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Abstract. Problem definition: The continuously soaring prices of new drugs and their un-
certain effectiveness in clinical practice have put substantial risks on insurers/payers. To
induce insurer coverage of their new drugs, manufacturers start to propose an innovative
outcome-based reimbursement (OBR) scheme under which manufacturers refund insurers
(and possibly patients) if the drugs fail to achieve a prespecified treatment target. We inves-
tigate the impact of OBR on insurers, manufacturers, and patients.Academic/practical rele-
vance: Although OBR sounds intuitively appealing, its true impact is under much debate
and depends particularly on the design of OBR. Our study sheds light on the optimal de-
sign of OBR and the debate around OBR, considering key trade-offs and key elements not
covered in prior literature.Methodology:We develop a Stackelberg game under which the
manufacturer designs a rebate scheme for its drug, either non-OBR or OBR, considering
the trade-off between a favorable formulary position and the rebate provided. The insurer
subsequently determines its formulary for the drug as well as other alternative drugs within
the same disease category considering the trade-off between its spending and patient health
benefits. Using data on 14 drugs treating a common disease, hyperlipidemia, we estimate
through a multinomial logit model the demand of the 14 drugs and conduct counterfactual
analyses on the impact of OBR. Results: Under the optimal OBR, the manufacturer lowers
the insurer’s risk but inflates the wholesale price (hence, may not reduce insurer spending).
OBR also induces a better formulary position for the manufacturer, which, hence, improves
patient access to new drugs. Further, rebates to the insurer and patients affect demand
through different mechanisms. Including patient rebates in OBR lowers patient expenses
and increases drug demand but further increases insurer spending. Managerial implica-
tions:We demonstrate the structure of an optimal formulary and its application in practice.
We caution insurers/payers who are seeking OBR to reduce their spending.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2021.1051.
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1. Introduction
Drug prices, especially those of the newly approved
drugs, have been continuously soaring, casting signifi-
cant financial burdens on the U.S. healthcare system.
In 2017, total U.S. spending on retail prescription
drugs reached $333.4 billion, or $1,074 per capita,
which accounts for 10% of total U.S. health expendi-
ture (Centers for Medicare and Medicaid Services
2017b). At the same time, 49.5% of prescription drug
spending is attributed to the most expensive drugs,
which account for only about 2.2% of the prescriptions
(IQVIA 2019). For example, Herceptin, a drug for
breast cancer, has an annual treatment cost of $70,000
per patient (Nordqvist 2012). Given the high prices, in-
surers’ decisions of whether and how to cover these
drugs impact both their spending and patients’ out-of-
pocket expenses and access to these drugs.

Risks of lackluster performance of expensive new
drugs in clinical practice (as opposed to clinical trials)
further compounds insurers’ coverage decisions. The
actual health benefit of a drug in clinical practice (de-
fined as effectiveness) is typically uncertain and lower
than that observed in clinical trials (defined as efficacy)
for several reasons. First, clinical trials have strict eligi-
bility criteria for participants, often excluding patients
with multiple complications and diseases. For example,
only 6% of patients with asthma, a common disease in
the United States, could meet the eligibility criteria for
asthma-related clinical trials (Travers et al. 2007). Such
strict eligibility criteria make it nearly impossible to ex-
trapolate the clinical trial results to the general patient
population in clinical practice. Second, unlike partici-
pants in clinical trials who are placed under rigorous
protocols to take their medication as instructed, patients
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in clinical practice up to 50% of the time do not take
their medications as prescribed unintentionally or inten-
tionally (Brown and Bussell 2011). Such nonadherence
behavior especially affects high-priced drugs, for which
patients may skip or split dosage to reduce cost, thus
compromising the effectiveness of these drugs. Third,
some drugs approved under the FDA’s accelerated ap-
proval process may later prove to be ineffective in post-
market studies (Xu et al. 2021).

High drug prices combined with uncertain effective-
ness pose tremendous risk for insurers as they decide the
coverage and formulary of these new drugs. Although
individual patients may respond to a drug differently
because of patient heterogeneity, the proportion of pa-
tients with successful treatment outcomes is typically
established and known for an existing drug; thus, an
insurer can estimate its health benefit. However, this is
not the case for a new drug because of the aforemen-
tioned reasons. As a result, many insurers, particularly
small ones, such as employer-sponsored insurance
plans, are hesitant to include these new drugs in their
formulary (Reddy 2017) because of this “ambiguous
risk” of failure (Kunreuther et al. 1993). Therefore, in-
surers may be reluctant to provide insurance coverage
because they are unable to precisely estimate the effec-
tiveness of the new drug, impeding patients’ access to
the new drug. The insurer formulary, which deter-
mines whether to include a drug and, if included, the
copayment of the drug, directly affects patients’ access,
out-of-pocket expenses, and consequently demand of
the drug.

To encourage coverage and a favorable copayment
(i.e., formulary position) for their drugs, manufacturers
recently have proposed outcome-based reimbursement
(OBR), under which the manufacturer provides rebates
to the insurer (and possibly patients) if the drug does
not achieve a prespecified treatment target. OBR has
received wide attention in the pharmaceutical industry.
For example, Harvard Pilgrim, an insurer, has recently
signed eight OBR schemes. The Centers for Medicare
and Medicaid Services (CMS) also plan to extend OBR
for its Medicare Part B prescription drugs (Centers for
Medicare and Medicaid Services 2016). Refer to Online
Table 1A in the online appendix for a summary of OBR
schemes recently implemented in the United States. Al-
though most manufacturers provide OBR rebates to in-
surers only, some provide rebates to both insurers and
patients.

Intuitively, OBR could reduce insurer spending be-
cause the insurer only pays for patients who respond
positively to the drug. Indeed, Novartis’ CEO predicts
that OBR, if widely implemented, could potentially re-
duce U.S. healthcare expenditure by 25% (Mukherjee
2017). CMS is also exploring the possibility of using
OBR to lower spending (Centers for Medicare and
Medicaid Services 2017a). However, many are skeptical

of OBR’s impact because the manufacturer may pro-
vide a rebate but inflate the base price (Thomas and
Ornstein 2017). Since 2006, the Italian National Health
System has implemented OBR for several drugs, but
the rebate from manufacturers is trifling (only 3.27%
out of the total 3.7 billion sales) (Navarria et al. 2015).
Indeed, it remains debatable whether OBR truly lowers
insurer spending.

It is also not clear whether the manufacturer benefits
from OBR or how the manufacturer should design the
OBR scheme. On the one hand, the manufacturer has a
strong incentive to exploit the most profit from a new
drug to recoup its R&D cost before patent expiration.
This may drive the manufacturer to design an exploit-
ative OBR that places the insurer at a disadvantage.
On the other hand, the manufacturer must also pro-
vide a generous OBR in exchange for a more favorable
formulary position for its drug. As mentioned, insurer
formulary, to a large extent, determines the drug de-
mand and its profit. Therefore, the impact of OBR boils
down to how the manufacturer weighs the trade-off
between a favorable formulary position and the cost of
a rebate as well as how the insurer leverages its formu-
lary to influence the manufacturer’s offer of OBR.

In this paper, we investigate, for a new drug with
uncertain effectiveness, the manufacturer’s optimal
design of the OBR scheme considering the insurer’s
optimal formulary design and how the OBR scheme
would correspondingly impact the insurer, the manu-
facturer and the patients, as compared with a non-
OBR scheme. Specifically, considering the uncertainty
in treatment outcomes resulting from a new drug’s
uncertain effectiveness in addition to patient heteroge-
neity, how should the manufacturer design its OBR,
for example, how to set the optimal wholesale price,
whether to offer outcome-based rebates also to pa-
tients, and if so, how to optimally allocate/split the re-
bates between the insurer and patients? Further, how
should the insurer design its optimal formulary as a
leverage to obtain better OBR terms from the manu-
facturer? Will and how will the rebates affect insurer
spending, manufacturer profit, and patient access to a
new drug? How do the risk attitudes of the insurer
and patients influence OBR and its impact? To ad-
dress these questions, we develop a Stackelberg game
under which the profit-maximizing manufacturer first
sets a price and rebate scheme for its new drug, either
non-OBR or OBR, considering the trade-off between a
favorable formulary position and the rebate provided
to the insurer (and possibly patients). The insurer sub-
sequently determines its formulary for the drug as
well as other alternative drugs within the same dis-
ease category, considering the trade-off between pa-
tients’ health benefits and its spending.

We develop an analytical model whose parameters
can be estimated using real-world data to provide
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answers to these questions. To this end, we calibrate
our model using data of 14 drugs used to treat a com-
mon disease, hyperlipidemia, and conduct a counterfac-
tual analysis accordingly. Specifically, we first estimate
through a multinomial logit (MNL) model the demand
of the 14 drugs as a function of drug effectiveness and
copayments. The estimation results are then used as in-
put to our analytical model to obtain the optimal OBR
scheme and the corresponding insurer formulary. We
then quantify the impact of OBR on the insurer, manu-
facturer, and patients through counterfactual analyses
of one hyperlipidemia drug, Simcor, which has evident
uncertain effectiveness.

Our analysis brings forth a few interesting insights:
First, manufacturers can leverage OBR to increase the
drug price and induce a better formulary position,
hence improving patient access to the drug at the
same time. Although the former has been documented
in the literature (e.g., Adida 2021), the latter has not
been shown previously, but is a primary driver for
manufacturers’ adoption of OBR. Second, although
OBR can lower the insurer’s risk, it does not lower the
insurer’s expected spending because of the manufac-
turer’s inflated price. Specifically, based on our coun-
terfactual analyses for the case of Simcor, the insurer
would spend about 2:4 ~ 8:9% more under OBR than
under non-OBR. Third, compared with the rebate to
the insurer, which increases drug demand indirectly
through a favorable formulary tier, it is often more ef-
ficient for the manufacturer to allocate a rebate to pa-
tients to directly improve drug demand. However, the
increased drug demand further increases insurer
spending. In particular, our counterfactual analyses
show that insurer spending increases by about
53:8% ~ 64:1% under OBR with a patient rebate as
compared with under non-OBR. Fourth, we demon-
strate that the optimal formulary has a price-nested
structure in which drugs with a lower effective price
should be assigned to a more favorable tier (i.e., a tier
with lower copayment), thus incentivizing the manu-
facturer to increase its rebate or reduce its wholesale
price. Finally, if the insurer cannot adjust the formu-
lary of existing drugs when deciding the formulary
tier of the new drug, we show with an example that
the insurer has to pay a 38.5% higher wholesale price
for the new drug. This demonstrates how the insurer
may leverage its formulary design to influence the ef-
fective price of a new drug.

