinciding with a sharp increase in the Wasserstein distance. This 
indicates a shift in the model structure, moving away from the normal range and 
highlighting abnormal condition of the gas turbine. Moreover, this alteration is 
more pronounced than changes in the model eigenvalue, demonstrating broader 
applicability in condition monitoring of gas turbine. 

5.2.2. Gradational degradation assessment 

The present section will examine the alterations in the model that occur 
during the progressive degradation of a gas turbine. The degradation of gas 
turbines primarily encompasses compressor fouling, blade erosion and 
corrosion, and increased blade tip clearance. These failures do not immediately 
render the gas turbine inoperable. Instead, they gradually diminish the 
performance of the gas turbine, leading to heightened fuel consumption and 
reduced efficiency. In severe cases, these issues can ultimately result in a 
complete failure of the gas turbine [68]. The degradation is primarily manifested 
by the gradual degradation of performance variables (flow and efficiency) in gas 
turbines, which can be categorized into exponential and linear degradation [69]. 
In order to observe the model parameters changes under degradation, this 
section presents a case study on the linear decline of compressor efficiency. The 
decline in compressor efficiency initiates at 20s and gradually reaches 95% of its 
normal condition, as illustrated in Fig. 24, the vertical coordinate is the decrease 
of compressor efficiency. 
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Fig. 24. Degree of decrease in low-pressure compressor efficiency for gradual 
degradation 

Fig. 25 is the changes of measurements and fuel flow in the linear 
degradation condition. 

 

Fig. 25. Changes in input and measurement under gradual degradation 

Fig. 25 demonstrates that in the event of a linear degradation in compressor 
efficiency, resembling a sudden failure, the control system must increase fuel 
flow to ensure constant output power while causing changes in other 
measurements. In the degradation condition, this study proposes employing the 
method to obtain the change in eigenvalue modulus length of system matrix A , 
as depicted in Fig. 26. 
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Fig. 26. Change of model eigenvalue modulus length under gradual degradation 

The change in the model eigenvalue observed in Fig. 26 indicates that, 
during degradation, the model structure gradually deviates from its original 
condition. The feedback information of the model also indicates a gradual change 
in the condition of the gas turbine. Similar to Section 5.2.1, Fig. 27 illustrates the 
Wasserstein distance change of model mismatch feature between the normal and 
the actual condition of gas turbine. 

 

Fig. 27. Wasserstein distance of model mismatch feature distribution for 
gradational degradation 

The figure clearly shows that the Wasserstein distance begins to increase at 
20s, signaling that the gas turbine is progressively moving away from its normal 
operating range. This observation enables the implementation of predefined 
maintenance strategies based on the extent of deviation, thereby ensuring safe 
functionality of gas turbines. 

5.2.3. Sudden fault detection with impulsive noise 

Drawing on the actual gas turbine operational data presented in Section 
5.1.4, this section introduces a simulation of a sudden fault and impulsive noise 
to attest to the effectiveness of the VWPAST in improving algorithm robustness 
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within engineering application. The operational data, after the introduction of 
impulsive noise and sudden failure, are detailed as follows: 

 

Fig. 28. Operation data after implantation of impulsive noise and sudden failure 
Fig. 28 illustrates an instance where impulsive noise initially appears, 

typically manifested as fluctuations in the collected signal. These fluctuations can 
be attributed to various factors, such as gas turbine sensor malfunctions or 
electromagnetic interference. It is important to note that these disturbances are 
not indicative of an inherent fault in the gas turbine. However, they can lead to 
false alarm in fault detection and might even result in failure to converge 
subsequently of algorithm. Over time, a sudden failure emerged, a common 
occurrence in practical engineering. Fig. 29 is the comparison of using VWPAST 
and PAST to detect the faults shown in the case shown in Fig. 28: 

 