Our paper makes several important contributions.
First, from a public policy perspective, current high
drug prices and spending are a contentious issue for
the government. Compared with the limited previous
literature on the impact of OBR, our paper further
sheds light on this topic by considering additional key
components, including the insurer’s optimal formu-
lary design under OBR, the uncertainty in treatment

outcomes resulting from a drug’s uncertain effective-
ness in addition to patient heterogeneity, and whether
the manufacturer should provide OBR to patients and
how to optimally split OBR between patients and the in-
surer. Second, from a modeling perspective, (1) we pro-
vide a framework for the optimal design of the key
parameters of OBR, the lacking of which has been one
of the most notable barriers for implementing OBR
(Nazareth et al. 2017); (2) we model both patients’ and
the insurer’s risk attitude toward uncertainty in the new
drug’s effectiveness and their implications on the impact
of OBR, which has not been done by prior literature;
and (3) we collect and leverage data from the 14 drugs
that treat hyperlipidemia to calibrate the model and
quantify the impact of OBR in this case, demonstrating
how our model can be operationalized and imple-
mented in practice. Third, from a theoretical perspective,
our paper extends assortment planning analysis to the
formulary design setting. The formulary design problem
resembles assortment planning but possesses special
features that require extension of the state-of-the-art
techniques in this literature. We establish structural
properties of the optimal formulary and demonstrate
how the special features of formulary design affect the
optimal assortment solution.

The remainder of the paper is organized as follows. In
Section 2, we position our paper in regard to the related
literature. In Section 3, we depict the model setup, and
in Section 4, we solve the optimal formulary without un-
certainty in drug effectiveness. In Sections 5, we optimize
the design of OBR and the insurer formulary with uncer-
tain drug effectiveness. In Section 6, we calibrate our
model to apply data on drugs treating hyperlipidemia to
assess the impact of OBR. Section 7 concludes the paper
with managerial implications. Proofs of analytical results
are in the online appendix.

2. Literature Review
Because of ever-increasing drug prices and the pres-
sure to ensure value for drug spending, OBR has re-
ceived wide attention from payers, manufacturers,
and government agencies. Studies in the health policy
field discuss qualitatively the good practices for de-
sign, implementation, and evaluation of OBR. For ex-
ample, Garrison et al. (2013) summarize the current
practices of OBR in France, Italy, Netherlands, the
United Kingdom, and the United States, and Carlson
et al. (2010) introduce the emerging OBR schemes in
the United States. Coulton et al. (2010) provide a com-
prehensive taxonomy of different variants of OBR
schemes implemented worldwide. In contrast, our pa-
per provides an analytical framework for the optimal
design of the key parameters of OBR. The absence of
such framework is one of the most notable barriers for
implementing OBR (Nazareth et al. 2017). We focus

Xu, Li, and Zhao: Outcome-Based Reimbursement
Manufacturing & Service Operations Management, 2022, vol. 24, no. 4, pp. 2029–2047, © 2022 INFORMS 2031



on OBR practices in the United States because of its
unique regulatory context and insurance market.

Studies in the health economics field examine OBR
in various settings analytically to assess its impact on
the pharmaceutical industry (e.g., Zaric and Xie 2009,
Antonanzas et al. 2011, Mahjoub et al. 2018). These
studies do not capture the relationship between drug
demand and insurer formulary or other alternative
treatments on the insurer formulary, which are some
key considerations of the manufacturer when provid-
ing OBR in the U.S. market.

The operations management field has some works
on OBR. So and Tang (2000) examine how the insurer
should design OBR to discourage unnecessary or ex-
cessive prescriptions but do not consider the risk asso-
ciated with uncertain drug effectiveness. A working
paper by Truong and Yao (2013) models the manufac-
turer’s OBR decision but assumes that copayments of
drugs can be any continuous amount instead of the
tiered formulary commonly used in practice. As a re-
sult, they conclude that the insurer subsidizes a fixed
amount across different drugs, and patients pay the
remaining amount although a typical insurance policy
calls for patients paying a fixed amount as copayment
and the insurer paying the remaining amount. In ad-
dition, they conclude that OBR is equivalent to non-
OBR with a risk-adjusted price, which is a special case
of the risk-neutral insurer in our study. Adida (2021)
compares the manufacturer’s optimal pricing decision
under non-OBR and OBR (under which a fixed frac-
tion of drug cost is refunded to the insurer and pa-
tients). She examines the insurer’s coverage decision
of a single drug without considering other alternative
drugs in the same disease category, nor does she con-
sider the insurer’s formulary decision.

Our paper differs from the cited OBR literature in
the following ways: (1) A drug’s uncertain treatment
outcomes can be attributed to two different sources:
patients’ heterogeneity and the drug’s uncertain effec-
tiveness. Adida (2021) considers only the former by
assuming the proportion of patients successfully
treated by the drug (ρ) to be a known constant; hence,
the insurer essentially bears no risk because of risk
pooling. In contrast, we model both sources of uncer-
tainty (ρ is uncertain) because an insurer faces much
uncertainty in the effectiveness of a newly released
drug. We examine how the manufacturer leverages
OBR to alleviate the risk of the insurer (and the pa-
tients if OBR includes patient rebate) in exchange for
better insurance coverage, which is a key incentive for
the manufacturer to provide OBR. Our study shows
that the manufacturer can provide OBR to induce a
better formulary position for its new drug, whereas
such an advantage of OBR on the insurer formulary is
not studied in Adida (2021). (2) Although it is com-
mon practice for insurers to leverage their power in

formulary design to negotiate rebates and prices with
manufacturers (Kouvelis et al. 2018), most OBR stud-
ies do not consider the insurer’s formulary design. We
are the first to evaluate the impact of OBR considering
the insurer’s adjustment of its tiered formulary as a re-
sponse to the manufacturer’s OBR. The design of the
tiered formulary leads to a nontrivial, nonlinear,
binary mathematical program, for which we propose
a novel solution. Modeling the tiered formulary and
the risk of drug effectiveness in clinical practices also
allows us to parameterize the model using real-world
data to provide realistic evaluation on the impact of
OBR. (3) By considering alternative drugs in a disease
category and allowing the insurer to adjust its formu-
lary as a new drug enters the market, we capture the
insurer’s influence on the manufacturer’s design of
OBR: a lower effective price of the new drug warrants
a formulary tier with a lower copayment than existing
drugs, incentivizing the manufacturer to increase the
rebate or to reduce the wholesale price. (4) We opti-
mize both the manufacturer’s wholesale price and re-
bate decisions under OBR, and previous works (e.g.,
Adida 2021) only consider the manufacturer’s pricing
decision when the rebate is a fixed fraction of the drug
price. Additionally, we also consider rebates to both
insurers and patients under OBR and the optimal split
between them. Compared with rebates to the insurer,
which increases drug demand indirectly through a fa-
vorable formulary tier, rebates to patients increases
drug demand directly and is often more effective for
the manufacturer. (5) We capture the insurer’s risk
aversion as well as patients’ risk preference (risk
averse or risk seeking) toward the uncertain drug ef-
fectiveness, depending on patients’ disease severity
and available treatment options.

The insurer’s formulary design is studied in con-
texts unrelated to OBR. For example, Kouvelis et al.
(2015) study the design of tiered formulary from the
perspective of pharmacy benefit managers (PBMs)
who offer such a formulary to the patronage of a client
(such as employers and insurers). In Kouvelis et al.
(2015), the PBM determines jointly the formulary and
its resell price to clients to maximize profit. They con-
clude that, in a special case in which all drugs have
the same effectiveness, PBM places the most cost-
effective drugs on the preferred tier, which is, in spirit,
similar to our result about the optimal formulary.
However, their decision setting is rather different
from ours in which the insurer decides the formulary
and the manufacturer decides the price. In addition,
they consider neither the uncertainty of drug effec-
tiveness nor OBR.

The mathematical formulation of the insurer formu-
lary design problem is, to some extent, similar to the
assortment-planning problem in retail (e.g., Talluri
and Ryzin 2004, Davis et al. 2013) in that the insurer
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needs to decide which drugs to include in its formu-
lary. However, the formulary design problem has two
distinct features that add to its complexity. First, in
addition to deciding whether to cover a drug (i.e., in-
clude the drug in the formulary), the insurer also de-
cides the formulary tier for the drug. Second, the
assortment-planning problems typically maximize the
profit from an assortment, and in our context, the in-
surer must balance the trade-off between spending
and patients’ health benefits. In this paper, we extend
the state-of-the-art technique for assortment-planning
problems (e.g., see Davis et al. 2013) to accommodate
these added complexities and establish properties of
the optimal formulary. As a result, we generalize
the analytical method of assortment planning and
broaden its applicability.

OBR is related to the broad class of risk-sharing
contracts, which are studied in various contexts. For
example, Zhang et al. (2011) and Zaric and O’Brien
(2005) investigate how to design risk-sharing contracts
to mitigate the risk of uncertain demand for new
drugs. These studies investigate a risk-sharing con-
tract to contain the insurer spending, under which the
drug price is discounted if demand of the drug ex-
ceeds a threshold. In contrast, OBR addresses the risk
derived from the quality uncertainty of the drug. This
is somewhat similar to a manufacturer warranty,
which guarantees a level of performance of products
or services to countervail the ex post quality uncer-
tainty. A warranty is a type of risk-sharing contract
that is widely used and studied (e.g., Thomas and Rao
1999). Our context is different because, when design-
ing OBR, the manufacturer has to consider how the in-
surer will respond through its formulary decision,
which is unique in the pharmaceutical context.

Finally, we remark that, OBR for prescription drugs
is different from pay-for-performance for medical
services adopted by CMS and other private insurers,
under which insurers reimburse medical service pro-
viders based on the quality of care rather than quantity
of care provided. Studies on pay-for-performance
mostly focus on how to incentivize providers to im-
prove their service quality (e.g., Gupta and Mehrotra
2015, Zorc et al. 2017). In comparison, the effectiveness
of drugs is exogenous and not fully revealed when the
drugs enter the market; the decision and challenges
are, thus, quite different as we describe.

3. Model Setups
Consider a disease category with J – 1 existing drugs
and a newly approved drug J in the market. Each drug
is intended to deliver a prespecified health benefit qj,
determined by its distinct chemical or biological struc-
ture and informed by its premarket clinical trial re-
sults. For example, for drugs treating hyperlipidemia,

the health benefit qj is measured by the improvement
on patients’ hyperlipidemia level. However, patients
do not uniformly achieve the prespecified treatment
benefit because of their heterogeneity in terms of dis-
ease status, underlying conditions, etc. For a new drug
that moves from clinical trial to practice, the uncertainty
in treatment outcome originates from not only patient
heterogeneity, but also uncertainty in drug effective-
ness. We capture both sources of uncertainty. Specifi-
cally, we denote ρ̃j as the proportion of patients treated
successfully (i.e., achieving the predefined treatment
benefit of drug j). For the new drug J, its effectiveness
in clinical practice is still uncertain; hence, the true
value of ρ̃J is unknown (Nallamothu et al. 2008). We as-
sume the insurer has a prior belief about ρ̃J based on
the clinical trial results and characterized by a probabil-
ity distribution function (pdf) f with E(ρ̃J) � ρJ. Thus, ρJ
estimates the proportion of patients treated successfully
by drug J. This contrasts with Adida (2021) in which ρ̃J
is modeled as a deterministic constant; hence, the
insurer bears no risk. For existing drugs j � 1::J − 1,
their effectiveness has been long established; thus, we
assume ρ̃j equals a constant ρj, ∀j � 1::J − 1. This
assumption reflects a normalized difference in risk
between a new drug and an established drug, a key
driver for the OBR arrangement for new drugs. We as-
sume that the manufacturer and the insurer have the
same information about ρj, ∀j � 1, ::J − 1, and ρ̃J, which
is also shared with physicians. Online Figure A2 sum-
marizes patients’ possible responses to new and exist-
ing drugs and their corresponding health benefits,
which we elaborate later.

A pharmaceutical manufacturer typically sets a list
price for its new drug based on many strategic factors
beyond the scope of this paper. Insurers seldom pay
the list price but instead pay a lower wholesale price
to the manufacturer by leveraging the formulary deci-
sions. If a drug j is excluded from the insurer formu-
lary, the manufacturer determines a direct-sell cash
price to patients instead. We assume that the whole-
sale price pj and cash price pj0 for all existing drugs are
exogenously given as these drugs have been long es-
tablished in the market. We focus on manufacturer J’s
decisions of wholesale price, cash price, and rebates.

The manufacturer of drug J can choose either a non-
OBR scheme (i.e., no rebate based on patients’ realized
health outcome) or an OBR scheme, which provides a
rebate to the insurer (and potentially patients as well)
based on the realized health outcome. For example,
for Simvastatin (a drug treating hyperlipidemia),
Merck offered an OBR that refunds both insurers and
patients if Simvastatin does not lower patients’ blood
cholesterol below a target level (Carlson et al. 2009).
Such a “no cure, no pay” campaign has seen increas-
ing popularity in the pharmaceutical industry. To cap-
ture these features, we model the manufacturer’s
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pricing scheme as follows: the manufacturer decides a
wholesale price pJ to the insurer; if a patient does not
achieve the predefined treatment benefits after taking
the drug, the manufacturer provides a rebate R1 to the
insurer and R2 to the patient. Thus, R1 � 0 indicates
the case of a non-OBR scheme, R1 > 0 indicates the
case of an OBR scheme, and R2 > 0 indicates that the
OBR scheme includes patient rebates. Thus, the effec-
tive price for drug J (i.e., price after insurer rebate) is
pJ −R1(1− ρ̃J).

To solve the manufacturer’s optimal rebate scheme
(i.e., pJ, R1, and R2), we develop a Stackelberg game
under which the manufacturer first decides its rebate
scheme, either non-OBR or OBR, to maximize its
profit, and the insurer subsequently decides its
optimal formulary considering the trade-off between
patients’ health benefits and its spending. Given the
manufacturer’s rebate scheme and the insurer formu-
lary, which determines the copayments of different
drugs, patients/physicians choose the drug that bene-
fits them the most. Once the effectiveness of the new
drug among patients is revealed, the manufacturer
pays the outcome-based rebate to the insurer (and
possibly patients) retrospectively. We next describe
the key elements of the model.

3.1. The Insurer’s Tiered Formulary
Under a tiered formulary, the insurer assigns drugs
within a particular disease category to different tiers,
each tier corresponding to a different copayment lev-
el. The tiered formulary is widely used by insurers to
direct patients toward less expensive drugs. In 2011,
77% of private insurance plans (Claxton et al. 2011)
and 91% of Medicare Part D plans (Hoadley et al.
2011) had a formulary with three or more tiers. Online
Table A2 illustrates the 2015 tiered formulary for hy-
perlipidemia from Cigna, the second largest private
insurer in the United States. As Online Table A2
shows, tiers 1–4 correspond to copayments of $0, $10,
$45, and $95, respectively. Insurers may also choose to
not cover a drug, a strategy increasingly used by in-
surers to reduce spending.

Without loss of generality, we assume that the insurer
has a K-tier formulary with ak being the copayment for
the kth tier, k � 1, 2, : : : ,K, and a1 < a2 <: : :< aK. In addi-
tion, k � 0 indicates that the drug is excluded from the
formulary. The insurer’s formulary decision is to assign
each drug to a specific tier,for which xjk � 1 if drug j is
assigned to the kth tier and xjk � 0 otherwise,
k � 1, 2, : : : ,K. In addition, xj0 � 1 indicates that the in-
surer excludes drug j from the formulary, and xj0 � 0 in-
dicates that the insurer includes drug j in the formulary.
Thus, a feasible formulary assignment x is characterized
by ∑K

k�0xjk � 1, ∀j, that is, a drug is either assigned to
one specific tier or excluded from the formulary. If the

insurer decides to cover drug j and assigns it to the kth
tier, then patients are responsible for the copayment ak,
and the insurer pays pj − ak to the manufacturer for
each unit of drug j purchased. If, however, the insurer
decides to exclude drug j from its formulary, then the
patients have to purchase the drug on their own at the
cash price pj0. Accordingly, given the copayment value
for each tier a � (a1, : : : ,aK) and the insurer’s formulary
assignment decision xjk, j � 1, : : : , J, k � 0, 1, : : : ,K, the
corresponding copayment for drug j is cj(x) �∑K

k�1xjkak + xj0pj0, and we denote c(x) � (c1, : : : , cJ) as
the drug copayment vector (denoted as c for simplicity).

3.2. The Demand of Drugs
We assume patients and their physicians to be one
agent in choosing drugs because physicians, in princi-
ple, make prescription decisions according to patients’
best interests. Although an individual patient’s drug
choice is complex and involves many factors, the ag-
gregated demand can be reasonably estimated. We
model the aggregated demand of drugs using an
MNL model, which is widely used in the literature to
capture patients’ demand of drugs (see, e.g., Kouvelis
et al. 2015, Ching and Lim 2020). Specifically, under
the MNL model, patients choose the drug that maxi-
mizes their utility, considering the effectiveness of the
drug and its uncertainty and out-of-pocket copay-
ments as well as other random factors, such as the
characteristics and preferences of the patients and their
physicians. We capture patients’ risk preference to-
ward the uncertainty in drug effectiveness through the
mean-variance approach, following the literature on
consumer choice of products with quality uncertainty
(e.g., Erdem and Keane 1996, Ching and Lim 2020).

Suppose a patient purchases the new drug J: if the
patient achieves the treatment target after taking the
drug, the patient gains the health benefits qJ from
the treatment and pays the copayment cJ. Otherwise,
the patient receives a rebate R2 from the manufacturer.
Let IIij be the binary indicator of whether patient i
achieves the treatment target after taking drug j and μij

be the corresponding realized utility. Thus,

μiJ � qJIiJ −θ(cJ −R2(1− IiJ)) + εiJ,

where θ measures patients’ sensitivity to spending
(i.e., copayment) and εiJ represents patients’/physi-
cians’ idiosyncratic preference toward drug J because
of factors such as patients’ disease status, age, income,
and other related characteristics of the patients and
their physicians. We assume εij follows a standard
type I extreme value distribution.

Because of patient heterogeneity and uncertain
drug effectiveness, patients face the risk of treatment
failure when taking the new drug. To model patients’
aversion to such risk, we adopt the mean-variance
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approach under which patients’ risk-adjusted utility
from taking the new drug J is

uiJ � Eρ̃ J
[EIiJ (μiJ|ρ̃J)] − ϑσ(μiJ)

� Eρ̃J
[ρ̃j(qJ − θcJ + εiJ) + (1 − ρ̃J)(−θ(cJ − R2) + εiJ)]

−ϑ|qJ − θR2|
�������������
ρJ(1 − ρJ)

√
� qJρJ − ϑqJσJ + ϑθR2σJ − θ(cJ − (1 − ρJ)R2) + εiJ,

where ϑσ(μiJ) captures patients’ disutility from uncer-
tain treatment outcome, and we can derive σ(μiJ) �
|qJ −θR2|

�������������
ρJ(1− ρJ)

√
. Let σJ �

�������������
ρJ(1− ρJ)

√
be the stan-

dard deviation of the Bernoulli random variable repre-
senting the treatment outcome. ϑ indicates patients’ risk
preference. Depending on the severity of the disease
and patients’ alternative treatment options, patients
may be either risk averse (i.e., ϑ > 0) or risk seeking
(i.e., ϑ < 0) in trying a new drug (even participating in
clinical trials). qJρJ measures the ex ante expected health
benefit from the drug, and ϑqJσJ measures the drug-
specific disutility from the risk of treatment failure.
Note that the manufacturer’s rebate to the patient (i.e.,
R2) affects patients’ risk-adjusted utility through both
the expected utility and the risk disutility term. We fo-
cus on the case in which R2 ≤ qJ=θ because it is never
optimal for the manufacturer to refund a patient more
than the prespecified health benefit.