Fig. 29. Comparison of detection results of PAST and VWPAST 
Fig. 29 illustrates that in the presence of impulsive noise, the Wasserstein 

distance associated with the PAST sharply rises to a value near 3000s, in contrast 
to the VWPAST, which exhibits only minor fluctuations. This suggests that the 
VWPAST algorithm retains considerable robustness against impulsive noise, 
leading to a lower false alarm rate in practical application. Additionally, the 
VWPAST demonstrates the capability to accurately detect sudden failures though 
its convergence speed is somewhat slower compared to the PAST. This presents 
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an area for improvement in future research endeavors. 
In summary, the surrogate model established in this study contains actual 

gas turbine condition information, which can be applied to the field of gas 
turbine condition monitoring. By using the changes of model parameters, the 
feedback of gas turbine condition can be accurately obtained in the process of gas 
turbine sudden failure and gradual degradation, which strongly supports the 
development of gas turbine digital twin and realize bidirectional communication 
of gas turbine digital twin. 

6. Conclusions 

This paper establishes a surrogate model based on a Markov-PAST approach 
for gas turbine condition monitoring, which can be instrumental in the 
development of gas turbine digital twin. Utilizing the linear model, a Markov 
parameter matrix is constructed to derive the observation vector. The signal 
subspace, corresponding to the autocorrelation matrix of the observation vector, 
is determined through the PAST. This subspace serves as the equivalent of a 
generalized observable matrix, enabling the online identification of model 
parameters. In this process, the minimum noise criterion is established and the 
recursive least square method is employed to mitigate the impact of closed-loop 
identification. Furthermore, an enhanced form VWPAST is introduced to enhance 
the algorithm robustness. Both simulation and experiment data are utilized to 
validate the effectiveness of the established surrogate model. 

The findings from the rated steady-state condition demonstrate that, with a 
forgetting factor of 0.995, the model exhibits moderate convergence speed and 
accuracy, with an MAPE of less than 0.0056%. Additionally, the VWPAST is 
verified using steady-state data contaminated by impulsive noise, revealing 
enhanced robustness in identification when such impulsive occurs. The surrogate 
model output can effectively track the performance model output even when 
there are changes in operating conditions. For operating conditions, the error 
remains below 2.038% and the MAPE is less than 0.275%. These results 
demonstrate that the proposed model is applicable for gas turbines for variable 
operating conditions. In a gas turbine bench test, the maximum relative error 
between the output of the surrogate model and the measurements of the actual 
gas turbine is 0.549%, and MAPE is within 0.083%, which proves that the 
surrogate model certainly has value in engineering application.  

The surrogate model proposed in this study exhibits great potential in the 
field of gas turbine condition monitoring. Based on two examples of sudden fault 
and gradational degradation, the results demonstrate that as the gas turbine 
condition changes, so does the eigenvalue of the surrogate model, indicating a 
corresponding alteration in its structural configuration. Wasserstein distance 
was used to quantify the changes of model mismatch features distribution 
between the normal condition and the actual gas turbine. It can be seen from the 
results that the model mismatch features are easier to capture in practical 
applications and have more general applicability than the changes in the model 
eigenvalue. In addition, compared with the PAST, VWPAST has stronger 
robustness when impulsive noise occurs, and can significantly reduce the false 
alarm rate. 

The surrogate model developed in this study is based on a linear framework 
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and employs IHA form for online identification, ensuring both computational 
efficiency and high-precision results. By monitoring shifts in the surrogate model 
parameters, feedback from the gas turbines can be acquired for condition 
monitoring, which reflects the characteristics of real-time and bidirectional 
communication of digital twin and introduces a novel approach to the 
development of gas turbine digital twin. In future research, the convergence 
speed of the surrogate model should be examined to streamline the algorithm, 
enabling the model to converge more rapidly to the true value and function 
effectively at high sampling frequencies. Moreover, integrating prior physical 
knowledge about gas turbines into the model could allow it to concentrate on the 
evolution of one or more specific components during parameter adjustments. 
This enhancement would significantly improve its performance in condition 
monitoring. 
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