Similarly, patient i’s realized utility from purchas-
ing an existing drug j, j � 1, ::, J − 1, is

μij � qj Iij −θcj + εij:

Define σj �
������������
ρj(1− ρj)

√
. Then, the risk-adjusted utility

from drug j is

uij � EIij[μij] −ϑσ(μij) � qjρj −ϑqjσj −θcj + εij, ∀j

� 1, : : : , J − 1:

Note that the disutility associated with the risk of
treatment failure applies to all drugs j � 1:::J because
no drug is guaranteed to treat every patient success-
fully. In addition, if patient i does not purchase any
drug from the list of drugs, we assume that the patient
acquires a normalized utility ui0 � εi0 from the outside
option.

Given the insurer’s formulary assignment x and
the manufacturer’s rebate to patients R2, patients
choose the drug that yields the highest utility. Accord-
ingly, the market share for drug j is

dj(x,R2) �
∑K

k�0 xjkvjk
1+∑J

t�1
∑K

k�0 xtkvtk
, ∀j � 1, : : : , J,

where vjk � exp (qjρj− ϑqjσj −θak), ∀k ≥ 1, and vj0 �
exp (qjρj −ϑqjσj −θpj0), ∀j � 1, ::, J − 1 represent the

attractiveness of drug j to patients if placed on the kth
tier and if excluded from the formulary, respectively;
vJk � exp (qJρJ −ϑqJσJ + ϑθR2σJ −θ(ak − (1− ρJ)R2)) and
vJ0 � exp (qJρJ −ϑqJσJ − θpJ0) represent the attractiveness
of drug J to patients if placed on the kth tier and if ex-
cluded from the formulary, respectively.

4. Formulary Design Without Uncertain
Drug Effectiveness

We first develop a base model for the insurer’s formu-
lary design given drug J’s effectiveness (i.e., ρ̃J equals
a constant ρJ). This base model lays the groundwork
for analyzing the insurer’s formulary design and
serves as a benchmark for the case with uncertain ef-
fectiveness in Section 5.

The insurer determines its formulary by weighing
the trade-off between patients’ health benefits and its
spending: on the one hand, the insurer needs to pro-
vide sufficient coverage and an affordable copayment
to deliver health benefits to its insured patients; on the
other hand, the insurer needs to reduce its spending
to maintain profitability. Given a formulary assign-
ment x, a patient’s expected health benefit can be writ-
ten as

B(x) � Eε�(εij)′s(max j�0,1::J(uij)) � ln (1+∑J
j�1

∑K
k�0xjkvjk),

where ln (1+∑J
j�1

∑K
k�0xjkvjk) represents the expected

health benefit derived from the formulary based on the
probability distributions of εij (Anderson et al. 1992).
Correspondingly, the insurer spending associated with
the formulary assignment x is

S(x) �
∑J

j�1
∑K

k�1(pj − ak)xjkvjk
1+∑J

j�1
∑K

k�0 xjkvjk
:

When the effectiveness of the drugs is certain, pa-
tients’ heterogeneous response to drugs are averaged
out in aggregate. Therefore, the insurer knows the pro-
portion of successful treatments and, thus, can easily
evaluate the health benefits and spending associated
with a formulary. Thus, the insurer solves the follow-
ing nonlinear binary programming problem to maxi-
mize the spending-adjusted health benefits u(x):

max
x

u(x) � wB(x) − S(x)

s:t:
∑K
k�0

xjk � 1, ∀j � 1, : : : , J,

xjk ∈ {0, 1}, ∀j � 1, : : : , J, ∀k � 0, 1, : : : ,K:

(1)

Here, w represents the insurer’s weight on patients’
health benefits relative to its spending. Note that we
do not impose that patients and the insurer have the
same weight between health benefits and monetary
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spending (i.e., w is not necessarily equal to 1=θ) be-
cause, depending on the specific disease, patients may
place more or less weight on spending compared with
the insurer. The first constraint ensures feasibility of
an assignment such that each drug is either assigned
to one specific tier or excluded from the formulary.
Note that our model can also accommodate other con-
straints that the insurer may encounter in practice. For
example, if the insurer designates a drug j to or not to
a specific tier k, the resulting constraint would be xjk �
1 or xjk � 0; if drugs i and j cannot be both covered, the
resulting constraint would be xi0 + xj0 > 0.

When the number of alternative drugs in a disease
category is relatively small, we can solve the optimal
formulary through enumeration. However, as J in-
creases, such a brute-force procedure soon becomes
computationally prohibitive because the number of
enumerations (K+ 1)J increases exponentially. For ex-
ample, given the number of drugs available for hyper-
lipidemia as shown in Online Table A2, the number of
enumerations to search for the optimal formulary is
more than 109. In fact, many diseases have more alter-
native drugs than hyperlipidemia: diabetes and hyper-
tension both have more than 20 alternative drugs,
resulting in more than 1014 enumerations. Therefore, it
is imperative to derive the structural properties of the
optimal formulary to expedite the search procedure.
Such properties can also provide useful insights and
heuristics for the insurer to design and refine its for-
mulary. Toward this end, we transform Problem (1) as
follows. Let zjk � xjkvjk

1+∑J
t�1

∑K
k�0 xtkvtk

, ∀j,k represent the

market share of drug j if assigned to the kth tier and let
z0 � 1

1+∑J
t�1

∑K
k�0 xtkvtk

represent the market share of the

outside option. The demand for drug j is dj � ∑K
k�0zjk,

∀ j � 1, : : : , J. Accordingly, Problem (1) can be trans-
formed into the following relaxed Problem (2):

max
z:z0, zjk,∀j,k

−wlnz0 −
∑J
j�1

∑K
k�1

(pj − ak)zjk

s:t: z0 +
∑J
j�1

∑K
k�0

zjk � 1,

∑K
k�0

zjk
vjk

� z0, ∀j,

z0 ≥ 0, zjk ≥ 0, ∀j, k:

(2)

The assortment-planning literature uses a similar re-
laxation technique to reformulate the assortment-
planning problem into a linear programming problem
(e.g., Davis et al. 2013). Our formulary design problem
has two distinct features that add to its complexity.
First, in addition to deciding whether to cover a drug,
which is similar to the assortment decision, the insurer

must also decide the formulary tier to which to assign
the drug. Second, the assortment-planning literature
typically maximizes the profit of an assortment. How-
ever, in our context, the insurer has to balance its
spending with patients’ health benefits, resulting in a
nonlinear objective function in Problem (2). We are
able to demonstrate the equivalency between Prob-
lems (1) and (2) even with the added complexity.
Lemma 1. Problems (1) and (2) are equivalent in solving
the optimal formulary.

Lemma 1 ensures that we can construct the optimal
formulary for Problem (1) by solving Problem (2),
through which we can derive useful structural proper-
ties of the optimal formulary.

Definition 1. A formulary assignment x̃ is efficient if
and only if, for some value γ ≥ 0, x̃ solves the follow-
ing problem:

max
x

γB(x) − S(x),
where B(x) and S(x) represent the patients’ health ben-
efits and insurer spending, respectively, as defined
previously. According to this definition, an efficient
formulary optimally balances patients’ health benefits
B(x) and insurer spending S(x) for some weight γ.
Therefore, it follows directly that the optimal formu-
lary for Problem (1) must be efficient.

Definition 2. A formulary is ordered by effective price
if any drug with a lower wholesale price than drug j is
assigned to a tier with a lower copayment than drug j,
that is, if pl ≤ pj, then cl ≤ cj, ∀ l≠ j.

Proposition 1 characterizes the efficient formulary.

Proposition 1. An efficient formulary must be ordered by
wholesale price of drugs.

Proposition 1 suggests that the efficient formulary
has a similar structure as the efficient assortment.
Talluri and Ryzin (2004) demonstrate that the efficient
assortment follows a nested structure under which
higher margin products are included first, followed
by lower margin products. Likewise, in our context,
an efficient formulary is nested according to the
wholesale price such that drugs with lower wholesale
prices are assigned first to a lower tier (with a lower
copayment), followed by drugs with higher wholesale
prices assigned to a higher tier (with a higher copay-
ment). Therefore, despite the distinct features and
added complexity of our problem, we establish a simi-
lar structure of the optimal formulary as in Talluri
and Ryzin (2004).

The property of the efficient formulary in Proposi-
tion 1 has several implications on how the insurer
should design its formulary. First, if a drug is included
in the formulary, all other drugs with lower wholesale
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prices should also be included. Therefore, when design-
ing its formulary, the insurer can include drugs sequen-
tially in the order of their wholesale prices such that
less expensive drugs are on the tiers with a lower co-
payment. Such a formulary structure allows the insurer
to direct patients toward less expensive drugs. This is
consistent with practice. Second, price rather than ef-
fectiveness is the qualifier for a drug to be included in
the formulary. This is because each drug, regardless of
its expected effectiveness level, may best suit certain
patients because of patients’ idiosyncratic preferences
characterized by εij. Therefore, barring the prohibitive
administrative cost for including more drugs, it is ben-
eficial for the insurer to cover all FDA-approved drugs
as long as their prices are reasonable because some
subpopulation of patients benefit from this drug more
than other drug alternatives. Nevertheless, the drug ef-
fectiveness does impact the overall demand for each
drug: drugs with lower qj have a lower demand as the
subpopulation of patients who find this drug to be
their utility maximizer is smaller.

To find the optimal formulary, we rank the drugs
according to their wholesale prices and evaluate all
wholesale price–ordered formulary assignments to
identify the optimal one. Without such an optimal for-
mulary structure, one has to enumerate all (K+ 1)J
possible formulary assignments. With such a struc-
ture, we only need to evaluate the ( J +K

K
) efficient

formulary assignments, which substantially alleviates
the computational burden. Please see Online
Figure A1 for a numerical example of the efficient
formulary.

5. Formulary and OBR Design Under
Uncertain Drug Effectiveness

In the base model, we characterize the optimal formu-
lary without uncertainty in drug effectiveness. Next,
we solve the insurer’s formulary design under uncer-
tain drug effectiveness given the manufacturer’s price
and rebate scheme, followed by the manufacturer’s
optimal price and rebate decision.

5.1. Formulary Design Under Uncertain Drug
Effectiveness

In this section, we examine the insurer’s formulary de-
sign given the price and rebate scheme when the effec-
tiveness of drug J is uncertain. In this case, the insurer
does not know the proportion of successful treatments
by drug J, and we explore the impact of the insurer’s
risk attitude on its formulary design. Consistent with
the practice in which an insurer routinely updates its
formulary in response to new drugs and new con-
tracts, our model allows the insurer to determine the
formulary tier for the new drug as well as adjust tiers
of other drugs in the formulary.

Specifically, for a given realization of ρ̃J, patients’
realized health benefit associated with the insurer
formulary decision z is

B̃(z) � −ln (z0) − (ρJ − ρ̃J)qJ∑K
k�1zJk + (ρJ − ρ̃J)θR2

∑
k�1KzJk,

where −ln (z0) represents patients’ expected health ben-
efits prior to the realization of ρ̃J. The term (ρJ −
ρ̃J)qJ∑K

k�1zJk indicates the lost health benefits because
of the proportion of patients not achieving the health
benefit beyond the initial expectation, and (ρJ −
ρ̃J)θR2

∑K
k�1zJk indicates the manufacturer’s rebate to

the patients. Please see the online appendix for a de-
tailed derivation of B̃(z).

Correspondingly, the insurer’s realized spending
associated with formulary decision z for a given reali-
zation of ρ̃J is

S̃(z) � ∑K
k�1(pJ − ak)zJk −R1(1− ρ̃J)

∑K
k�1zJk +∑J−1

j�1
∑K

k�1(pj − ak)zjk,

where R1(1− ρ̃J)∑K
k�1zJk represents the manufacturer’s

rebate to the insurer for patients who do not achieve
the treatment benefit.

Let V(u) be the insurer’s utility given its spending-
adjusted health benefits u. To capture the insurer’s
risk aversion, we assume V(u) is a concave and in-
creasing function of u. Therefore, the insurer deter-
mines the optimal formulary to maximize its expected
utility from the spending-adjusted health benefits
V(u(x)) as follows:

max
z

∫
V(wB̃(z) − S̃(z))f (ρ̃J)dρ̃J

s:t: z0 +
∑J
j�1

∑K
k�0

zjk � 1,

∑K
k�0

zjk
vjk

� z0, ∀j,

z0 ≥ 0,zjk ≥ 0, ∀j,k:

(3)

Note that Problem (3) cannot be directly reduced to
the base model because the insurer considers not only
the expected value of patients’ health benefits, but
also the uncertainty of its realized value. Therefore, to
solve Problem (3) directly, we have to assume certain
functional forms of V(u) and the pdf of ρ̃J, f (ρ̃J). To
circumvent this, we first characterize the structure of
the optimal rebate scheme, which allows us to convert
Problem (3) into the base model and then solve the
corresponding insurer formulary without any func-
tional assumptions of V(u) and f (ρ̃J).
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5.2. Optimal OBR Design Under Uncertain Drug
Effectiveness

The manufacturer has two alternatives for selling
its drug: first, it could provide a rebate to induce the
insurer to place its drug on the formulary such that
patients pay only the copayment; second, it could sell
directly to patients without insurance coverage. The
manufacturer decides the best alternative by compar-
ing the expected profit of the two alternatives. The lat-
ter is rarely optimal for an expensive new drug, but
we include it in our analysis for completeness.

If the manufacturer seeks the insurer coverage, it
decides its optimal price and rebate scheme (i.e., pJ,
R1, and R2) by weighing the trade-off among the ex-
pected cost of the rebate provided to the insurer and
patients, the obtained formulary position, and the
corresponding drug demand. Note that the manufac-
turer’s price and rebate scheme can influence the
demand of its drug in two ways: (1) by influencing
the insurer’s formulary decision and (2) through the
patient rebate R2. Given the manufacturer’s price and
rebate scheme (pJ,R1,R2), the insurer then decides
whether to include the drug in its formulary and the
corresponding formulary tier. Let zJk(pJ,R1,R2) denote
the demand of drug J if it is placed on the kth tier.
The manufacturer solves its optimal price and rebate
scheme to maximize its expected profit as follows:

Π �max
[
max
pJ0

pJ0zJ0(pJ0),

max
pJ,R1,R2

∫
((pJ − (R1 +R2)(1− ρ̃J))

∑K
k�1

zJk(pJ,R1,R2))f (ρ̃J)dρ̃J

]
,

where zJ0(pJ0) represents the demand for drug J if it is
excluded from the formulary and pJ0zJ0(pJ0) represents
the corresponding manufacturer’s profit under which
the manufacturer incurs no rebate cost, but may have
only a slender demand of zJ0(pJ0). If the drug is included
in the formulary, its demand is then ∑K

k�1zJk(pJ, R1,R2)
with a margin of pJ − (R1 +R2)(1− ρ̃J), where (R1 +
R2)(1− ρ̃J) represents the manufacturer’s total ex-
pected rebate to the insurer and patients.

If the insurer can adjust the formulary tiers of all ex-
isting drugs j � 1:::J − 1 as a response to the manufac-
turer’s direct cash price pJ0, we can use a grid search
to find the optimal pJ0. Otherwise, Lemma 2 describes
the optimal pJ0 when fixing the formulary tiers of ex-
isting drugs.

Lemma 2. Given the insurer formulary assignment for exist-
ing drug j � 1:::J − 1, there exists a unique solution to the
optimal pJ0, which can be solved through θpJ0(1− zJ0
(pJ0)) � 1.

However, solving the optimal wholesale price and
rebate scheme directly is challenging because, for each

combination of pJ, R1, and R2, we need to solve the
corresponding insurer formulary through Problem
(3), whose solution, as mentioned, depends on as-
sumptions of the functional forms of V(u) and f (ρ̃J).
Instead, we first characterize the structure of the opti-
mal rebate scheme.

Proposition 2. Under the optimal OBR, for a patient not
achieving the treatment benefit, the manufacturer should
provide to the insurer and the patient a rebate with 1

wR1 +
θR2 completely offsetting the amount of lost health benefits
qJ, that is, 1

wR1 +θR2 � qJ.

Proposition 2 implies that, given the rebate to patients
R2, the optimal rebate to the insurer is R1 � w(qJ −θR2),
indicating that the lost health benefits are partly offset
by the manufacturer’s direct rebate to patients, and the
remainder is offset by the rebate to the insurer. As a
result, the insurer’s objective, the spending-adjusted
health benefits, remains the same regardless of the real-
ized effectiveness of the drug. Therefore, under such an
OBR scheme, the insurer’s risk is reduced to none. This
is, in spirit, consistent with most OBR practices by
which manufacturers fully refund its drug cost if pa-
tients do not obtain the intended effectiveness, thus
eliminating risk exposure for the insurer. Therefore, un-
der the optimal OBR scheme, the insurer decides its for-
mulary as if there were no uncertainty in the drug’s
effectiveness regardless of the specific form of utility
function V(u) and the pdf of ρ̃J, f (ρ̃J). Accordingly,
Problem (3) can be reduced to the base model under
such a rebate scheme (Please see the online appendix for
details).

Although Proposition 2 prescribes the total rebate
to the insurer and patients, the allocation of rebate be-
tween the insurer (R1) and patients (R2) is still at the
manufacturer’s discretion. Recall that there are two
ways the manufacturer can affect demand: through an
increased rebate to patients to directly increase de-
mand or through an increased rebate to the insurer to
improve its formulary position, which indirectly in-
creases its demand. Intuitively, given the insurer for-
mulary, the manufacturer should allocate more rebate
to patients (R2) because it directly increases patients’
preference for the drug and, thus, increases the de-
mand of the drug. Thus, if the manufacturer offsets
the drug’s uncertain effectiveness through patient re-
bate only, then R2 � qJ=θ. However, there is one caveat.
According to Proposition 2, a higher R2 leads to a lower
R1. To retain the formulary position of its drug, the man-
ufacturer has to lower its wholesale price to the insurer
(i.e., pJ) to offset the decrease in R1. When patients are
less sensitive toward monetary spending than the in-
surer is (i.e., θ < 1=w), for example, for certain life-
threatening diseases such as cancer, increasing the
patient rebate may only increase drug demand incre-
mentally but lower the wholesale price considerably.
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In this case, the manufacturer should allocate more re-
bate to the insurer. We set cJ as the upper bound of R2

because, otherwise, the manufacturer subsidizes pa-
tients more than their out-of-pocket copayment and
undercuts the rebate to the insurer. Formally, Corol-
lary 1 depicts the optimal allocation between R1 and
R2.

Corollary 1. Given the insurer formulary

R2 � min (cJ, qJ=θ), if (wθ − 1)(1 − ρJ) ≥ − ∂pJ
∂R2

,

min (R̂+
2 , cJ, qJ=θ) otherwise:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Here, R̂

+
2 �max (R̂2, 0) and R̂2 solves the manufacturer’s

first-order condition wθ(1− ρJ) − (1− ρJ) + ∂pJ
∂R2

+ (pJ−
(R1 +R2)(1− ρJ))θ(1− ρJ +ϑσJ)(1− dJ) � 0, and − ∂pJ

∂R2

represents the marginal rate of substitution between pJ and
R2 to retain the formulary position of the drug.

Corollary 1 suggests that the allocation between R1

and R2 depends on patients’ and insurer’s weights on
health benefits versus spending as well as the need to
maintain an appropriate rebate to the insurer to retain
the drug’s formulary position. If patients are more
sensitive to spending than the insurer (i.e., θ� 1=w),
then the manufacturer should refund patients’ full co-
payment. Otherwise, the manufacturer balances the
trade-off between allocating more rebate R1 to the in-
surer to retain its formulary position and increasing
drug demand through rebate R2 to patients, which is
captured by R̂2, derived from the manufacturer’s first-
order condition with respect to R2.

It is noteworthy that the choice of R1 and R2 de-
pends on the manufacturer’s wholesale price to the
insurer (pJ), another decision variable for the manufac-
turer. However, the relationship between R1 and R2

identified in Proposition 2 and Corollary 1 enables us
to simplify the search for the optimal wholesale price:
for each pJ, we calculate the corresponding R1 and R2

based on which we calculate the insurer formulary
and the manufacturer’s expected profit. The manufac-
turer should choose pJ that rewards the highest ex-
pected profit. A detailed description of the algorithm
for solving the optimal (pJ,R1,R2) is in the online
appendix.

Corollary 2. Compared with the optimal non-OBR, under
the optimal OBR, the manufacturer can charge a higher
effective price and, at the same time, induce the insurer to
place the drug on a formulary tier with a lower or at most
the same copayment. Hence, the manufacturer can earn a
higher expected profit, and the insurer incurs a higher ex-
pected spending under OBR.

Corollary 2 shows that, with OBR, the manufacturer
can induce the insurer to place the new drug on a
more favorable tier and broaden the coverage of the

drug, hence improving patients’ access to the drug.
Meanwhile, under the optimally designed OBR, the
manufacturer raises its wholesale price by more than
the amount of the expected rebate provided to the in-
surer such that the insurer pays a higher effective
price. Hence, although OBR shields the insurer from
the risk of uncertain drug effectiveness, it does not
lower insurer spending as compared with non-OBR.
This is because OBR transfers the risk from the insurer to
the manufacturer but does not eliminate such risk from
the supply chain. As a result, the insurer pays a risk
premium to the manufacturer, which then earns a higher
expected profit under OBR than under non-OBR.

Although our study focuses on OBR in the format
of the ex post rebate, it can be shown that other for-
mats of OBR, such as deferred payment that allows
the insurer to pay a partial price up-front and defer
additional payment based on the realized drug effec-
tiveness, also have similar impact. We also compare
OBR with non-OBR under a special case in which the
insurer is risk neutral. (Please see the online appendix
for details).

6. Model Calibration and Data Analysis
for Hyperlipidemia Drugs

In this section, we apply our analytical model to drugs
treating a common disease, hyperlipidemia, to illus-
trate the procedure for implementing our solution
method and to provide additional insights that com-
plement our analytical results. We focus on three
questions. First, we quantify the impact of OBR on the
insurer, manufacturer, and patients as compared with
non-OBR. In particular, although our analytical results
establish that OBR does not lower the insurer’s ex-
pected spending, it is important to quantify the scale
of risk premium that the insurer has to pay under
OBR. Second, we demonstrate how the comparison
between OBR and non-OBR depends on model pa-
rameters, such as the insurer’s weight on health bene-
fits against spending and its risk preference. Third, we
explore numerically the difference between OBR with
and without the patient rebate and examine the im-
pact of including the patient rebate in OBR on differ-
ent parties.

To provide realistic answers to these questions, we
calibrate our analytical model based on data from 14
drugs treating hyperlipidemia. We choose hyperlipid-
emia because it has a clear and easily measurable met-
ric of patient health outcome (i.e., blood cholesterol
level), and OBR has been implemented for some hy-
perlipidemia drugs, such as Simvastatin (Carlson et al.
2009). Using the data on patients’ purchase record of
hyperlipidemia drugs, we estimate through an MNL
model the demand of the 14 drugs based on the drug
effectiveness (defined later) and copayments. The
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estimation results are then used as input for our ana-
lytical model to optimize the design of OBR and insur-
er formulary. We then provide calibrated answers to
the earlier questions through counterfactual analyses
of a hyperlipidemia drug Simcor, which has evident
uncertain effectiveness. Simcor was approved in 2008
for treating hyperlipidemia. However, several post-
market studies suggest that Simcor does not provide
sufficient health benefits to patients in clinical prac-
tice. Consequently, the FDA withdrew the drug from
the market in 2016 (Food and Drug Administration
2016).

6.1. Data Description
As mentioned, hyperlipidemia refers to an abnormal
level of lipids (fat particles) in the blood, including el-
evated levels of LDL-C (the so-called bad cholesterol)
and triglyceride (TG) and decreased levels of HDL-C
(the so-called good cholesterol). Medical literature es-
tablishes that abnormal levels of lipids may result in
heart attacks, strokes, and peripheral arterial diseases,
all of which are the leading causes of mortality in the
United States (Wadhera et al. 2016).

According to the 2015 Medical Expenditure Panel
Survey (MEPS), 14 drugs are used by patients for
treating hyperlipidemia, differing in their effective-
ness, prices, and copayments, which depend on their
formulary positions. In general, the demand for each
of these 14 drugs depends on their effectiveness
(measures of which are described in Section 7.2), pa-
tients’ out-of-pocket copayments, and other random
factors. Accordingly, we collate the information about
each drug’s treatment effects, adverse effects, and co-
payment from several data sources, including

• The 2015 MEPS: Patients’ purchase records of hy-
perlipidemia drugs.

• Various medical literature: The treatment effects of
different hyperlipidemia drugs.

• FDA adverse event reporting system: Adverse ef-
fect reports associated with hyperlipidemia drugs.

Online Table A3 summarizes the 14 drugs and their
information detailed as follows. Specifically, the MEPS
randomly surveys U.S. households for their prescrip-
tion drug purchases and insurance coverage. This data
set is considered quite representative of the general
population in the United States (Medical Expenditure
Panel Survey 2019). The MEPS data set records the
drugs that patients purchase, the corresponding copay-
ments, and the amount paid by their insurers. For our
study, we extracted from the 2015 MEPS all purchase
records of hyperlipidemia drugs. Online Table A3 sum-
marizes the average patient copayment and total price
paid by patients and their insurers. For example, as On-
line Table A3 shows, 8,342 patients purchased Atorva-
statin (i.e., the generic counterpart of the blockbuster
drug Lipitor), their average copayment for atorvastatin

is $4.6, and the total price paid by patients and insurers
is $37.95. All copayments and prices are normalized for
a unit of 30-day supply. Typically, once the generic
drug enters the market, it takes most, if not all, of the
demand from the corresponding brand drug. Hence,
the only generic–brand pair present in the MEPS re-
cords is atorvastatin/Lipitor, and the demand for Lipi-
tor is about 2% of that of atorvastatin. Note that the co-
payment for the same drug varies across patients
because they have different insurance plans, which
may have different formularies. Such variation in co-
payments helps us identify patients’ sensitivity to their
copayments.

From various medical literature, including Sabatine
et al. (2015), Mohiuddin et al. (2009), Birjmohun et al.
(2005), and Hou and Goldberg (2009), we collected in-
formation on the treatment effects of different hyper-
lipidemia drugs, summarized in Online Table A3. The
treatment effects are evaluated in three standard
metrics: percentage of LDL-C decrease, percentage of
triglyceride decrease, and percentage of HDL-C in-
crease as compared with the corresponding baseline
level (i.e., the lipid level of the untreated patient
group). For example, atorvastatin can lower LDL-C on
average by 43%, lower triglyceride by 28%, and in-
crease HDL-C by 7%.

In addition to the treatment effects in these metrics,
potential adverse effects are another critical consider-
ation in patients’ choice of drugs. To construct a mea-
sure of potential adverse effects associated with each
drug, we obtained the adverse effect reports of these
hyperlipidemia drugs from the 2015 FDA adverse
event reporting system data set. For example, statins,
a class of drugs including Lovastatin, Simvastatin,
Pravastatin, atorvastatin, and Crestor (Simcor and Vy-
torin are also considered statins but mixed with other
medical ingredients) may cause severe adverse effects,
such as muscle pain and cramps. We define AdvEffj of
drug j as the total number of reported incidences of
adverse effects associated with the drug divided by its
total quantity sold from the MEPS data set to measure
its risk of adverse effects. The resulting risk measure
of each drug is shown in the last column of Online
Table A3.

6.2. Demand Estimation and Optimal Formulary
Recall that, in our analytical model, patients’ risk-
adjusted utility from a drug uij � qjρj −ϑqjσj −θcij + εij
consists of the expected health benefit, the risk of
treatment failure, the cost of copayment, and the idio-
syncratic shock. In our application, we construct and
estimate an MNL model to quantify the impact of the
expected health benefit (measured by the three treat-
ment effect metrics and adverse effects), risk of treat-
ment failure, and copayment on the demand of drugs.
However, the treatment outcome data for the 14 drugs
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is not readily available. Therefore, for our numerical
analysis, we normalize the risk of treatment failure for
the existing drugs to zero and include a binary indica-
tor to capture the risk of treatment failure for the new
drug, Simcor, which, as mentioned, has more evident
risk of treatment failure than the existing drugs.

Specifically, under the MNL model, patients choose
the drug that maximizes their expected utility, which
is given by

uij � γ1LDLCj + γ2HDLCj + γ3TGj + γ4AdvEf fj

+ γ5Simcorj − θcij + εij,

where LDLCj, HDLCj, and TGj represent the three
treatment effect metrics: improvement of LDL-C,
HDL-C, and triglyceride associated with drug j and
AdvEffj captures the impact of a drug’s potential ad-
verse effects on its demand. Simcorj is a dummy vari-
able indicating whether the drug is Simcor, and γ5 is
the coefficient signifying the additional disutility re-
sulting from the risk of treatment failure for Simcor
compared with existing drugs. cij captures the impact
of copayment of a drug on its demand, and εij cap-
tures patients’ idiosyncratic preferences. Note that we
do not include the no-purchase option because
patients with abnormal LDL-C level are usually rec-
ommended to undertake hyperlipidemia drugs to pre-
vent potential heart attacks and strokes, and the
MEPS data set only includes the purchase records of
hyperlipidemia drugs.

To estimate patients’ sensitivity to copayment (θ),
we need data on the copayments of all alternative
drugs for each patient. However, the MEPS data set
only provides the copayment of the drug purchased
by a patient. Fortunately, the MEPS data set also pro-
vides patients’ insurance types, for example, private,
Medicare, Medicaid, Tricare, and their combinations

or being uninsured. Because the formulary from the
same type of insurers is generally similar, we approxi-
mate the copayment of drugs that are not purchased
by a patient through the average copayment paid by
all other patients with the same type of insurers. In
addition, because patients with the same type of in-
surers may share similar characteristics (e.g., patients
with Medicare all have age above 65), their idiosyn-
cratic preference εij may be correlated. Thus, we clus-
tered the standard errors by insurer types to account
for the potential correlation of εij among patients with
the same insurer types.

Table 1 shows the estimation results of the MNL
model. We include the variables sequentially to show
the robustness of the estimates, and the results are
consistent across these model specifications. Column
(3) of Table 1 represents the results of the full model.
We refer to the results from column (3) for our statisti-
cal inferences and counterfactual analyses hereafter.

Column (3) of Table 1 highlights a few observations.
First, among the three treatment effect metrics, the
ability of a drug in lowering LDL-C has the strongest
impact on the demand of a drug. This is consistent
with the current treatment guideline for hyperlipid-
emia, which sets the primary goal of hyperlipidemia
treatment as LDL-C reduction (Hou and Goldberg
2009). Second, the potential adverse effects of a drug
also significantly (with p < 0.05) influence its demand.
This is consistent with the fact that patients may dis-
continue their hyperlipidemia drugs because of poten-
tial serious adverse effects. Third, the coefficient of
copayment is significant (with p < 0.001), suggesting
that the insurer can leverage its formulary to influence
the demand of different drugs. Note that the coeffi-
cient of Simcor is not significant, potentially because
the risk of uncertain treatment outcome has been cap-
tured by some of the drug attributes such as AdvEff.

Using these estimation results as input for our model,
we can optimize the insurer formulary accordingly.
Recall, as Problem (2) suggests, the insurer decides the
formulary to balance patients’ health benefits and its
spending. The patients’ risk-adjusted health benefits
can be calibrated as

qjρj − ϑqjσj � γ1LDLCj + γ2HDLCj + γ3TGj + γ4AdvEf fj

+ γ5Simcorj:

(4)

Note that qj and ρj cannot be separately identified
because we do not have the data on patients’ treat-
ment outcome. Nevertheless, we only need to approx-
imate the drug-specific risk-adjusted health benefit
qjρj −ϑqjσj for the purpose of our analysis. The insurer
spending depends on the demand of different drugs,
which can be calibrated by the MNL model with the
estimated risk-adjusted health benefit qjρj −ϑqjσj and

Table 1. MNL Model Estimates for Demand Function of
Hyperlipidemia Drugs

Variables (1) (2) (3)

Copayment −0.0410*** −0.0416*** −0.0415***
(0.0083) (0.0089) (0.0088)

LDL-C 7.014*** 7.006*** 6.948***
(0.195) (0.189) (0.271)

TG 2.690*** 2.601*** 2.585**
(0.758) (0.793) (0.814)

AdvEff −1.146*** −1.100** −1.047*
(0.397) (0.458) (0.510)

HDL-C 0.798 1.267
(1.268) (1.992)

Simcor −0.338
(0.696)

Pseudo R2, % 20.23 20.24 20.25
Observations 309,183 309,183 309,183

Note. Cluster (on insurer type) standard errors in parentheses.
***p < 0.001; **p < 0.01; *p < 0.05.
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patients’ sensitivity to copayment θ. Applying these
estimates in Problem (2), we next solve the optimal in-
surer formulary.

Take the insurer, Cigna, as an example. In 2015,
Cigna adopted a four-tier formulary with copayments
for tier 1–4 drugs as $0, $10, $45, and $95, respectively.
Because the estimation of the insurer’s weight on pa-
tients’ health benefits versus spending w is not
straightforward, we vary w relative to 1=θ, the pa-
tients’ weight between health benefits and copayment
spending, to examine the impact of w.

Figure 1(a) demonstrates Cigna’s optimal formulary
solved through Problem (2) (i.e., base model without
uncertain effectiveness) under different w and its actu-
al formulary for hyperlipidemia in 2015. The y-axis of
Figure 1(a) indicates the 13 drugs (excluding Lipitor),
ordered by their effective prices, as seen in Online
Table A3. Note that Lipitor is not included here as
well as the following analysis because Cigna excludes
Lipitor from its formulary because of the existence of
the generic counterpart atorvastatin. The x-axis of
Figure 1(a) represents different values of w, and the
last column represents Cigna’s actual formulary. As
Figure 1(a) shows, the optimal formularies under dif-
ferent w, as demonstrated in Proposition 1, follows a
nested structure in which drugs with lower effective
prices are assigned to a lower tier (with a lower co-
payment), followed by drugs with higher effective
prices assigned to a higher tier (with a higher copay-
ment). As the insurer puts more weight on patients’
health benefits over its monetary spending, it places
more drugs on tiers with lower copayments. In an

extreme case in which the insurer’s weight on pa-
tients’ health benefits is really small, that is, w � 25, it
excludes all drugs from its formulary.

Figure 1(a) illustrates that Cigna’s actual formulary is
approximately ordered by the effective prices of drugs.
In Figure 1(b), we benchmark Cigna’s actual formulary
with the optimal formulary in terms of insurer spend-
ing, patients’ health benefits, and the spending-adjusted
health benefits. The spending-adjusted health benefits
associated with Cigna’s actual formulary is compara-
tively close to that of the optimal formulary, achieving
mostly more than 90% of the optimal spending-
adjusted health benefits under the different w we tried.
This result highlights that the “effective price ordering”
principle works well in designing insurer formulary
over a broad range of w.

The example illustrates how our analytical model,
together with data, can be used to guide the design of
insurer formulary. Next, we assess the impact of OBR
on the insurer, manufacturer, and patients through
counterfactual analyses on the case of Simcor, which
is featured with uncertain effectiveness.

6.3. Counterfactual Analysis with Simcor
As mentioned, Simcor has evident uncertain effective-
ness, which eventually led to its withdrawal from the
market. Under the conventional non-OBR scheme, the
insurer spends a great amount of money on Simcor
but likely does not obtain the anticipated health bene-
fit. In this section, we explore how OBR, if used for
Simcor, would have impacted the insurer, the manu-
facturer, and patients.

Figure 1. (Color online) Cigna’s Optimal Formulary for Hyperlipidemia Under Different Weight of Health Benefits w and
Cigna’s Actual Formulary in 2015
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6.3.1. Model Parameters. We first parameterize pa-
tients’ risk preference toward the uncertain drug ef-
fectiveness. According to Erdem and Keane (1996), for
typical consumer products with uncertain quality,
consumers’ risk coefficient (i.e., ϑ in our model) is be-
tween 0.14 and 7.11. We choose ϑ � 1 as an illustrative
example for this analysis. We model the insurer’s risk
aversion through a smooth function V(u) � −e−Au with
a constant risk-aversion coefficient A. The risk-aversion
coefficient A is insurer-specific and not readily avail-
able. Thus, we set A � 0.3 as an illustrative example and
later vary A for sensitivity analysis. The insurer’s
weight on health benefits w is also insurer-specific. We
choose w � 115 for the analysis because, as Figure 1
shows, it leads to a formulary closest to Cigna’s actual
formulary, indicating that the true w might be in its vi-
cinity. We later replicate the analysis for different w to
examine its impact. To capture the uncertain effective-
ness of Simcor, we assume that the proportion of pa-
tients who take Simcor and achieve the treatment target
ρ̃J follows a uniform distribution between zero and
one, that is, ρ̃J ~U(0, 1).

6.3.2. Main Results. If the manufacturer sells its
drug directly to patients without insurance coverage,
it sets a cash price of $24.8 and earns a profit of
$0.5616, much lower than if the manufacturer sets a
rebate scheme to induce insurance coverage. Table 2
highlights the three optimal rebate schemes (i.e., non-
OBR, OBR without/with patient rebate) offered by
the manufacturer and the corresponding optimal in-
surer formulary. As Table 2 shows, under non-OBR,
the manufacturer decides a wholesale price of $135:08
to the insurer. Accordingly, the insurer places Simcor

on tier 2 of the formulary with a copayment of $10.
Hence, patients pay a $10 copayment, and the insurer
pays the remaining $125:08 regardless of the realized
health outcomes among patients. In contrast, under
OBR without the patient rebate, the manufacturer pro-
vides a rebate of $154:04 to the insurer for any patient
who does not achieve the treatment target but, mean-
while, raises the wholesale price to $223:46. Accord-
ingly, the insurer still places Simcor on tier 2 of the
formulary. This supports the speculation that the
manufacturer may inflate the drug price under OBR
(Thomas and Ornstein 2017). Under such an OBR
scheme, the expected effective price of Simcor be-
comes $146.44 (� 223:46− 154 ∗ 0:5), and patients pay
a $10 copayment, and the insurer pays the remaining
$136.44, which is 9.1% higher than that under non-
OBR. This is consistent with Corollary 2 that the insurer
needs to pay a risk premium under OBR.

The manufacturer could also include a patient re-
bate in OBR, under which the manufacturer refunds
the full copayment $10 to patients and $106:20 to the
insurer for any patient who does not achieve the treat-
ment target. Because of a lower rebate to the insurer,
to retain its formulary position, the manufacturer sets
a lower wholesale price of $200:49 (a smaller price
inflation as compared with $223:46) to offset the
reduced outcome-based rebate, R1, to the insurer. Ac-
cordingly, the expected effective price of the drug be-
comes $147.39 (� 200:49− 106:2 ∗ 0:5), and patients
pay a $10 copayment, and the insurer pays the re-
maining $137:39. Because of the direct patient rebate,
the patients’ expected out-of-pocket payment is, thus,
$5 (� 10− 10 ∗ 0:5). Thus, including a patient rebate in
OBR has a similar effect as a manufacturer’s coupon

Table 2. Cigna’s Formulary for Hyperlipidemia Treatments with Simcor

OBR

Drugs Price Effectiveness Non-OBR Without patient With patient

Gemfibrozil 8.36 0.810 1 1 1
Lovastatin 11.81 1.782 1 1 1
Simvastatin 17.27 2.903 1 1 1
Colestipol 21.41 0.333 1 1 1
Pravastatin 32.25 1.599 1 1 1
Atorvastatin 37.95 2.936 1 1 1
Fenofibrate 51.48 1.289 1 1 1
Fenofibric 75.80 1.087 1 1 1
Simcor 143.77 1.002 2 2 2
Welchol 149.36 −1.838 3 3 3
Crestor 200.57 2.792 4 4 4
Vytorin 211.62 2.152 4 4 4
Zetia 226.97 0.031 4 4 4
(pJ ,R1,R2)($) (135.08, 0, 0) (223.46, 154.04, 0) (200.49, 106.20, 10)
Effective price, $ 135.08 146.44 147.39
Insurer pay, $ 125.08 136.44 137.39
Patient pay, $ 10 10 5
Market share, % 2.97 2.97 4.43
Mfg. Profit, $ 4.0089 4.3257 6.2783
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(except that the rebate is only redeemable if the drug
is not effective): it could lower patients’ out-of-pocket
payment, thus increasing the market share of the drug
without changing the insurer’s formulary, and im-
prove the manufacturer’s profit (King et al. 2019). As
for the insurer, providing a rebate to patients further
escalates its spending because of the increased de-
mand for the drug.

Our model allows the insurer to adjust formulary
tiers of the existing alternative drugs upon the entry
of the new drug. Such flexibility is especially impor-
tant when the number of alternative drugs is small.
See a numerical example in the online appendix,
which indicates that the insurer may have to pay a
38.5% higher wholesale price if the insurer cannot ad-
just the formulary of existing drugs.

6.3.3. Sensitivity Analysis on w. As Figure 1 shows,
the insurer’s weight on health benefits w has a signifi-
cant impact on how an insurer decides its formulary.
Thus, we perform the same analysis to compare non-
OBR and OBR with different w. Figure 2 highlights
the ratio of the insurer’s spending and manufacturer’s
profit for Simcor under OBR to that under non-OBR.
Under OBR without the patient rebate, the insurer’s
spending increases by 2:4% ~ 8:9% compared with
non-OBR because of the inflated price as a risk premium.
This risk premium increases as w increases, that is, the
insurer puts more weight on patients’ health benefits.
In contrast, under OBR with the patient rebate, the
insurer’s spending increases by 53:8% ~ 64:1% com-
pared with non-OBR because of the inflated drug
price and, more importantly, the increased drug

demand. Additionally, such spending increase is
prominent even when w is low.

Reciprocally, as Figure 2(b) shows, the manufacturer
can exploit a higher profit by providing OBR (especially
OBR with a patient rebate) in lieu of non-OBR, and the
advantage of OBR is more prominent when the insur-
er’s weight on health benefits is higher. Note that,
under OBR with the patient rebate, the increase of man-
ufacturer profit is not as high as the increase of insurer
spending because the manufacturer has to provide not
only an additional incentive (in the form of a lower
wholesale price) to the insurer to maintain its formulary
position, but also an outcome-based rebate to both the
insurer and patients.

Figure 2. The Risk Premium andManufacturer Profit Under Different Weight of Health Benefitsw

Figure 3. (Color online) Manufacturer’s Rebate and Corre-
sponding Formulary Position Under Different Risk AversionA
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6.3.4. Sensitivity Analysis on A. Because the insurer’s
level of risk aversion A plays a critical role in the com-
parison between OBR and non-OBR, we conduct the
same analysis with different values of A. It is notewor-
thy that the copayment for drugs on tiers 2 and 3 are
$10 and $45, respectively. Given such a substantial dif-
ference in copayment, when θ is comparatively large,
it is better for the manufacturer to induce the insurer
to place its drugs on the tier 2 formulary for higher de-
mand regardless of OBR or non-OBR. To highlight the
distinct formulary position of the drug under OBR
and non-OBR, in this sensitivity analysis, we choose a
smaller θ � 0:015 (i.e., the lower bound of the 99.5%
confidence interval of θ). Figure 3 summarizes the re-
sulting manufacturer profit as a function of A if the
drug were placed on tier 2 and 3. We do not include
OBR with patient rebate in Figure 3 in order to focus
on the impact of the insurer’s risk preference.

As demonstrated in Proposition 3 and illustrated in
Figure 3, the optimal non-OBR is equivalent to the op-
timal OBR when the insurer is risk neutral (i.e., A � 0).
In this case, the manufacturer can provide either non-
OBR or OBR to induce the insurer to place its drug on
tier 2. However, under non-OBR, as A increases, the
manufacturer has to set a lower wholesale price to
keep such a favorable formulary tier to an extent that
such a favorable tier becomes unappealing because of
the much reduced wholesale price. As a result, when
A is sufficiently large, the manufacturer chooses to
induce the insurer to place its drug on tier 3 under
non-OBR. Accordingly, patients have to pay a higher
copayment for the drug. In contrast, as Figure 3 illus-
trates, with OBR, the manufacturer can induce the
insurer to place its drug on tier 2 regardless of the in-
surer’s level of risk aversion. This is because the opti-
mal OBR scheme provided by the manufacturer takes
away the insurer’s risk of uncertain drug effective-
ness. Thus, compared with non-OBR, OBR indeed can
induce the insurer to place a new drug on the same, if
not better, tier of the formulary, improving patients’
access to the drug. Such an advantage of OBR over
non-OBR becomes more evident with a more risk-
averse insurer. In addition, as the insurer becomes
more risk averse, the risk premium the insurer has to
pay under OBR increases (given that the drug’s for-
mulary tier stays unchanged).

7. Conclusions
Exorbitant prices for new drugs in combination with
the typical uncertainty in new drugs’ effectiveness in
clinical practice result in substantial risks for a payer/
insurer. This has driven the pharmaceutical industry
to explore new reimbursement schemes (Reddy 2017).
OBR, proposed by the manufacturer to tie an insurers’
payment to the realized drug effectiveness, appears

promising for lowering insurer spending because
manufacturers promise to refund insurers (and possi-
bly patients) if their drugs fail to deliver the expected
health benefits. However, the true impact of OBR is
under much debate and depends particularly on the
design of OBR. Our study sheds light on the optimal
design of OBR and the debate around OBR, consider-
ing key trade-offs and elements not covered in prior
literature, such as the insurer’s formulary design and
the optimal split of rebates between patients and the
insurer, among others.

We develop a Stackelberg game under which a
manufacturer designs a rebate scheme for its drug, ei-
ther non-OBR or OBR, considering the trade-off be-
tween a favorable formulary position and the rebate
provided. The insurer subsequently determines its
formulary for the drug as well as other alternative
drugs within the same disease category considering
the trade-off between its spending and patient health
benefits. We also include the insurer’s and patients’
risk attitudes, which are not investigated by previous
literature. Despite the distinct complexities, we solve
the optimal insurer formulary and establish the struc-
ture of the optimal OBR scheme and eventually OBR’s
impact on different parties. We further calibrate our
model with data of 14 drugs used to treat the disease
hyperlipidemia and conduct a counterfactual analysis
to complement our analytical results.

We show that the optimal OBR reduces the insur-
er’s risk but not the insurer’s spending because of the
manufacturer’s inflated wholesale price as a price pre-
mium. Our counterfactual analyses for the drug Sim-
cor show that the insurer would need to pay 2:4% ~
8:9% more under OBR compared with non-OBR. The
more risk averse the insurer is, or the more weight the
insurer puts on patients’ health benefits over its own
spending, the higher risk premium the manufacturer
could exploit. In addition, OBR can induce the insurer
to place a new drug on a better formulary position,
hence improving patient access to new drugs. Such a
benefit of OBR becomes more evident with a more
risk-averse insurer.

The manufacturer may also provide an outcome-
based rebate to patients in addition to the insurer.
Such a rebate to patients assures the value of patients’
out-of-pocket spending, thus increasing the demand
of the drug. To some extent, it works as a manufac-
turer’s coupon does (except that it is only redeemable
if the drug is not effective). In allocating between
the outcome-based rebate to the insurer (R1) and the
patients (R2), the manufacturer considers the direct
impact on its demand from R2 and R1 through the in-
surer’s formulary. The increased drug demand result-
ing from the outcome-based rebate to patients further
increases insurer spending. In particular, our counter-
factual analyses show that insurer spending increases

Xu, Li, and Zhao: Outcome-Based Reimbursement
Manufacturing & Service Operations Management, 2022, vol. 24, no. 4, pp. 2029–2047, © 2022 INFORMS 2045



by 53:8% ~ 64:1% under outcome-based rebates to
both insurer and patients as compared with that un-
der non-OBR. Therefore, including a patient rebate in
OBR would potentially encounter resistance from the
insurer. Thus, the manufacturer may have to lead the
implementation of any patient refund scheme because
of the lack of incentive from the insurer.

Our study captures two sources for uncertain treat-
ment outcomes: uncertainty in drug effectiveness
and patient heterogeneity. For the insurer, because the
latter can be averaged out because of risk pooling,
the former is particularly important, especially when
the insurer is risk averse. We assume in this paper
that the insurers are risk averse and the manufacturer
is risk neutral. This corresponds to the fact that the
manufacturer already incurred a huge R&D cost de-
veloping the drug, and its main objective for a newly
approved drug is to generate the highest demand and
profit. Our results still hold qualitatively even with a
risk-averse manufacturer as long as it is not as risk
averse as the insurer. That is, although the optimal
OBR may not have the simple form as we currently
have, the manufacturer will still offer to partially offset
the insurer’s risk, and the discussion on how to allo-
cate the rebate between the insurer and patients is still
valid but with much more technical complexity. We
further note that we do not consider the administrative
cost associated with OBR in this study. Instead, our
goal is to establish the benefits of OBR, which could
then be benchmarked with its administrative cost.

Our study uses the MNL model to approximate the
aggregated demand of drugs. This inevitably omits cer-
tain nuances in patients’ choice of prescription drugs.
For example, for an expensive new drug, an insurer
may impose step therapy and prior authorization (in-
surer approves the use of the new drug only
if other cheaper alternative drugs failed). Such addition-
al constraints may curb the demand of the new drug
and, thus, affect the manufacturer’s pricing scheme.
This can be an interesting direction for future study.

A recent survey of 14 U.S. payers and five European
payers suggests that 26% of the payers perceive the
value of OBR to be spending reduction, and 13% per-
ceive the value to be an increased rebate from the
manufacturer (Nazareth et al. 2017). However, our re-
sults caution insurers/payers who seek OBR as the
path to spending reduction. As Harvard Pilgrim, an
insurer who has signed several OBR schemes, stated,
“What we have done so far is not going to solve the
high drug price crisis” (Loftus 2017). As shown in this
paper, OBR shifts the risk from the insurer to the man-
ufacturer, who, in turn, uses the design of its pricing
scheme to compensate for its risk. Although OBR can
potentially induce a better formulary position for a
new drug, hence improving access to the drug, it does
not curb insurers’ spending. Looking ahead, it is

imperative to reform the payment schemes for new
drugs because of the continually increasing prices.
However, the current format of OBR does not seem to
be the ultimate solution. More promising payment
innovations should consider ways to reduce the un-
certainty of drug effectiveness in clinical practices
through, for example, enhanced medication adher-
ence and better treatment recommendations.
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